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Abstract: In order to cope with the large amounts of data that have become available in genomics,
mathematical tools for the analysis of networks of interactions between genes, proteins, and other
molecules are indispensable. We present a method for the qualitative simulation of genetic regulatory
networks, based on a class of piecewise-linear (PL) di�erential equations that has been well-studied in
mathematical biology. The simulation method is well-adapted to state-of-the-art measurement tech-
niques in genomics which often provide qualitative and coarse-grained descriptions of genetic regulatory
networks. The method is able to deal with nontrivial mathematical problems induced by the discon-
tinuous right-hand sides of the di�erential equations. Furthermore, it guarantees that the simulation
covers all possible solutions of quantitative PL models corresponding to the qualitative PL model used
by the method. The qualitative simulation method has been implemented in Java.

Key-words: genetic regulatory networks, mathematical modeling, piecewise-linear di�erential equa-
tions, discontinuous di�erential equations, qualitative simulation, mathematical biology, bioinformatics
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Simulation Qualitative de Réseaux de Régulation Génique en

Utilisant des Modèles Linéaires par Morceaux

Résumé : A�n de traiter les grandes quantités de données génomiques disponibles aujourd'hui,
des outils mathématiques pour l'analyse de réseaux d'interactions entre gènes, protéines, et d'autres
molécules sont indispensables. Nous présentons une méthode pour la simulation qualitative de réseaux
de régulation génique, basée sur une classe d'équations di�érentielles linéaires par morceaux (LM) qui
a été bien étudiée en biologie mathématique. La méthode de simulation est bien adaptée à l'état
de l'art des techniques expérimentales, qui donnent souvent des descriptions qualitatives et agrégées
des réseaux de régulation génique. La méthode est capable de traiter des problèmes mathématiques
non triviaux induits par des discontinuités dans le second membre des équations di�érentielles. En
outre, elle garantit que la simulation couvre toutes les solutions possibles des modèles LM quantitatifs
correspondants au modèle LM qualitatif utilisé par la méthode. La méthode de simulation a été
implémentée en Java.

Mots-clés : réseaux de régulation génique, modélisation mathématique, équations di�érentielles
linéaires par morceaux, équations di�érentielles discontinues, simulation qualitative, biologie mathé-
matique, bioinformatique
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1 Introduction

Recent progress in genomics has provided us with experimental tools that hold great promises for
unraveling the networks of regulatory interactions between genes, proteins, and small molecules which
underlie the functioning of living organisms. On the one hand, these techniques allow protein-DNA
and protein-protein interactions to be identi�ed, thus providing insight into the structure of genetic
regulatory systems (e.g., [47, 53]). On the other hand, they allow the evolution of the state of the
system to be characterized, by large-scale measurement of the level of gene expression and protein
activity across time (e.g., [40, 68]).

In order to cope with the large amounts of data that have thus become available, formal methods
for the representation and analysis of genetic regulatory networks are indispensable. Mathematical
models allow networks of interactions to be described in a precise and unambiguous manner, while a
large variety of analysis and simulation techniques exists to systematically derive behavioral predictions
from the models. The application of formal methods, especially when supported by computer tools, may
lead to a comprehension of the structure and functioning of large and complex networks of interactions
that cannot be obtained through more intuitive approaches alone [14, 41].

The use of formal methods to study regulatory networks is currently subject to two major con-
straints [7]. First of all, the biochemical reaction mechanisms underlying the interactions are usually
not or incompletely known. This prevents the formulation of detailed kinetic models, such as those
developed for the genetic switch controlling phage � growth [42] or the feedback mechanisms regulating
tryptophan synthesis in E. coli [55]. A second constraint arises from the general absence of quantita-
tive information on kinetic parameters and molecular concentrations. As a consequence, traditional
methods for numerical analysis are di�cult to apply.

Few of the modeling and simulation methods that have been developed thus far are capable of
handling the above constraints. A notable exception is formed by approaches based on a class of
piecewise-linear (PL) di�erential equation models originally proposed by Glass and Kau�man [23].
The state variables in the PL models correspond to the concentrations of proteins encoded by genes
in the network, while the di�erential equations represent the interactions arising from the regulatory
in�uence of some proteins on the synthesis and degradation of others. The regulatory interactions are
modeled by means of step functions, which gives rise to the piecewise-linear structure of the di�erential
equations. The use of step functions is motivated by the nonlinear, switch-like character of many of
the interactions in gene expression and proteolysis [52, 67].

The PL models provide a coarse-grained description of genetic regulatory networks, well-adapted
to state-of-the-art measurement techniques in genomics. Furthermore, the models have mathematical
properties that favour qualitative analysis of the steady-state and transient behavior of regulatory
systems [11, 12, 19, 20, 24, 25, 38, 44, 45, 48, 56, 57]. On a formal level, the PL models are related to a
class of asynchronous logical models proposed by Thomas and colleagues [62, 63]. PL models and their
logical relatives have been used for the study of a number of prokaryotic and eukaryotic regulatory
networks [1, 10, 18, 43, 46, 51, 54, 61]. In addition, they have been used for modeling food webs [49],
neural networks [39], and biological computers [5].

The discontinuous nature of the step functions in PL models brings about some nontrivial math-
ematical problems. Existing approaches either avoid these problems by restricting the analysis to a
subclass of regulatory networks, or adopt solutions that have undesirable consequences for the pre-
dictiveness of the method. Recently, it has been shown that an approach capable of dealing with
di�erential equations with discontinuous right-hand sides, widely used in control theory, allows the
above-mentioned problems to be resolved in a mathematically proper and practically useful manner
[27]. This approach, originally proposed by Filippov [15], is based on the generalization of the di�er-
ential equations to di�erential inclusions.

In this paper we present a method for the qualitative simulation of genetic regulatory networks
described by the generalized PL models. The method is obtained by formulating the analysis of PL
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4 Hidde de Jong et al.

models in terms of concepts developed for the qualitative simulation of dynamical systems [10, 35,
36]. In particular, we supplement the PL di�erential equations with qualitative constraints on the
parameter values in the form of algebraic inequalities that can be inferred from biological data. The
method exploits the constraints to determine all qualitative states that are reachable from some initial
qualitative state through one or more transitions. Each qualitative state corresponds to a region of
the phase space where the system behaves in a qualitatively distinct way. The graph of qualitative
states and transitions predicted by the method is guaranteed to cover all solutions of the di�erential
equations consistent with the parameter constraints.

The simulation method has been implemented in a publicly-available computer tool, called Genetic

Network Analyzer (GNA) [9]. In a companion paper we use the method and the tool to analyze a
genetic regulatory network of biological interest, consisting of the genes and interactions that regulate
the initiation of sporulation in B. subtilis [8]. The application shows that the simulation method can
help to gain insight into the qualitative dynamics of complex regulatory networks involving dozens of
genes.

In the next two sections of the paper, the mathematical framework underlying the simulation
method will be reviewed. Sections 4 and 5 introduce the notions of qualitative PL model and qualitative
state and behavior, respectively. Using a qualitative PL model of the regulatory network, supplemented
by qualitative initial conditions, the simulation algorithm described in section 6 generates a graph of
qualitative states and transitions between qualitative states. The soundness and completeness of the
algorithm are investigated in section 7. In the �nal section of the paper, the method is discussed in
the context of related work.

2 Piecewise-linear models of genetic regulatory networks

Figure 1 shows an example of a simple genetic regulatory network. The genes a and b, transcribed
from separate promoters, encode the proteins A and B, each of which controls the expression of both
genes.1 Proteins A and B repress gene a and b at di�erent concentrations. Repression of the genes is
achieved by binding of the proteins to regulatory sites overlapping with the promoters. The pattern of
interactions gives rise to one positive and two negative feedback loops.

a b

A B

Figure 1: Example of a genetic regulatory network of two genes (a and b) coding for a regulatory
protein (A and B). The notation follows, in a somewhat simpli�ed form, the graphical conventions
proposed by Kohn [34].

The dynamics of genetic regulatory networks can be modeled by a class of di�erential equations
proposed by Mestl et al. [44], extending previous work by Glass and Kau�man [23] (see also the work
of Snoussi and Thomas [56, 62] and Ratner and Tchuarev [59]). The equations have the general form

_xi = fi(x)� gi(x)xi; xi � 0; 1 � i � n; (1)

where x = (x1; : : : ; xn)
0 is a vector of cellular protein concentrations. The state equations (1) de�ne

the rate of change of each concentration xi as the di�erence of the rate of synthesis fi(x) and the rate

1As a notational convention, names of genes are printed in italic and names of proteins start with a capital.

INRIA



Qualitative Simulation of Genetic Regulatory Networks 5

of degradation gi(x)xi of the protein. In vector notation, the system of di�erential equations (1) is
written as

_x = f(x)� g(x)x; (2)

with f = (f1; : : : ; fn)
0 and g = diag(g1; : : : ; gn).

The function fi : R
n
�0 ! R�0 is de�ned as

fi(x) =
X
l2L

�il bil(x); (3)

where �il > 0 is a (bounded) rate parameter, bil : R
n
�0 ! f0; 1g a regulation function de�ned in terms

of step functions, and L a possibly empty set of indices of regulation functions. A regulation function
bil is the arithmetic equivalent of a Boolean function expressing the logic of gene regulation [50, 56].

In the simplest case, fi(x) = �i s
+(xj ; �j), where the step function s+ : R2 ! f0; 1g is de�ned as

follows (see also �gure 7):

s+(xj ; �j) =

(
1; xj > �j;

0; xj < �j:
(4)

As a consequence, gene i is not expressed below a threshold concentration �j > 0, whereas above
this threshold it is expressed at a rate �i. If protein J is a negative regulator of gene i, we have
fi(x) = �i s

�(xj ; �j), with s�(xj ; �j) = 1� s+(xj; �j). More complex regulation functions can express
the combined e�ect of several regulatory proteins. The use of step functions in gene regulation models
has been motivated by the observation that the activation of a gene, as a function of the concentration
of a regulatory protein, often follows a steep sigmoidal curve [52, 67].

The function gi allows the regulation of protein degradation to be modeled. It is de�ned analogously
to (3), except that we demand that gi(x) is strictly positive. In addition, in order to formally distinguish
degradation rates from synthesis rates, we will denote the former by 
 instead of �. Notice that with
the above de�nitions of fi and gi, the state equations (1) and (2) are piecewise-linear (PL).

The PL models can be extended to take into account input variables u = (u1; : : : ; um)
0, representing

the concentration of proteins and small molecules whose synthesis and degradation are regulated outside
the system. This leads to models of the form:

_x = f(x;u)� g(x;u)x: (5)

In what follows, we will assume that the input variables are constant, i.e., _u = 0. As a consequence,
(5) can be reduced to (2) without loss of generality, by prior evaluation of the step function expressions
in which input variables occur.

In �gure 2 the state equations for the example network are shown. Gene a is expressed at a rate
�a, if the concentration of protein A is below its threshold �2a and the concentration of protein B below
its threshold �1b , that is, if s

�(xa; �
2
a) s

�(xb; �
1
b ) = 1. Analogously, gene b is expressed at a rate �b, if

the concentration of protein A is below the threshold �1a and the concentration of protein B below the
threshold �2b . Degradation of the proteins A and B is assumed to be spontaneous, which gives rise to
regulation functions having the value 1, independent of the concentrations of the proteins.

The dynamical properties of PL models of the form (2) can be analyzed in the n-dimensional phase
space box 
 = 
1 � : : : �
n, where every 
i, 1 � i � n, is de�ned as


i = fxi 2 R�0 j 0 � xi � max ig: (6)

max i is a parameter denoting a maximum concentration for the protein. It can be shown, by gener-
alizing the argument in [21], that if we choose max i = maxx�0 fi(x)=gi(x), all trajectories starting

RR n° 4407



6 Hidde de Jong et al.

State equation for gene a:

_xa = �a s
�(xa; �

2
a) s

�(xb; �
1
b )� 
a xa

State equation for gene b:

_xb = �b s
�(xa; �

1
a) s

�(xb; �
2
b )� 
b xb

Figure 2: State equations for the network of �gure 1.

inside 
 will remain in it, while trajectories starting outside will enter the phase space box at some
point.

In general, a protein encoded by a gene will be involved in di�erent interactions at di�erent threshold
concentrations, which after ordering are denoted by �1i ; : : : ; �

pi
i . The n � 1-dimensional hyperplanes

xi = �kii , 1 � ki � pi, divide 
 into hyperrectangular regions that are called regulatory domains.
Within each region, the concentration of the proteins is bounded by thresholds. More precisely, a
regulatory domain D � 
 is de�ned by D = D1 � : : : �Dn, where every Di, 1 � i � n, is de�ned by
one of the equations below:

Di =fxi j 0 � xi < �1i g;

Di =fxi j �
1
i < xi < �2i g;

: : :

Di =fxi j �
pi
i < xi � max ig:

�r denotes the set of regulatory domains in 
. As can be easily veri�ed, there are j�rj =
Qn

i=1 (pi+1)
regulatory domains in 
.

In �gure 3(a) the two-dimensional phase space box 
 for the example network is shown. As proteins
A and B have two thresholds both, the phase space box is partitioned into 9 regulatory domains.

When evaluating the step function expressions in (3) in a regulatory domain, fi and gi reduce to
sums of rate constants. More precisely, in every D 2 �r, fi reduces to some �Di 2 Mi � ffi(x) j 0 �
x �maxg, and gi to some �Di 2 Ni � fgi(x) j 0 � x �maxg. Mi and Ni collect the synthesis and
degradation rates of the protein in di�erent domains of 
. Inside a regulatory domain D, the state
equations thus simplify to linear and uncoupled di�erential equations

_xi = �Di � �Di xi; 1 � i � n; (7)

or, equivalently,
_x = �D � �D x; (8)

where �D = (�D1 ; : : : ; �
D
n )

0 and �D = diag(�D1 ; : : : ; �
D
n ).

Let � = (: : : ; �kii ; : : :)
0, � = (: : : ; �il; : : :)

0, and 
 = (
1; : : : ; 
n)
0 be numerical parameter values.

Furthermore, let x(0) = x0 be a point in 
 representing the initial conditions. A continuously di�eren-
tiable function x(t) = �(t; 0;x0;�;�;
) is a solution of (8) on a time-interval [0; � [, � > 0, if x(0) = x0
and for all t 2 [0; � [ it holds that x(t) 2 D and _x(t) = �D � �D x(t). For initial values x0 2 D, there
exists a function x(t) and a � > 0, such that x(t) is the unique solution for (8) on [0; � [.

Let �i be a function from �r to 
i, de�ned as �i(D) = �Di =�
D
i . Analysis of (8) shows that all

solution trajectories in D monotonically tend towards a target equilibrium, a stable equilibrium given

INRIA
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xb

0

xa

max b

�2b

�1b

�1a �2a max a

(a)

xb

0

xa

max b

�2b

�1b

�1a �2a max a

�b=
b

�a=
a

�(D1)

D1

(b)

Figure 3: (a) Phase space box 
 for the genetic regulatory network in �gure 2. (b) Phase space box
with the target equilibrium for the regulatory domain D1 = f(xa; xb) 2 R

2 j 0 � xa < �1a; 0 � xb < �1bg.
The variables xa and xb tend towards equilibrium values �a=
a and �b=
b. The target equilibrium is
assumed to lie in the upperright domain.

by x = �(D), with � = (�1; : : : ; �n)
0 [12, 20, 44, 48]. Intuitively speaking, the target equilibrium

level �i(D) of xi gives an indication of the strength of gene expression in the regulatory domain. If
�(D) 2 D, then for t!1 all trajectories in D approach a target equilibrium in D, which represents
a so-called regular steady state [57] of the system. If �(D) 62 D, all trajectories will at some point
leave D. In what follows, we will make the generic assumption that target equilibria are not located
in threshold planes.

In the example, as can be easily checked from the state equations, we haveMa = f0; �ag, Na = f
ag
for protein A, and Mb = f0; �bg, Nb = f
bg for protein B. In the regulatory domain D1 in �gure 3(b),
the state equations simplify to

_xa = �a � 
a xa;

_xb = �b � 
b xb:

As a consequence, the target equilibrium �(D1) of D1 equals (�a=
a; �b=
b)
0, which lies outside D1.

The trajectories in D1 will therefore leave the domain at some point. Di�erent regulatory domains
generally have di�erent target equilibria. For instance, in the regulatory domain de�ned by 0 � xa < �1a
and �1b < xb < �2b , the target equilibrium is given by (0; �b=
b)

0.

3 Extension of piecewise-linear models to deal with discontinuities

The global solution of (2) could be obtained by piecing together the local solutions in regulatory
domains, in such a way as to guarantee continuity of the global solution across the threshold hyperplanes
[12, 56]. This works �ne as long as trajectories arriving at a threshold hyperplane can be continued
in another regulatory domain, e.g., trajectories arriving at the threshold hyperplane xb = �1b from
the regulatory domain D1 (�gure 4(a)). However, when the trajectories on both sides of a threshold
hyperplane evolve towards this plane, as in the case of trajectories arriving at the threshold hyperplane
xb = �2b from regulatory domain D3 or D5 (�gure 4(b)), mathematical perplexities arise. In the
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8 Hidde de Jong et al.

framework of the previous section, there is no indication on how the local solutions in D3 and D5 can
be continued.2

xb

0

xa

max b

�1a �2a max a

�1b

�(D1)
�(D3)

�2b

D2

D1

D3

D6

D7

(a)

xb

0

xa

max b

�1b

�1a �2a max a

�2b

�(D5)

D3

D5

D4

�(D3)

(b)

Figure 4: Examples of the behavior of the system of �gure 1 at threshold hyperplanes. The �gures
show the regulatory domains D1; : : : ;D5, and the target equilibria �(D1), �(D3), �(D5). In (a) the
solution trajectories in D1 can be continued in D3, whereas in (b) the solution trajectories in D3

cannot be continued in D5.

The troubles at the threshold hyperplanes are caused by discontinuities in the right-hand side of
(2), due to the use of step functions. In order to deal with these discontinuities, we will use a method
originally proposed by Filippov [15]. This method, recently applied by Gouzé and Sari [27] to PL
systems of the form (2), consists of extending a system of di�erential equations with discontinuous
right-hand sides into a system of di�erential inclusions.

We �rst re�ne the description of 
 by introducing switching domains located in the threshold
hyperplanes. More precisely, a switching domain D � 
 is de�ned by D = D1� : : :�Dn, where every
Di, 1 � i � n, is de�ned by one of the equations below:

Di =fxi j 0 � xi < �1i g;

Di =fxi j xi = �1i g;

Di =fxi j �
1
i < xi < �2i g;

Di =fxi j xi = �2i g;

: : : (9)

Di =fxi j xi = �pii g;

Di =fxi j �
pi
i < xi � max ig;

while for at least one i, it holds that there is a j, 1 � j � pi, such that Di = fxi j xi = �ji g.
The corresponding variables xi are called switching variables.3 The order of a switching domain is a
number between 1 and n, equal to the number of switching variables. �s denotes the set of switching
domains in 
, while � = �r [ �s denotes the set of all domains in 
. As can be easily veri�ed,
j�j =

Qn
i=1 (2pi + 1), which with j�rj =

Qn
i=1 (pi + 1) gives j�sj =

Qn
i=1 (2pi + 1)�

Qn
i=1 (pi + 1)

2In [44, 48], D2 is called a transparent wall and D4 a black wall. Another problem, not shown here, occurs when
a switching domain is a white wall, that is, when the trajectories in two regulatory domains evolve from a common
bounding threshold hyperplane.

3In [44] switching domains are called �-regions and switching variables are referred to as primary variables.

INRIA



Qualitative Simulation of Genetic Regulatory Networks 9

The phase space box in �gure 3 consists of 9 regulatory and 16 switching domains. An example of
a switching domain in �gure 4 is the set D4 = f(xa; xb) 2 R

2 j 0 � xa < �1a; xb = �2bg, which separates
the regulatory domains D3 and D5. Notice that xb is the (only) switching variable in D4.

Let D be a switching domain of order k. Let C be the hyperplane of dimension n� k containing
D. The boundary of D in C is the set B(D) of all points x 2 C, such that each ball BC(x; ") in C of
center x and radius " > 0 intersects both D and C nD [33]. In the case that D is a regulatory domain,
C equals 
.

Now, for every D 2 � we de�ne the sets

A(D) = fD0 2 � j D0 � B(D)g; and

R(D) = fD0 2 � j D0 regulatory domain, D � B(D0)g:

A(D) contains the domains in the boundary of D, whereas R(D) contains the regulatory domains that
have D in their boundary.

In the case of the regulatory domain D1 in �gure 4, we �nd A(D1) = fD2;D6;D7g, while A(D2) =
fD7g. Furthermore, R(D1) = fg and R(D2) = fD1;D3g.

The basic idea of the Filippov approach is to extend the di�erential equations (2) into di�erential
inclusions

_x 2H(x); (10)

where H : 
! S(
) is a set-valued function.4

For x 2 D, and D a regulatory domain, we de�ne H(x) simply as

H(x) = f�D � �D xg: (11)

Notice that, since the set H(x) contains a single element, the extension of the PL system agrees with
the original system in the regulatory domains. If D is a switching domain, H(x) is de�ned by

H(x) = co (f�D0

� �D
0

x j D0 2 R(D)g): (12)

The smallest closed convex set co (E) of a set E is the intersection of all closed convex sets containing
E [15]. In the case of switching domains, H(x) will not generally be single-valued.

An absolutely continuous function x(t) = �(t; 0;x0;�;�;
) is a solution of (10) in the sense of
Filippov on [0; � [, � > 0, if x(0) = x0 and for almost all t 2 [0; � [ it holds that _x(t) 2 H(x(t)) [15].
The quali�cation `for almost all t 2 [0; � [' means that the set of time-points for which the condition
does not hold is of measure 0. In particular, the condition is not satis�ed at time-points when the
solution arrives at a switching domain D, or leaves a switching domain D. If no misunderstanding is
possible, we will often simply speak of `a solution of (10),' instead of `a solution of (10) in the sense
of Filippov.' For all initial values x0 2 
 there exists a solution of (10) on some [0; � [ [15]. However,
this solution is not guaranteed to be unique, due to the generalization of the di�erential equations to
di�erential inclusions.

In order to get an intuitive feeling for the meaning of the above concepts, consider again the
examples in �gure 4. In the �rst case, D2 is the switching domain bounding the regulatory domains
D1 and D3. If x 2 D2, then H(x) is the smallest closed convex set including the end-points of the
vectors �D

1

� �D
1

x and �D3

� �D
3

x starting at x. This set is graphically represented in �gure 5(a)
by the linear segment connecting the end-points of the vectors. H(x) is multiple-valued but, as can
be seen, _xb > 0 for any _x 2 H(x), so that a solution trajectory arriving at x crosses the threshold
plane instantaneously. In the second example of �gure 4, H(x) is a linear segment connecting the
end-points of the vectors �D3

� �D
3

x and �D
5

� �D
5

x. However, this time H(x) intersects with

4For a set E, S(E) represents the set of subsets of E.

RR n° 4407



10 Hidde de Jong et al.

xb

xax
D2�1b

D1

D3

�D1

� �D1

x
H(x)�D3

� �D3

x

(a)

xa

xb

x

H(x)
D4�2b

D5

D3

�D5

� �D5

x

�D3

� �D3

x

(b)

Figure 5: Behavior of the system of �gure 1 at a point x in a threshold hyperplane, when the di�erential
equations are generalized into di�erential inclusions by the method of Filippov. Whereas in (a) solution
trajectories cross D2 instantaneously, in (b) they slide along D4.

the threshold plane (�gure 5(b)). Because the vector �elds in D3 and D5 are directed towards D4, a
solution trajectory arriving at x continues by sliding along the threshold plane with a derivative vector
given by the intersection of H(x) and D4, displaying a so-called sliding mode behavior.

For every domain D, a so-called target equilibrium set �(D) can be de�ned. If D is a regulatory
domain, then

�(D) = f�(D)g: (13)

If D is a switching domain, the de�nition is a little bit more complicated. Let D be a switching domain
of order k, contained in the n� k-dimensional hyperplane C. Then

�(D) = C \ co (f�(D0) j D0 2 R(D)g): (14)

That is, �(D) is the smallest closed convex set of the target equilibria of regulatory domains D0 having
D in their boundary, intersected with the hyperplane containing D.

As illustrated in �gure 5, a solution may (a) instantaneously cross a switching domain or (b)
remain in the domain for some time � > 0, sliding along the threshold hyperplane containing the
domain. Obviously, the latter case is more interesting when analyzing the behaviour of regulatory
systems. Gouzé and Sari [27] have shown that the latter sliding mode solutions exist in a switching
domain D, i�

�(D) 6= fg: (15)

The sliding mode solutions monotonically tends towards the target equilibrium set �(D) [27].
Because �(D) does not generally include a single point, the behavior of the system is not uniquely
determined by the di�erential inclusion (10). For example, if a solution trajectory rests in D on the
interval [0; � [, it might tend towards one target equilibrium in �(D) on the subinterval [0; � 0[, and to
another target equilibrium in �(D) on the subinterval [� 0; � [ (0 < � 0 < �). In the special case that
�(D)\D 6= fg, there exist solutions in D that asymptotically approach a target equilibrium in D. The
equilibrium represents a so-called singular steady state [57] of the system. Whether the equilibrium is
stable or unstable must be determined through further analysis.

Consider the examples in �gure 6. The target equilibrium set �(D2) of the switching domain D2 is
de�ned, following (14), by the intersection of co(f�(D1);�(D3)g) and the threshold hyperplane xb =
�1b . The smallest closed convex set consists of the linear segment connecting the points (�a=
a; �b=
b)

0

and (0; �b=
b)
0, as shown in (a). �(D2) and the threshold boundary xb = �1b do not intersect in the
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�gure, so �(D2) = fg. Following criterion (15), there are no sliding mode solutions in D2. This is
di�erent in the case of D4. Here, the target equilibrium set �(D2) is given by the intersection of
co(f�(D3);�(D5)g), the linear segment connecting the points (0; �b=
b)

0 and (0; 0)0, and the threshold
boundary xb = �2b . Consequently, �(D4) equals f(0; �2b )

0g, and there exists a (unique) sliding mode
solution in D4, tending towards (0; �2b ). Because the target equilibrium lies inside D4, it is also a
singular steady state of the system. Closer analysis reveals that the equilibrium (0; �2b )

0 is stable, since
all trajectories in its neighbourhood end up in this point.

xb

0

xa

max b

�1a �2a max a

�1b

�(D1)

D3

D1

�(D3)

�2b

D2

co(f�(D1);�(D3)g)

(a)

xb

0

xa

max b

�1a �2a max a

�1b

�(D5)

�2b

D3

D5

D4

co(f�(D3);�(D5)g)

�(D3)

�(D4)

(b)

Figure 6: Determination of the target equilibrium sets (a) �(D2) = fg and (b) �(D4) = f(0; �2b )
0g.

In order to appreciate the intuitive validity of the Filippov approach, suppose that the step functions
s+(xj ; �j) in (2) are replaced by sigmoid functions h+(xj ; �j; �), de�ned by

h+(xj; �j ; �) =
x�j

x�j + ��j
: (16)

The step functions and sigmoid functions (called Hill functions) are compared in �gure 7. Replacing
step functions by sigmoid functions results in di�erential equation models that are nonlinear but
continuous. For steep sigmoid functions, the behavior of the continuous, nonlinear system resembles
the behavior of the discontinuous, piecewise-linear system, as shown in �gure 8 for the example system
(see also [22, 23, 48]). In the continuous case, in the neighbourhood of the plane xb = �2b , the solution
trajectories tend towards an equilibrium located near (0; �2b )

0. A mathematically rigorous comparison
of the behavior of discontinuous systems and their continuous homologues can be found in the book of
Filippov [15].

�j

1

0

s+(xj; �j)

xj

(a)

�j

1

0

h+(xj; �j; �)

xj

(b)

Figure 7: Di�erent threshold functions: (a) step function s+(xj ; �j) and (b) sigmoid function
h+(xj ; �j; �). The sigmoid function approaches the step function as � !1.
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xb

xa

D3

D5

�2b

(a)

xb

xa

D3

D5

�2b

(b)

Figure 8: Behavior of the system of �gure 1 near the threshold plane xb = �2b . In (a) the system is
described by the state equations in �gure 2, whereas in (b) the system is described by the same state
equations, but with the step functions replaced by the sigmoid functions.

4 Qualitative constraints on parameter values

Most of the time, precise numerical values for the threshold and rate parameters in (2) are not available.
As a consequence, it is not possible to numerically simulate the behavior of a genetic regulatory network.
Rather than numerical values, we will specify qualitative constraints on the parameter values. These
constraints, having the form of algebraic inequalities, can usually be inferred from biological data.
They are exploited by the simulation method to predict the qualitative dynamics of the regulatory
system.

First of all, we can order the pi threshold concentrations of gene i, yielding the so-called threshold

inequalities

0 < �1i < : : : < �pii < max i: (17)

In the case of protein A, there are two threshold concentrations: �1a is the threshold for the repression
of gene b, while �2a is the threshold for the repression of gene a. Assuming the �rst to be lower than the
second, we obtain the threshold inequalities 0 < �1a < �2a < max a. The ordering of the thresholds of
protein B can be determined likewise, giving rise to 0 < �1b < �2b < max b, with �1b being the threshold
for gene a repression and �2b the threshold for gene b autorepression (�gure 9).

Second, the possible target equilibrium levels of xi in di�erent regulatory domains D 2 �r can
be ordered with respect to the threshold concentrations. The resulting equilibrium inequalities de�ne
the strength of gene expression in the domain in a qualitative way, on the scale of ordered threshold
concentrations. More precisely, for every �i 2 Mi, �i 2 Ni, and �i; �i 6= 0, we specify one of the
following pairs of inequalities:

0 < �i=�i < �1i ;

�1i < �i=�i < �2i ;

: : : (18)

�pii < �i=�i < max i:

The equilibrium inequalities for the example model are shown in �gure 9. In the absence of protein
B (s�(xb; �

1
b ) = 1), while protein A has not yet reached its highest level (s�(xa; �

2
a) = 1), gene a is

expressed at a rate �a. The corresponding target equilibrium value �a=
a of xa must be above the
second threshold �2a, otherwise the concentration of the protein would not be able to reach or maintain
a level at which the observed negative autoregulation of gene a occurs (i.e., �2a < �a=
a < max a).
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State equation for gene a:

_xa = �a s
�(xa; �

2
a) s

�(xb; �
1
b )� 
a xa

Threshold inequalities: 0 < �1a < �2a < maxa

Equilibrium inequalities: �2a <
�a

a

< max a

State equation for gene b:

_xb = �b s
�(xa; �

1
a) s

�(xb; �
2
b )� 
b xb

Threshold inequalities: 0 < �1b < �2b < max b

Equilibrium inequalities: �2b <
�b

b

< max b

Figure 9: State equations, threshold inequalities, and equilibrium inequalities for the network of �g-
ure 1.

In a similar way, the target equilibrium value �b=
b is positioned above �2b , again to ensure that the
negative autoregulation of gene b at high concentrations of protein B can occur.

A quantitative PL model of a genetic regulatory network consists of the state equations (2) and
numerical parameter values �;�;
. In a qualitative PL model, on the other hand, the state equations
are supplemented by parameter inequalities (17) and (18). Every quantitative PL model can be ab-
stracted into a unique qualitative PL model. The values of � can be uniquely ordered, giving rise to the
threshold inequalities (17), while ratios of values of � and 
 can be uniquely ordered with respect to the
threshold values, yielding the equilibrium inequalities. Conversely, a qualitative PL model corresponds
to a set of quantitative PL models.

5 Qualitative states and behaviors

An intuitive qualitative description of the state of a regulatory system consists of the domain in which
the system resides, supplemented by the position with respect to this domain of the target equilibrium
set to which the state of the system tends. A qualitative behavior is then given by the sequence of
qualitative states traversed by the system. This idea will be elaborated below.

We �rst de�ne a function v : �� 
! f�1; 0; 1gn that maps a domain D and a point e to a sign
vector v(D;e) describing the relative position of D and e. Let v(D; e)i denote the ith component of
this vector. If xi is a non-switching variable, then

v(D;e)i =

8><
>:

1 ; if ei � supDi,

0 ; if infDi < ei < supDi,

�1 ; if ei � infDi.

On the other hand, if xi is a switching variable, then Di = f�
j
i g, and
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v(D;e)i =

8><
>:

1 ; if ei > �ji ,

0 ; if ei = �ji ,

�1 ; if ei < �ji .

Generalizing this de�nition, we obtain the set function V : �� S(
) ! S(f�1; 0; 1gn) that maps a
domain D and a set E to a set of sign vectors:

V (D;E) = fv(D; e) j e 2 Eg: (19)

Let x(t) = �(t; 0;x0;�;�;
) be the solution of a quantitative PL model describing a regulatory
network on the time-interval [0; � [. Now suppose that for some t, 0 � t < � , we have x(t) 2 D, D 2 �.
The point x(t) corresponds to a qualitative state of the system de�ned by

QS(x; t) = hD;V (D;�(D))i: (20)

The solution x(t) on [0; � [ remains in 
 (section 2), and hence passes through a sequence of domains
D0; : : : ;Dm. The corresponding sequence of qualitative states is called the qualitative behavior of the
system on the time-interval. More speci�cally, a qualitative behavior of the system is de�ned by

QB(x; 0; �) = (hD0; V (D0;�(D0))i; : : : ; hDm; V (Dm;�(Dm))i): (21)

Consider the solution trajectory in �gure 10, obtained for given parameter values, which moves
from an initial state in D1 towards a stable equilibrium in D4. Following the above de�nitions, the
solution can be abstracted into a qualitative behavior, as shown in the �gure. In the regulatory
domain D1, we have �(D1) = f(�a=
a; �b=
b)

0g. For the parameter values in �gure 10, we �nd
�a=
a > �2a > �1a and �b=
b > �2b > �1b . As a consequence, V (D1;�(D1)) = f(1; 1)g, and we have a
qualitative state QS1 = hD1; f(1; 1)gi. In the case of the switching domain D2, the smallest closed
convex set of the target equilibria inD1 andD3 consists of the linear segment connecting (�a=
a; �b=
b)

0

and (0; �b=
b)
0. For the parameter values in �gure 10, this segment does not intersect with xb = �1b , so

that V (D2;�(D2)) = fg. The resulting qualitative state is QS2 = hD2; fgi. The target equilibrium set
of the regulatory domain D3 is given by �(D3) = f(0; �b=
b)

0g, which leads to V (D3;�(D3)) = f(0; 1)g,
and QS3 = hD3; f(0; 1)gi. In the case ofD4, the smallest closed convex set containing �(D3) and �(D5)
consists of the linear segment connecting (0; �b=
b)

0 and (0; 0)0. This set intersects with xb = �2b at
(0; �2b )

0, so that V (D4;�(D4)) = f(0; 0)g. We have a qualitative state QS 4 = hD4; f(0; 0)gi.

xb

0

xa

max b

�1a �2a max a

�1b

�2b

x

x0

D1

�(D5)

�(D1)
�(D3)

D4

D3

D2

QB(x; 0; 20) =(QS 1;QS 2;QS 3;QS 4)

QS 1 =hD1; f(1; 1)gi

QS 2 =hD2; fgi

QS 3 =hD3; f(0; 1)gi

QS 4 =hD4; f(0; 0)gi

Figure 10: Abstraction of a solution of the PL model in �gure 9 into a qualitative behavior. The
solution trajectory has been obtained for the parameter values �1a = 4, �2a = 8, �1b = 3, �2b = 7, �a = 20,
�b = 16, 
a = 2, 
b = 2, and the initial conditions x0 = (1:25; 2) on the time-interval [0; 20[.
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The example shows how a numerical solution of the system can be abstracted into a qualitative
behavior consisting of a sequence of qualitative states. More generally, every solution x of a quantitative
PL model on a time-interval [0; � [ can be abstracted into a unique qualitative behavior QB(x; 0; �). The
solution traverses a unique sequence of domains D0; : : : ;Dm, while to every domain Dj, 0 � j � m,
there corresponds a unique set of sign vectors V (Dj;�(Dj)). Conversely, a single qualitative behavior
usually corresponds to a set of solutions.

Some properties of the set of solutions abstracting to a qualitative behavior can be directly in-
ferred from the behavior description. Let QB be a qualitative behavior containing a qualitative state
hD;V (D;�(D))i associated with a domain D 2 �.

Proposition 1 LetD be a switching domain. There exist sliding mode solutions inD, i� V (D;�(D)) 6=
fg.

Proof. The condition V (D;�(D)) 6= fg means that �(D) 6= fg. This is exactly condition (15) for the
existence of sliding mode solutions in switching domains. �

Proposition 2 There exist solutions in D that asymptotically approach an equilibrium point in D,
i� 0 2 V (D;�(D)).

Proof. If D is a regulatory domain, then �(D) = f�(D)g. All trajectories asymptotically approach
an equilibrium point in D, i� �(D) \D 6= fg. This is the case, i� for all xi, infDi < �i(D) < supDi,
and hence v(D;�(D)) = 0. If D is a switching domain, then �(D) = C \ co (f�(D0) j D0 2 R(D)g).
�(D) \D 6= fg, i� �(D) 6= fg and there is some r 2 �(D), such that for all non-switching variables
xi, infDi < ri < supDi. That is, there is some r 2 �(D), such that v(D; r) = 0. �

6 Qualitative simulation

Given a qualitative PL model and initial conditions in a domain D0, one can ask what are the possible
qualitative behaviors of the system. Determining these qualitative behaviors is the aim of qualitative
simulation. Phrased in a di�erent way, denoting by X the set of solutions x(t) on some time-interval
[0; � [ of all quantitative PL models corresponding to the qualitative model, such that x(0) = x0 2 D

0,
the aim of qualitative simulation is to �nd the set of qualitative behaviors that abstract from some
x 2 X. Although not essential for the sequel, we will make the assumption that � is su�ciently large
for obtaining an idea of the long-term behavior of the system.

The simulation algorithm described in this section generates a set of qualitative behaviors by
recursively determining transitions from qualitative states, starting from the qualitative state associated
with the initial domain D0. In order to achieve this, two issues need to be addressed. First of all,
how can we determine the qualitative state associated with a domain from the constraints on the
parameters? Second, how can we �nd the possible transitions from this qualitative state? In the
next section, we will show that the set of qualitative behaviors generated by the simulation algorithm
contains all qualitative behaviors abstracting from some x 2 X.

6.1 Computation of qualitative states

In order to determine the qualitative state associated with a domainD, we need to compute V (D;�(D)).
In the absence of numerical values for the parameters, we cannot give a numerical approximation of
�(D) and then abstract this region into a set of sign vectors. Instead, we have to infer V (D;�(D))
from the inequalities (17) and (18) constraining the parameter values. This is a di�cult problem in
general, because �(D) may be a complex polyhedron in 
, and the relative position of �(D) with
respect to the threshold planes underdetermined by the parameter inequalities.
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Instead of V (D;�(D)), we will calculate V (D;	(D)), where 	(D) � 
 is the smallest closed
hyperrectangle including �(D). Like �(D), 	(D) is a convex set. If D is a regulatory domain, then
	(D) = f�(D)g. On the other hand, if D is a switching domain, we obtain

	(D) = C \ rect (f�(D0) j D0 2 R(D) g; (22)

where C is the n�k-dimensional hyperplane containing D. rect(E) is the smallest closed hyperrectangle
containing the set E. Although in general 	(D) will be an overapproximation of �(D), V (D;	(D))
is straightforward to compute from the parameter inequalities and uniquely determined by the latter.
In the next section, we will discuss the consequences of the overapproximation of �(D) by 	(D).

In the special case that D is a regulatory domain, 	(D) is a single point in 
, and V (D;	(D)) =
fv(D;�(D))g. The equilibrium inequalities tell us whether �i(D) � supDi, infDi < �i(D) < supDi,
or �i(D) � infDi, which directly gives the sign vector representing v(D;�(D)).

Consider the case of V (D1;	(D1)) = fv(D1;�(D1))g in the example system. �(D1) was shown
to be (�a=
a; �b=
b)

0. From the threshold and equilibrium inequalities in �gure 9, we know that
�a=
a > �1a and �b=
b > �1b . As a consequence, v(D1;�(D1)) = (1; 1). The resulting qualitative state
is hD1; f(1; 1)gi.

IfD is a switching domain, 	(D) is a hyperrectangle in 
. Because of the hyperrectangular shape of
	(D), we can write V (D;	(D)) as V (D;	(D))1�: : :�V (D;	(D))n, where V (D;	(D))i � f�1; 0; 1g,
1 � i � n. Let v(D;�(D0))i represent the ith component of the sign vector v(D;�(D0)). Now, if xi is
a non-switching variable, then V (D;	(D))i is given by

V (D;	(D))i = fri 2 f�1; 0; 1g j min
D02R(D)

v(D;�(D0))i � ri � max
D02R(D)

v(D;�(D0))i g: (23)

On the other hand, if xi is a switching variable, V (D;	(D))i is given by

V (D;	(D))i = fri 2 f�1; 0; 1g j min
D02R(D)

v(D;�(D0))i < ri < max
D02R(D)

v(D;�(D0))i g: (24)

As an example, consider the computation of V (D2;	(D2)), where D2 is a switching domain and
R(D2) = fD1;D3g (�gure 6). By means of the parameter inequalities in �gure 9, we �nd that
v(D2;�(D1)) = (1; 1) and v(D2;�(D3)) = (0; 1). Using (23)-(24), bearing in mind that xb is a
switching variable in D2, we derive V (D2;	(D2)) = f0; 1g � fg = fg. A second example concerns the
computation of V (D4;	(D4)), where D4 is a switching domain and R(D4) = fD3;D5g (�gure 6). By
means of the parameter inequalities in �gure 9, v(D4;�(D3)) and v(D4;�(D5)) are calculated to be
(0; 1) and (0;�1), respectively. In this case, we �nd a set V (D4;	(D4)) = f0g � f0g = f(0; 0)g. The
qualitative states associated to D2 and D4 are hD2; fgi and hD4; f(0; 0)gi, respectively.

6.2 Computation of state transitions

A qualitative state QS = hD;V (D;	(D))i describes a domain and the position of the target equilib-
rium set with respect to the domain. Since the trajectories in D tend towards the target equilibrium
set, this information can be exploited to determine which domains in the boundary of D, or domains
that have D in their boundary, are accessible from D. Since each of these domains is itself associated
with a qualitative state, this amounts to computing the possible transitions between qualitative states
of the system.

The possible transitions are de�ned by two transition rules. The relative position of the domains
D and D0 is given by V (D;D0). As can be easily veri�ed, V (D;D0) always consists of a single sign
vector, that is, V (D;D0) = fwg. The domains D and D0 are associated with qualitative states QS
and QS 0, calculated to be hD;V (D;	(D))i and hD0; V (D0;	(D0))i, respectively.
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Transition rule 1 Let D0 2 A(D). There is a transition from QS to QS 0, if

1. V (D;	(D)) 6= fg, and

2. if xi is a switching variable in D0, but not in D, then there is some v 2 V (D;	(D)), such that
viwi = 1.

Transition rule 2 Let D 2 A(D0). There is a transition from QS to QS 0, if

1. V (D0;	(D0)) 6= fg, and

2. if xi is a switching variable in D, but not in D0, then there is some v0 2 V (D0;	(D0)), such that
v0iwi 6= �1.

Intuitively, the �rst transition rule says that, in order to enter a switching domain D0 in the
boundary of D, some trajectories must tend towards D0 (condition 2). If D is a switching domain,
then there must exist sliding mode trajectories in D (condition 1). The second transition rule says
that, in order to enter a domain D0 from a switching domain D in the boundary of D0, the trajectories
in D0 must not tend towards D (condition 2). If D0 is a switching domain, then there must exist sliding
mode trajectories in D0 (condition 1).

We will illustrate the rules by means of the two examples in �gure 11, again derived from the
model in �gure 9. All qualitative states mentioned below have been computed in the way explained in
section 6.1. Consider the possible transitions from the qualitative state QS 3 associated with regulatory
domain D3 to qualitative states associated with the boundary domains A(D3) = fD2;D4;D7;D8;D9g
in (a). We have to verify whether the conditions 1 and 2 of the �rst transition rule are veri�ed.
V (D3;	(D3)) is calculated to be f(0; 1)g, while V (D3;D4) equals f(0; 1)g. With xb a switching
variable in D4, but not in D3, we �nd that conditions 1 and 2 are satis�ed. Consequently, there exists
a transition from QS3 to QS 4. Transitions from QS 3 to the other candidate successor states are ruled
out, because they violate condition 2. Because D3 is not in the boundary of any domain, the second
transition rule cannot be applied.

In �gure 11(b), the transitions from the qualitative state QS4 = hD4; f(0; 0)gi to the states associ-
ated with the boundary domain A(D4) = fD9g are investigated. The transition to QS 9 = hD9; fgi is
excluded, because the condition 2 of the �rst transition rule is not satis�ed. In addition, we consider
transitions to QS4 from qualitative states associated with domains that have D4 in their boundary.
The second rule is valid for these cases. As can be veri�ed in the �gure, D4 2 A(D3) and D4 2 A(D5).
D3 and D5 are regulatory domains, so the condition 1 is trivially satis�ed. However, with xb being a
switching variable in D4, but not in D3 and D5, condition 2 is satis�ed in neither case. We therefore
conclude that there are no transitions from QS4.

6.3 Simulation algorithm

The qualitative simulation algorithm can be summarized as follows. Given an initial domain D0, de-
scribing the initial protein concentrations x0, the simulation algorithm computes the initial qualitative
state QS0, and then determines all possible transitions from QS0 to successor qualitative states by
means of the rules above. The generation of successor states is repeated in a recursive manner until
all qualitative states reachable from the initial qualitative state have been found.

The simulation algorithm is more precisely de�ned below. The candidate successor states of a
qualitative state QS associated with a domain D are the qualitative states associated with domains
D0, such that D0 is in the boundary of D (D0 2 A(D)) or D is in the boundary of D0 (D 2 A(D0)). An
actual successor state of QS is a candidate successor state QS 0 that satis�es the conditions speci�ed
in the transition rules.
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Figure 11: Possible and impossible (�) transitions from the qualitative states (a) QS 3 and (b) QS 4,
as determined by the transition rules.

determine qualitative state QS 0 associated with D0;
push(stack ;QS 0);
while not stack is empty do

current qualitative state QS  pop(stack );
determine candidate successor states of QS ;
for every candidate successor QS 0 do

if QS 0 is actual successor state and not QS 0 reached before
then mark QS 0 as reached;

push(stack ;QS 0)
end

end

end

The simulation algorithm generates a directed graph of qualitative states and transitions between
qualitative states, a so-called transition graph. Let QS = hD;V (D;	(D))i be a qualitative state in the
graph. If 0 2 V (D;	(D)), then QS is called a qualitative equilibrium state of the system. Qualitative
equilibrium states may correspond to sinks of the graph, although this is not necessarily the case. A set
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of qualitative states forming a cycle in the graph is called a qualitative cycle of the system. Since the
number of possible qualitative states is �nite, every path in the transition graph will reach a qualitative
equilibrium state or a qualitative cycle at some point. Each path starting at the initial qualitative state
QS 0 and ending at a qualitative equilibrium state or a qualitative cycle forms a possible qualitative
behavior predicted by the simulation algorithm. The set of qualitative states included in any path
leading to a qualitative equilibrium state or a qualitative cycle is called the attraction set of that state
or cycle.

Figure 12(a) shows the transition graph for a qualitative simulation of the example system, starting
in the regulatory domain D1, where both xa and xb lie below their �rst threshold. As can be seen,
the simulation results in �ve qualitative behaviors leading to di�erent qualitative equilibrium states.
In QS 16, protein A is present at a high concentration (xa = �2a), whereas protein B is present at a
low concentration (0 � xb < �1b ). In QS 4, protein A is present at a low concentration (0 � xa < �1a)
and protein B at a high concentration (xb = �2b ). In QS 7, protein A and protein B are present at
intermediate concentrations (xa = �1a and xb = �1b ). By simulating the regulatory system for every
initial domain, and connecting the resulting transition graphs, the complete phase space behavior of
the system can be analyzed. The results for the example system are shown in �gure 12(b). They
reveal that the system has three qualitative equilibrium states. The attraction set of the qualitative
equilibrium state QS 4 is indicated in the �gure.

The simulation results con�rm the switch-like character of the network, established by earlier
mathematical studies of genetic regulatory networks with the same or a similar structure (e.g., [6, 26,
31, 32, 62, 66]). The qualitative equilibrium states QS4 and QS 16 correspond to stable equilibria of the
system, located at (0; �2b )

0 and (�2a; 0)
0, respectively. The qualitative equilibrium state QS7 corresponds

to an unstable equilibrium located at (�1a; �
1
b )
0. This equilibrium lies on a separatrix dividing the initial

regulatory domain D0 into two parts. On one side of the separatrix, the trajectories move towards
(�2a; 0)

0, whereas on the other side of the separatrix the trajectories move towards (0; �2b )
0. Only for the

particular case that they start on the separatrix, will the trajectories end up in (�1a; �
1
b )
0. The three

cases are described by the qualitative behaviors (QS 1;QS 2;QS 3;QS 4), (QS 1;QS 6;QS 11;QS 16), and
(QS 1;QS 7), respectively. The stable equilibria present the two functional states of the system: (1)
gene a on and gene b o�, (2) gene a o� and gene b on.

The qualitative behaviors in a transition graph describe how protein concentrations evolve over
time. In �gure 13, one of the qualitative behaviors of the example system is explored in more detail.
The �gure shows how the bounds on the concentration of proteins A and B evolve over time, thus
displaying the qualitative dynamics of the regulatory system.

The simulation method has been implemented in Java 1.3, in a program called GNA (Genetic

Network Analyzer) [9].5 The program reads and parses input �les specifying the model of the system
(state equations, threshold and equilibrium inequalities) and the initial domain. From this information
it produces a transition graph. GNA is accessible through a graphical user-interface, which allows the
network of interactions between genes to be displayed, as well as the transition graph resulting from the
simulation. In addition, the user can analyze the qualitative equilibrium states and qualitative cycles
with their attraction sets, and focus on selected qualitative behaviors in order to study the temporal
evolution of protein concentrations in more detail.

7 Properties of qualitative simulation

Given a qualitative PL model and an initial regulatory domain D0, what can be said about the
correctness of the behaviors produced by qualitative simulation? We denote by X the set of solutions
x(t) on [0; � [ of all quantitative PL models corresponding to the qualitative model, such that x(0) =
x0 2 D0. In section 6, the aim of qualitative simulation has been described as �nding the set of

5GNA is available for non-pro�t academic research purposes at http://www-helix.inrialpes.fr/gna.
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Figure 12: Phase spaces and transition graphs for the model describing the network in �gure 9.
Qualitative states associated with regulatory domains and switching domains are indicated by un�lled
and �lled dots, respectively. Qualitative equilibrium states are circled in addition. (a) Phase space
and transition graph resulting from a simulation of the example system starting in the domain D1.
(b) Phase space and transition graph showing all qualitative states of the system and their mutual
transitions. The attraction set of the qualitative equilibrium state QS 4 is marked by the dotted border.
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Figure 13: Detailed description of the qualitative behavior (QS 1;QS 2;QS 3;QS 4) in �gure 12.

all qualitative behaviors that abstract from some x 2 X. More precisely, we would like that (1) for
every x 2 X, the transition graph contains a qualitative behavior QB , such that QB = QB(x; 0; �)
(soundness), and (2) for every qualitative behavior QB contained in the transition graph, there is some
x 2 X, such that QB = QB(x; 0; �) (completeness).

7.1 Soundness

Theorem 1 The qualitative simulation algorithm is sound.

Proof. Let x be a solution in X. On [0; � [, x(t) traverses a sequence of domains D0; : : : ;Dm, where
x0 2 D

0. Like in the soundness proof of the qualitative simulation algorithm QSIM [35], we will show
by induction that the qualitative behavior QB(x; 0; �) is generated by the algorithm.

The qualitative state hD0; V (D0;	(D0))i is generated as described in section 6.1. Since 	(D0)
includes �(D0), V (D0;	(D0)) is guaranteed to include V (D0;�(D0)). A necessary condition for
solution trajectories in D0 to enter D1 is either that D1 is included in the boundary of D0, i.e.
D1 2 A(D0), or that D0 is included in the boundary of D1, i.e. D0 2 A(D1).

(1) If D1 2 A(D0), then the transition from the qualitative state associated with D0 to the
qualitative state associated with D1 is generated by means of transition rule 1. For, in order to reach
the switching domain D1, x must remain in D0 for some time. That is, D0 must be a regulatory
domain or x must be a sliding mode solution in D0. Moreover, the solution trajectory in D0 must
tend towards D1. Together with V (D0;	(D0)) � V (D0;�(D0)), this implies that the two conditions
of transition rule 1 are satis�ed.

(2) If D0 2 A(D1), then the transition from the qualitative state associated with D0 to the
qualitative state associated with D1 is generated by means of transition rule 2. For, in order to enter
D1 from D0, x must remain in D1 for some time. That is, D1 must be a regulatory domain or x must
be a sliding mode solution in D1. Moreover, the solution trajectory in D1 must point away from D0.
As a consequence, with V (D0;	(D0)) � V (D0;�(D0)), it follows that the two conditions of transition
rule 2 are satis�ed.

We conclude that the transition from the qualitative state associated with D0 to the qualitative
state associated with D1 is generated by the simulation algorithm. Now suppose that the qualitative
state associated with the domain Dj, 0 < j < m, has been generated. By an argument parallel to
that given above, it can be shown that the qualitative state associated with the domain Dj+1 will be
generated by the algorithm as well. Consequently, the qualitative behavior QB(x; 0; �) is generated
step by step. �

The soundness of the qualitative simulation algorithm in section 6 has important consequences.
It implies that, whatever the exact numerical values for the parameters may be, if these values are
consistent with the threshold and equilibrium inequalities speci�ed in the qualitative PL model, the
solutions of the quantitative PL model are covered by the transition graph generated by the algorithm.
More in particular, an equilibrium attained by some solution of a quantitative PL model consistent
with the parameter inequalities necessarily corresponds to some qualitative equilibrium state in the
transition graph. For, by proposition 2, we know that, if domain D contains an equilibrium, then 0 2
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V (D;�(D)). Soundness of the simulation algorithm guarantees that the qualitative state associated
with D is actually generated, and that 0 2 V (D;	(D)).

7.2 Incompleteness

On the other hand, the qualitative simulation algorithm is not complete, as will be illustrated by means
of a counterexample. The network in �gure 14 consists of two genes, a and b, which encode the proteins
A and B, respectively. The proteins form a heterodimer A�B repressing the expression of both genes.
The qualitative PL model is shown in �gure 15. It is assumed that the heterodimer represses the two
genes above the same threshold concentration

a b

A B
A�B

Figure 14: Example of a genetic regulatory network of two genes (a and b) coding for a regulatory
protein (A and B). The regulatory proteins form a heterodimer A�B.

The phase space associated with the model consists of four regulatory domains and �ve switching
domains (�gure 16). When simulating the network from an initial state associated with the regulatory
domain D1, in which both xa and xb are below their threshold concentration, we obtain the transition
graph shown in the �gure. The simulation gives rise to three di�erent qualitative equilibrium states,
while transitions between the qualitative equilibrium states are predicted as well.

State equation for gene a:

_xa = �a (1� s+(xa; �
1
a) s

+(xb; �
1
b ))� 
a xa

Threshold inequalities: 0 < �1a < max a

Equilibrium inequalities: �1a <
�a

a

< max a

State equation for gene b:

_xb = �b (1� s+(xa; �
1
a) s

+(xb; �
1
b ))� 
b xb

Threshold inequalities: 0 < �1b < max b

Equilibrium inequalities: �1b <
�b

b

< max b

Figure 15: State equations, threshold inequalities, and equilibrium inequalities for the proteins in the
network of �gure 14.
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QS 2

QS 3

QS 4 QS 7

QS 5

QS 6
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(c)

Figure 16: (a) Phase space box and transition graph for the genetic regulatory network described by
the model in �gure 15. (b) Determination of 	(D6). (c) Transition graph resulting from a simulation
of the system starting in D1.

In order to explain this result, consider the computation of the qualitative state associated with the
switching domain D6. R(D6) = fD3;D9g, and �(D3) = (�a=
a; �b=
b)

0 and �(D9) = (0; 0)0. Using
the equilibrium inequalities in �gure 15, we compute V (D6;	(D6)) as described in section 6.1. We �nd
V (D6;	(D6)) = f(0;�1); (0; 0)g, where 	(D6) is the intersection of the smallest rectangle including
�(D3) and �(D9), and the threshold boundary xa = �1a (�gure 16(b)). QS

6 is a qualitative equilibrium
state, because (0; 0) 2 V (D6;	(D6)). However, (0;�1) 2 V (D6;	(D6)) allows a transition to QS 5,
associated with D5 2 A(D6), to occur as well. The transitions from QS 5 and from QS 8 are explained
analogously.

	(D6) overestimates �(D6), as can be seen in �gure 17. The smallest closed convex set co (f�(D3);
�(D9)g) is not rect (f�(D3);�(D9)g), but rather the linear segment connecting the two target equi-
libria. As a consequence, �(D6) is a single point in 
, located at the intersection of the linear
segment connecting �(D3) and �(D9), and the threshold boundary xa = �1a. Depending on the ex-
act position of �(D3) in D9, the linear segment crosses (a) D6, (b) D5, or (c) D8. In (a) we have
V (D6;�(D6)) = f(0; 0)g, in (b) V (D6;�(D6)) = f(0;�1)g, and in (c) V (D6;�(D6)) = f(0;�1)g. In
other words, the parameter inequalities in �gure 15 are consistent with two di�erent qualitative states
for QS 6, both of which are covered by the qualitative state actually determined by the algorithm.
Each con�guration in �gure 17(a)-(c) implies an additional constraint on the parameter values. In
particular, we have

(a)

a
�a

�b

b

>
�1b
�1a
; (b)


a
�a

�b

b

=
�1b
�1a
; and (c)


a
�a

�b

b

<
�1b
�1a
:

With the above constraints, we should have obtained the three di�erent transition graphs shown in
�gure 17(d)-(f). Each of these is a subgraph of the transition graph actually generated by the simulation
algorithm. Notice that the transition graphs in �gure 17 contain a single qualitative equilibrium state,
which is a sink of the graph.

The example illustrates that the transition graph resulting from a simulation may contain more
qualitative behaviors than necessary to cover the trajectories corresponding to solutions in X. As a
consequence, the algorithm is incomplete. Among other things this implies that, although we are sure to
never miss a qualitative equilibrium state, not all qualitative equilibrium states in the transition graph
need to correspond to some equilibrium of a quantitative PL model corresponding to the qualitative
PL model. The incompleteness of the simulation algorithm raises issues for further research that will
be addressed in the next section.
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Figure 17: (a)-(c) Depending on the exact position of �(D3) in 
, di�erent values for V (D6;�(D6))
will be found: (a) V (D6;�(D6)) = f(0; 0)g, (b) V (D6;�(D6)) = f(0;�1)g, and (c) V (D6;�(D6)) =
f(0;�1)g. The set V (D6;	(D6)) actually calculated by the simulation algorithm, shown to be
f(0; 0); (0;�1)g in �gure 16, is an overestimation of V (D6;�(D6)). (d)-(f) The transition graphs
that should have been generated for the cases (a)-(c), taking into account the additional constraints
on the position of �(D3).

8 Discussion

We have presented a method for the qualitative simulation of genetic regulatory networks described by a
class of piecewise-linear (PL) di�erential equations that has been well-studied in mathematical biology.
The method allows the behavior emerging from large and complex networks of genetic regulatory
interactions to be predicted in a qualitative manner. In the accompanying paper, we describe a model
of the network underlying the initiation of sporulation in B. subtilis, and we compare predictions
obtained through simulation with observations of the behavior of wild type and mutant bacteria [8].
The application of the qualitative simulation method is supported by a computer tool, called Genetic
Network Analyzer (GNA) [9].

The PL models employed in this paper are based on step function approximations of the regulatory
interactions involved in the synthesis and degradation of proteins. The step functions provide a suc-
cinct description of the regulatory logic, while abstracting from the details of molecular interactions.
The biological validity of the step function expressions derives from experimental evidence that the
activation of a gene, as a function of the concentration of a regulatory protein, often follows a steep
sigmoidal curve [52, 67]. That is, below a certain threshold concentration of the protein, the gene
will be hardly expressed at all, whereas above this threshold its expression rapidly saturates. Recent
experimental studies have shown that some aspects of the qualitative dynamics of genetic regulatory
networks synthesized in vivo correspond well with the predictions obtained from mathematical models
based on switch-like approximations of regulatory interactions [4, 13, 17].

The use of step functions gives rise to discontinuities in the right-hand side of the di�erential
equations, which may lead to nontrivial mathematical problems, as illustrated in �gure 4. Several ways
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to deal with the step function discontinuities have been proposed in the literature. The application
of the PL models can be restricted to systems without autoregulation, which excludes situations of
the type described in �gure 4(b) [20]. Alternatively, when a trajectory arrives at a switching domain
from which it cannot be continued, it may simply be stipulated to come to a dead stop [48]. Another
solution, based on an idea of Plahte et al. [44, 48], consists of avoiding the discontinuities altogether,
by replacing the step functions s+(xj ; �j) by so-called logoid functions l+(xj ; �j ; Æ) that monotonically
increase from 0 to 1 in a Æ-interval around the threshold �j. The logoid functions approach their step
function homologues as Æ ! 0.

Each of the above solutions is unsatisfactory in some way. In the �rst place, autoregulation is
an ubiquitous feature in genetic regulatory networks [60]. (In fact, the network shown in �gure 1 is a
simpli�ed version of the molecular switch determining the response of E. coli to phage � infection [52].)
Ignoring trajectories that cannot be continued in a switching domain will cause important behavioral
properties of regulatory systems to be missed, like the singular steady states in the example. The
use of logoid functions instead of step functions is attractive at �rst sight, but leads to nonlinear
di�erential equation models that are di�cult to treat in a qualitative way (see an earlier version of the
simulation method in [10]). Here, we have adopted another solution, based on an approach to deal with
di�erential equations with discontinuous right-hand sides originally proposed by Filippov [15]. This
approach, recently applied to PL models of the form (2), has the advantage of putting no restrictions
on the class of genetic regulatory networks that can be handled, while explicitly de�ning the behavior
of the system in the threshold planes by means of simple-to-analyze PL models [27].

The simulation method described in this paper allows genetic regulatory networks to be simulated
in the absence of numerical values for the kinetic parameters and molecular concentrations. The
possible qualitative behaviors of the system are determined by means of qualitative constraints on the
threshold and rate parameters. Whereas exact numerical values for the parameters are usually not
available, the choice of appropriate threshold and equilibrium inequalities can be based on biological
data, or is at least strongly constrained by the latter. If the choice of parameter inequalities is not
unambiguously determined by the data, the consequences of opting for one combination of inequalities
rather than another can be explored by simulating the system for each of the alternatives. Notice
that in this case, instead of continuous ranges of numerical values, only a limited and often restricted
number of alternative parameter inequalities need to be considered. The underdetermination of initial
conditions by available biological data can be handled in the same way.

The predictions obtained through qualitative simulation have the form of a graph of qualitative
states and transitions between qualitative states. Each qualitative state in the graph corresponds
to a domain in the phase space where the system behaves in a qualitatively homogeneous manner,
while a transition between two qualitative states corresponds to solution trajectories that leave one
domain and enter another. Qualitative simulation makes predictions about the qualitative shape of
solutions, illustrated in �gure 13, as opposed to the quantitative predictions obtained through numerical
simulation. The qualitative nature of the predictions is well-adapted to current measurement techniques
in genomics, which have limited quantitative precision, but are able to detect qualitative changes in
gene expression over time.

The soundness property of qualitative simulation guarantees that no solution of a quantitative
PL model consistent with the qualitative PL model is omitted. In fact, to each such solution there
corresponds a qualitative behavior in the transition graph. The soundness of qualitative simulation
provides for a straightforward check of the robustness of simulation results to changes in parameter
values. If a certain behavior is not observed for given parameter inequalities, one can be sure that it
will not occur for any of the parameter values consistent with the threshold and equilibrium inequal-
ities. That is, the behavioral variety of the system, given the constraints expressed in the parameter
inequalities, is completely covered by the transition graph. This is a powerful result that may guide
computationally-expensive simulations to test the sensitivity of the results to changes in parameter
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values, as for example carried out in studies of the segment polarity network in Drosophila by von
Dassow et al. [65] and simple metabolic pathways by Alves and Savageau [2, 3].

The lack of quantitative information on kinetic parameters and molecular concentrations has stimu-
lated an interest in methods for modeling and simulation developed in the �eld of qualitative reasoning
(QR), most notably QSIM [35] and QPT [16]. QR methods have been applied to the regulation of
tryptophan synthesis [29] and � phage growth [28] in E. coli, and to the regulation of the transcription
factor families AP-1 and NF-�B in di�erent classes of animals [64]. A major problem with existing
QR methods is their lack of upscalability, which causes the applicability of the methods to be limited
to small regulatory systems of modest complexity.

As its application to the sporulation example in the accompanying paper shows, the qualitative
simulation method presented here is able to deal with large and complex networks. Upscaling of
the method has been achieved by using PL models that strongly constrain the local dynamics of the
system. Moreover, the representation of qualitative states and the transition rules have been tailored
to this class of models, in order to maximally exploit their favorable mathematical properties. Thus,
in comparison with existing qualitative simulation methods like QSIM and QPT, the expressivity and
generality of the modeling formalism have been traded for upscalability. This is particularly clear for
the description of qualitative states, which is achieved on a higher level of abstraction in our method.
Domains containing a hyperplane xi = �i(D) = �Di =�

D
i give rise to a single qualitative state in our

case, whereas in a method like QSIM several qualitative states must be de�ned, corresponding to the
part of the domain located above, below, and inside the hyperplane [35].

Qualitative methods for the analysis of genetic regulatory systems have been developed in math-
ematical biology as well, the best-known example being Boolean networks [30, 58]. Simulation of
Boolean networks rests on the assumption that a gene is either active or inactive, and that genes
change their activation state synchronously. For the purpose of modeling actual genetic regulatory
networks, these assumptions are usually too strong. Thomas and colleagues [62, 63] have proposed
a generalized logical method that permits multivalued activation states and asynchronic transitions.
On the formal level, the method of Thomas and colleagues is related to the approach presented in
this paper. In fact, Snoussi has demonstrated that the logical equations can be interpreted as an
abstraction of a special case of (1), where in the production term fi(x) =

P
l2L �il bil(x) it holds that

either bil(x) = s+(xj ; �j) or bil(x) = s�(xj; �j), while in the degradation term gi(x) =
P

l2L 
il bil(x)
it holds that bil(x) = 1 [56].

Although some ideas of the generalized logical method have been retained in the method presented
here, in particular the parameter constraints of section 4, which are related to the logical parameters
in [62, 63], we have opted for di�erential equation models. We believe that the latter formalism
is intuitively clear and of large generality. In particular, it allows for a transparent description of
the behavior of the system in the threshold planes. Although for the class of PL models covered
by the generalized logical method, certain patterns of logical states can be interpreted as indicating
singular steady states of the system [57], a general description of the behavior of the system in the
threshold planes is currently missing. The di�erential equation formalism has the additional advantage
of facilitating the integration of any quantitative data becoming available through improvements of
current measurement techniques.

The simulation of genetic regulatory networks may lead to unwieldy transition graphs that are
di�cult to interpret. The availability of computer tools, allowing one to identify and to focus upon
interesting parts of the transition graph, forms a prerequisite for the simulation of large and complex
regulatory systems [9]. In addition, a weaker notion of soundness might be chosen. We call an algorithm
almost sound, if for every x 2 Y � X, the transition graph contains a qualitative behavior QB , such
that QB = QB(x; 0; �), while for every x 2 X=Y , the transition graph does not contain a qualitative
behavior QB , such that QB = QB(x; 0; �). Moreover, the set X=Y is of measure 0 with respect to
the set X. That is, the size of the set X=Y of trajectories not covered by a qualitative behavior in the
transition graph is negligible in comparison with the size of the total set of trajectories X.
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The simulation algorithm could be made almost sound by adapting the transition rules in sec-
tion 6.2. For example, transitions in which the order of the domain of the qualitative states changes by
more than one might be excluded. In fact, these transitions correspond to sets of trajectories lying on
a separatrix in a domain, like in the transition from QS 1 to QS7 in the example of �gure 12. Although
it still needs to be proven that the resulting algorithm is almost sound, there is some intuitive support
for omitting these transitions. Biologically speaking, they represent the rare event that two or more
protein concentrations reach a threshold at exactly the same moment [62]. Excluding these transitions
would have the advantage of reducing the connectivity of the transition graph, and thus increasing
their legibility, while retaining the transitions that are essential.

The simulation algorithm is sound but incomplete, which means that the transition graph may
contain qualitative behaviors that do not correspond to any solution of a quantitative PL model
satisfying the parameter constraints in the qualitative PL model. An illustration of this point was
given in section 7.2, when discussing the results of the simulation of the genetic regulatory network in
�gure 14. The example reveals that the transition graph generated by the algorithm should be re�ned
into three subgraphs, corresponding to alternative implicit additional constraints on the parameter
values. This conclusion required graphical and algebraic considerations that are far beyond the scope
of the current simulation algorithm. An issue for further research would be to exploit methods for
the symbolic analysis of sets of algebraic inequalities, in order to obtain more precise estimates of the
position of a target equilibrium set �(D) with respect to its domain D.

Proposition 2 expresses a relation between the existence of an equilibrium in a domain D and the
qualitative state associated with D. Previous work on PL models of the form (2) has led to theorems
that can be reformulated as stating a relation between the existence of a limit cycle in 
 and a certain
type of qualitative cycle in the transition graph [24, 25, 45, 56]. Given the complexity of a general
analysis of the occurrence of limit cycles for equations of the form (2), the relation is much weaker
than its counterpart for equilibrium points. An interesting issue for further work would be to try
to generalize the relation between limit cycles and qualitative cycles, using the literature on periodic
solutions in di�erential equations with discontinuous right-hand sides (see [37] for a review).

The qualitative simulation method provides predictions of the possible qualitative behaviors of a
genetic regulatory network. The interest of these predictions is that they can be directly compared
with gene expression pro�les obtained by means of quantitative RT-PCR or DNA microarrays. The
use of predicted qualitative behaviors in combination with observed gene expression pro�les allows
hypothesized models of regulatory networks to be rapidly tested, even when only imprecise data is
available. Along these lines, we are currently working on extensions of the method to validate and
identify models of genetic regulatory networks using gene expression data. Incorporation of these
extensions in the computer tool described in section 6.2 would allow the simulation method to evolve
into a more general approach towards the computer-supported analysis of genetic regulatory networks.
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