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ABSTRACT
Motivation: The study of genetic regulatory networks has
received a major impetus from the recent development of
experimental techniques allowing the measurement of pat-
terns of gene expression in a massively parallel way. This
experimental progress calls for the development of appro-
priate computer tools for the modeling and simulation of
gene regulation processes.
Results: We present Genetic Network Analyzer (GNA), a
computer tool for the modeling and simulation of genetic
regulatory networks. The tool is based on a qualitative
simulation method that employs coarse-grained models
of regulatory networks. The use of GNA is illustrated by
a case study of the network of genes and interactions
regulating the initiation of sporulation in Bacillus subtilis.
Availability: GNA and the model of the sporulation
network are available at http://www-helix.inrialpes.fr/gna.
Contact: Hidde.de-Jong@inrialpes.fr

INTRODUCTION
The study of genetic regulatory networks has taken a
qualitative leap through the use of modern genomic
techniques that allow simultaneous measurement of the
expression levels of all genes of an organism. In addition
to experimental tools, computer tools for the modeling
and simulation of gene regulation processes will be
indispensable. As most networks of interest involve many
genes connected through interlocking positive and neg-
ative feedback loops, an intuitive understanding of their
dynamics is difficult to obtain and may lead to erroneous
conclusions. Modeling and simulation tools, with a solid
foundation in mathematics and computer science, allow
the behavior of large and complex systems to be predicted
in a systematic way (e.g. de Jong, 2002).

Several computer tools for the simulation of biochem-
ical reaction networks by means of differential equations
are currently available, such as DBsolve (Goryanin et al.,
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1999), GEPASI (Mendes, 1993), and PLAS (Voit, 2000).
These tools can be used to simulate genetic, metabolic,
and signal transduction networks described by differen-
tial equations. In addition, they allow the user to perform
tasks like the stability analysis of steady states and the es-
timation of parameter values. The currently available tools
are essentially restricted to quantitative models of reaction
networks, in the sense that numerical values for the kinetic
parameters and molecular concentrations need to be spec-
ified. However, since this information is usually absent,
especially in the case of systems that are not well under-
stood, the above-mentioned tools may be difficult to apply.

This paper presents Genetic Network Analyzer (GNA),
a computer tool for the qualitative simulation of genetic
regulatory networks. GNA employs piecewise-linear (PL)
differential equation models that have been well studied in
mathematical biology (Glass and Kauffman, 1973; Mestl
et al., 1995; Snoussi, 1989). While abstracting from the
precise molecular mechanisms involved, the PL models
capture essential aspects of gene regulation. Their simple
mathematical form permits a qualitative analysis of the
dynamics of the genetic regulatory systems to be carried
out. Instead of numerical values for parameters and initial
conditions, GNA asks the user to specify qualitative con-
straints on these values in the form of algebraic inequali-
ties. Unlike precise numerical values, these constraints can
usually be inferred from the experimental literature.

GNA supports a qualitative simulation method that
recasts the mathematical analysis of PL models of genetic
regulatory networks in a computational form (de Jong et
al., 2002b). In this paper we will give only a brief outline
of the simulation method, abstracting away advanced
mathematical concepts and algorithmic details. We will
focus on the computer tool supporting the method and
its practical use. That is, we will explain how GNA can
be used by biologists and bioinformaticians to formulate
models of genetic regulatory networks, simulate the
behavior emerging from the interactions in the network,
and interpret the simulation results in biological terms.
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Readers interested in details of the qualitative simulation
method are referred to (de Jong et al., 2002b).

The use of GNA will be illustrated in the context of
a regulatory network of biological interest, consisting
of the genes and interactions regulating the initiation of
sporulation in the Gram-positive soil bacterium Bacillus
subtilis (Burkholder and Grossman, 2000; Grossman,
1995; Hoch, 1993). Under conditions of nutrient depri-
vation, B.subtilis can decide not to divide and form a
dormant, environmentally resistant spore instead. The
decision to either divide or sporulate is controlled by a
regulatory network integrating various environmental,
cell-cyle, and metabolic signals. The aim of the example
is to show that GNA is able to reproduce experimental
findings in the case of a large and complex network that
is well-understood by molecular biologists.

In the next section, we describe the PL models of ge-
netic regulatory networks and the basics of the simula-
tion method. We then discuss the computer tool GNA, fol-
lowed by an illustration of its application to the sporula-
tion network. The paper concludes with a discussion of the
simulation tool and an outline of ideas for further work.

QUALITATIVE SIMULATION OF GENETIC
REGULATORY NETWORKS
PL models
The dynamics of genetic regulatory networks can be
modeled by a class of PL differential equations originally
proposed by Glass and Kauffman (1973), and generalized
by Mestl et al. (1995). The equations have the form

ẋi = fi (x) − gi (x) xi , xi ≥ 0, 1 ≤ i ≤ n, (1)

where x = (x1, . . . , xn)
′ is a vector of cellular protein

concentrations. The state equations (1) define the rate of
change of the concentration xi as the difference of the rate
of synthesis fi (x) and the rate of degradation gi (x) xi of
the protein.

The function fi : R
n
≥0 → R≥0 is defined as

fi (x) =
∑

l∈L

κil bil(x), (2)

where κil is a rate parameter (κil > 0), bil : R
n
≥0 →

{0, 1} a regulation function, and L a possibly empty set of
indices of regulation functions. A regulation function bil is
the arithmetic equivalent of a Boolean function expressing
the logic of gene regulation (Mestl et al., 1995; Thomas et
al., 1995).

In the simplest case, fi (x j ) = κi s+(x j , θ j ), where
s+(x j , θ j ) = 0, if x j < θ j , and s+(x j , θ j ) = 1, if
x j > θ j . The function fi (x j ) states that below a threshold
concentration θ j (θ j > 0), gene i is not expressed,
whereas above this threshold it is expressed at a rate κi .

If protein J, encoded by gene j , is a negative regulator of
gene i , we have fi (x j ) = κi s−(x j , θ j ), with s−(x j , θ j ) =
1 − s+(x j , θ j ). More complex regulation functions can
express the combined effects of several regulatory proteins
(de Jong et al., 2002a). The use of step functions in gene
regulation models has been motivated by the observation
that the rate of activation of a gene, as a function of the
concentration of a regulatory protein, often follows a steep
sigmoidal curve.

The function gi expresses the regulation of protein
degradation. It is defined analogously to fi , except that we
demand that gi (x) is strictly positive. In addition, in order
to formally distinguish degradation rates from synthesis
rates, we will denote the former by γ instead of κ . As
can be easily verified, with the above definitions of fi and
gi , the differential equations (1) are piecewise linear (PL)
(Glass and Kauffman, 1973; Mestl et al., 1995; Snoussi,
1989).

Properties of PL models
The dynamical properties of the PL models can be
analyzed in the n-dimensional phase space box � = �1 ×
· · · × �n , where every �i , 1 ≤ i ≤ n, is defined as �i =
{xi ∈ R≥0 | 0 ≤ xi ≤ maxi }. maxi is a parameter denoting
a maximum concentration for the protein. Given that the
protein encoded by gene i has pi threshold concentrations,
the n − 1-dimensional threshold hyperplanes xi = θ

ki
i ,

1 ≤ ki ≤ pi , partition � into hyperrectangular regions
that are called domains. More precisely, a domain D ⊆ �

is defined by D = D1 × · · · × Dn , where every Di ,
1 ≤ i ≤ n, is given by one of the following equations:

Di ={xi | 0 ≤ xi < θ1
i },

Di ={xi | xi = θ1
i },

Di ={xi | θ1
i < xi < θ2

i },
. . . , (3)

Di ={xi | θ
pi

i < xi ≤ maxi }.
If for a domain D, there are some i, j , 1 ≤ i ≤ n,
1 ≤ j ≤ pi , such that Di = {xi | xi = θ

j
i }, then

D is called a switching domain. Otherwise, D is called
a regulatory domain.

When evaluating the step function expressions in (2)
in a regulatory domain, fi and gi reduce to sums of
rate constants. More precisely, in every regulatory domain
D ⊆ �, fi reduces to some µD

i ∈ Mi ≡ { fi (x) | 0 ≤
x ≤ max}, and gi to some νD

i ∈ Ni ≡ {gi (x) | 0 ≤ x ≤
max}. Mi and Ni collect the synthesis and degradation
rates of the protein in different domains of �. It can be
easily shown that all trajectories in D monotonically tend
towards a stable steady state x = µD/νD , the target
equilibrium, lying at the intersection of the n hyperplanes
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xi = µD
i /νD

i (Glass and Kauffman, 1973; Mestl et al.,
1995; Snoussi, 1989). The target equilibrium level µD

i /νD
i

of the protein concentration xi gives an indication of the
strength of gene expression in D. Call �(D) = {µD/νD}
the target equilibrium set of D. If �(D) ∩ D �= {}, then
all trajectories will remain in D. If not, they will leave D
at some point.

In switching domains, fi and gi may not be defined, be-
cause some concentrations assume their threshold value.
Moreover, fi and gi may be discontinuous in switching
domains. In order to cope with this problem, the system
of differential equations (1) is extended into a system of
differential inclusions, following an approach widely used
in control theory (Gouzé and Sari, 2002). Using this gen-
eralization, it can be shown that, in the case of a switch-
ing domain D, the trajectories either traverse D instan-
taneously or tend towards a target equilibrium set �(D).
Here, �(D) is the smallest closed convex set including the
target equilibria of regulatory domains having D in their
boundary, intersected with the hyperplane containing D.
If �(D) ∩ D �= {}, then the trajectories may remain in D.
If not, they will leave D at some point.

Qualitative constraints on parameters
Most of the time, precise numerical values for the
threshold and rate parameters in (1) are not available.
Rather than numerical values, we specify qualitative
constraints on the parameter values. These constraints,
having the form of algebraic inequalities, can usually be
inferred from biological data. They are exploited by the
simulation method to predict the qualitative dynamics of
the regulatory system.

The first type of constraints, the threshold inequalities,
are obtained by ordering the pi threshold concentrations
of the protein encoded by gene i , i.e.,

0 < θ1
i < · · · < θ

pi
i < maxi , (4)

The threshold inequalities determine the partitioning of �

into regulatory and switching domains.
The second type of constraints, the equilibrium inequal-

ities, order the possible target equilibrium levels of xi in
different regulatory domains D ⊆ � with respect to the
threshold concentrations. Biologically speaking, the equi-
librium inequalities define the strength of gene expression
in the domain in a qualitative way, on the scale of or-
dered threshold concentrations. More precisely, for every
µi ∈ Mi , νi ∈ Ni , and µi , νi �= 0, we specify one of the
following pairs of inequalities:

0 < µi/νi < θ1
i ,

θ1
i < µi/νi < θ2

i ,

. . .

θ
pi

i < µi/νi < maxi . (5)

The equilibrium inequalities constrain the relative position
of D and its target equilibrium set �(D).

The models of genetic regulatory networks treated by
the simulation method consist of state equations (1), sup-
plemented by parameter inequalities (4) and (5). Every
such qualitative PL model corresponds to a set of quan-
titative PL models consisting of state equations (1) and a
particular combination of numerical parameter values con-
sistent with the parameter inequalities.

Qualitative simulation
Let x, defined on some time-interval [0, τ [, be a solution
of a quantitative PL model describing a genetic regulatory
network. Furthermore, at some time-point t , 0 ≤ t < τ ,
x(t) ∈ D. A qualitative description of x at t consists
of the domain D, supplemented by the relative position
of D and �(D). We call this the qualitative state of the
system. On [0, τ [ the solution traverses a sequence of
domains D0, . . . , Dm in �. Whenever x enters a new
domain, the system makes a transition to a new qualitative
state. The sequence of qualitative states corresponding to
the sequence of domains is called the qualitative behavior
of the system on the time-interval. Every solution of a
quantitative PL model can be uniquely abstracted into a
qualitative behavior.

Given a qualitative PL model and initial conditions
in a domain D0, the aim of qualitative simulation is
to determine the possible qualitative behaviors of the
system. More precisely, denoting by X the set of solutions
x(t) of all quantitative PL models corresponding to the
qualitative model, such that x(0) = x0 ∈ D0, the aim
of qualitative simulation is to find the set of qualitative
behaviors abstracting from some x ∈ X .

In de Jong et al. (2002b) a simulation algorithm is
described that generates a set of qualitative behaviors by
recursively determining qualitative states and transitions
from qualitative states, starting at the qualitative state
associated with the initial domain D0. This results in a
transition graph, a directed graph of qualitative states
and transitions between qualitative states. The transition
graph contains qualitative equilibrium states or qualitative
cycles. These may correspond to equilibrium points or
limit cycles reached by solutions in X , and hence indicate
functional modes of the regulatory system.

A sequence of qualitative states in the transition graph
represents a predicted qualitative behavior of the system.
It has been demonstrated that the transition graph gen-
erated by the simulation algorithm covers all qualitative
behaviors abstracting from some x ∈ X (de Jong et al.,
2002b). That is, whatever the exact numerical values for
the parameters may be, if these values are consistent with
the threshold and equilibrium inequalities specified in the
qualitative PL model, the qualitative shape of the solution
is described by a sequence of states in the transition graph.
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Fig. 1. The global architecture of GNA.

GENETIC NETWORK ANALYZER (GNA)
The qualitative simulation method has been implemented
in Java 1.3 in the program GNA. The global architecture
of GNA is shown in Figure 1. The core of the system
is formed by the simulator, which generates a transition
graph from a qualitative PL model and initial conditions.
The input of the simulator is obtained by reading and
parsing text files specified by the user. A graphical user
interface (GUI), named VisualGNA, assists the user in
specifying the model of a genetic regulatory network as
well as in interpreting the simulation results (Figure 2).
The current version of GNA consists of about 110 classes,
one third of which concerns VisualGNA.

We have chosen Java to implement the qualitative
simulation method, because it has become a standard
for object-oriented programming and is widely used
for biological applications. In addition, the powerful
graphical capabilities provided by Swing and other
graphical libraries facilitate the development of the GUI,
which is a critical component of GNA. The choice for
Java is further motivated by its portability, allowing
GNA to be used without special adaptations on different
platforms (the program has been tested under Windows
NT 4.0, 98, 2000, Solaris 6, and Linux 2.4.2). GNA is
available for non-profit academic research purposes at
http://www-helix.inrialpes.fr/gna.

Parser
The simulation of a genetic regulatory network requires
the user to prepare text files containing the PL model

and the initial conditions. For each protein, the model
file contains declarations of the state variable and the
production, degradation, and threshold parameters, as well
as definitions of the state equations and threshold and
equilibrium inequalities. A fragment of the model file
for the sporulation network is shown in Figure 2(a). The
initial conditions file contains the inequalities defining the
initial domain (not shown).

The input files are read and compiled by a parser gener-
ated by Java CUP. The parser transforms the information
in the input file into internal representations of the model
and initial conditions, which are accessed by the simulator
and the GUI.

Simulator
The essential tasks of the simulator consist in computing
the qualitative states associated with a domain and in
determining the possible transitions from these states.
Instead of performing extensive numerical calcultions, the
simulator reaches its goal through symbolic computation,
by exploiting the parameter inequalities (4)–(5) (de Jong
et al., 2002b). Whereas previous versions of GNA used
a simple inequality reasoner to achieve this, the current
version employs an integer coding scheme that permits
more efficient computation.

The output of the simulator is a transition graph
consisting of qualitative states and transitions between
qualitative states. Various graph algorithms operate on
the internal representation of this graph to detect, among
other things, qualitative equilibrium states and qualitative
cycles.

Graphical user interface: VisualGNA
VisualGNA, the GUI component of GNA, actually
consists of a simulation controller, an interaction graph
viewer, a transition graph viewer, and a qualitative
behavior viewer (Figure 1).

The simulation controller allows the user to load a
model, launch a simulation, and analyze the results in a
menu-driven way. The interaction graph viewer extracts
the network structure from the model and visualizes it in
the form of an interaction graph. The transition graph and
qualitative behavior viewers help the user in interpreting
the output of a qualitative simulation. The transition graph
viewer displays the transition graph with the qualitative
states and transitions generated by GNA. In addition, it
offers the facility to focus on interesting parts of the graph
by selecting, filtering, and expanding subgraphs. The
qualitative behavior viewer explores the contents of the
transition graph by visualizing a sequence of qualitative
states as a set of concentration profiles, one for each
protein. Alternatively, this information can be displayed
as a sequence of projections on the interaction graph,
providing an intuitive representation of the global change
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(a) (b)

Fig. 2. Modeling and simulation of a genetic regulatory network by means of GNA. (a) Excerpt of the model file of the sporulation network
(see de Jong et al. (2002a) for the complete model). The figure shows the parameter declarations, state equations, and parameter inequalities
concerning the state variables xse (concentration Spo0E). (b) Screen capture of GNA. The window on the left shows a part of the state
transition graph resulting from a simulation of the network under initial conditions inducing sporulation, while the window on the right
visualizes the temporal sequence of qualitative states in one selected path in the state transition graph.

of gene expression over time. Figure 2(b) illustrates some
of the functionalities of VisualGNA (for more details, see
the HTML documentation of GNA).

MODELING AND SIMULATION: INITIATION OF
SPORULATION IN B.SUBTILIS

The use of GNA will be illustrated by modeling and
simulating the regulatory network underlying the initiation
of sporulation in B.subtilis. The modeling and simulation
process consists of four steps: (i) collecting information
on relevant genes, proteins, and regulatory interactions;
(ii) describing the network by a qualitative PL model; (iii)
simulating the system from appropriate initial conditions;
and (iv) interpreting the simulation results. Although
presented in a linear fashion below, in practice the four
steps are usually carried out iteratively.

Sporulation in B.subtilis is one of the best-understood
model systems for prokaryotic development. However,
notwithstanding the enormous amount of work devoted to
the elucidation of the network of interactions underlying
the sporulation process, very little quantitative data on
kinetic parameters and molecular concentrations are
available. The aim of the example is to show that GNA
is able to reproduce the observed qualitative behavior
of wild-type and mutant bacteria from a model that is a
synthesis of available data in the literature (de Jong et al.,
2002a). This provides a validation of the tool in the case
of a large and complex genetic regulatory network.

Sporulation network
While nutrients are plentiful, B.subtilis cells divide as fast
as possible in order to efficiently compete with their neigh-
bors. However, when conditions become unfavorable, the
bacterium protects itself by forming environmentally re-
sistant spores (Burkholder and Grossman, 2000; Gross-
man, 1995; Hoch, 1993; Stragier and Losick, 1996). A
graphical representation of the regulatory network control-
ling the initiation of sporulation is shown in Figure 3, dis-
playing key genes and their promoters, proteins encoded
by the genes, and the regulatory action of the proteins.
References to the experimental literature having been used
to compile the network are given in de Jong et al. (2002a).

The network is centered around a phosphorelay, which
integrates a variety of environmental, cell-cycle, and
metabolic signals. Under conditions appropriate for
sporulation, the phosphorelay transfers a phosphate to
the Spo0A regulator, a process modulated by kinases and
phosphatases. The phosphorelay has been simplified in
this paper by ignoring intermediate steps in the transfer
of phosphate to Spo0A. However, this simplification does
not affect the essential function of the phosphorelay:
modulating the phosphate flux as a function of the com-
peting action of kinases and phosphatases (here KinA and
Spo0E).

Under conditions conducive to sporulation, such as nu-
trient deprivation or high population density, the concen-
tration of Spo0A∼P may reach a threshold value above
which it activates various genes that commit the bacterium
to sporulation. The choice between vegetative growth and
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Fig. 3. Network of key genes, proteins, and regulatory interactions involved in B.subtilis sporulation. The graphical representation follows
the conventions proposed in Kohn (2001).

sporulation in response to adverse environmental condi-
tions is the outcome of competing positive and negative
feedback loops, controlling the accumulation of Spo0A∼P
(Grossman, 1995; Hoch, 1993).

Modeling of the sporulation network
For modeling, the graphical representation of Figure 3
has to be translated into state equations (1), supplemented
by parameter inequalities (4) and (5). The Spo0E protein
serves as an example to illustrate the procedure.

The phosphatase Spo0E involved in the phosphorelay
is encoded by the gene spo0E (Perego and Hoch, 1987).
Transcription of spo0E is directed by Eσ A (Perego and
Hoch, 1987) and repressed by AbrB (Perego and Hoch,
1991; Strauch et al., 1989). Spo0E degradation is not
known to be regulated. Denoting by xse the Spo0E
concentration, and by κse and γse the synthesis and
degradation rate constants, we obtain

ẋse = κse s+(xa, θa) s−(xab, θ
1
ab) − γse xse. (6)

The state equation expresses that spo0E is transcribed at
a rate κse, if the concentration xab of AbrB is below the
threshold θ1

ab (s−(xab, θ
1
ab) = 1), while the concentration

of σ A is above the threshold θa (s+(xa, θa) = 1).
Four threshold concentrations are defined for Spo0E,

θ1
se, . . . , θ

4
se, indicating four levels of activation of the

phosphorelay. The thresholds are ordered by the threshold
inequalities

0 < θ1
se < θ2

se < θ3
se < θ4

se < maxse. (7)

The possible synthesis and degradation rates of Spo0E
are given by Mse = {0, κse} and Nse = {γse}, respectively.
We will set κse/γse > θ3

se. If this were not the case,

Spo0E would not be able to reach a concentration at which
it can exert any influence on the sporulation decision
(Perego and Hoch, 1991). In fact, above its threshold
concentration θ3

se, Spo0E is able to reduce the activation
of the phosphorelay to the point that the expression of
σ F , and hence the initiation of sporulation, is inhibited
(de Jong et al., 2002a). This motivates the following
equilibrium inequalities:

θ3
se < κse/γse < θ4

se. (8)

Figure 2(a) shows the model file entry for Spo0E.
The state equations and parameter inequalities for

the other proteins in the network of Figure 3 can be
formulated in an analogous way (de Jong et al., 2002a).
The resulting model consists of nine state variables
and two input variables. The state equations are often
complex expressions of step functions, reflecting the
dense pattern of interactions in the regulatory network.
The 49 parameters are constrained by 58 threshold and
equilibrium inequalities, the choice of which is determined
by biological data. If the parameter inequalities cannot
be unambiguously determined, all possible combinations
have to be systematically tested.

Simulation of wild-type and mutant bacteria
GNA has been used to simulate the dynamics of the ini-
tiation of sporulation. Starting from initial conditions rep-
resenting vegetative growth, the system is perturbed by a
sporulation signal that causes KinA to autophosphorylate.

Simulation of the network takes less than a few seconds
to complete on a PC (500 MHz, 128 MB), and gives rise
to a transition graph of 465 qualitative states. Many of
these states are associated with switching domains that
the system traverses instantaneously. Since the biological
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(a) (b)

Fig. 4. Results of simulating wild-type strain under sporulation conditions. The pictures have been generated by GNA. (a) Temporal evolution
of selected protein concentrations in a typical qualitative behavior leading to the spo+ phenotype. (b) Idem, but for a typical qualitative
behavior leading to the spo− phenotype.

relevance of the latter states is limited, they can be
eliminated from the transition graph. This leads to a
reduced transition graph with 82 qualitative states, part
of which is shown in the left window in Figure 2(b). The
transition graph contains a single qualitative equilibrium
state that the system eventually reaches in all qualitative
behaviors.

A crucial test for the pertinence and validity of our
model consists in analyzing the behavior of sporulation
mutants. These can be modeled by adapting the state
equations. In the case of a sinI deletion, for example,
we have ẋsi = −γsi xsi , with xsi denoting the cellular
concentration of SinI. The equation expresses that in the
absence of the sinI gene, SinI cannot be synthesized.
Simulating the behavior of the sinI mutant under sporula-
tion conditions produces a reduced transition graph of 31
qualitative states (not shown). In (de Jong et al., 2002a) a
dozen examples of the simulation of B.subtilis sporulation
mutants are discussed.

Analysis of simulation results
The simulated behavior of the network should reflect
the essential biological characteristics of the sporulation
initiation process. Analysis of the state transition graphs
by means of VisualGNA allows one to investigate in
detail the predicted qualitative equilibrium state, as well
as qualitative behaviors leading to the equilibrium state.

Consider first the state transition graph for the wild-
type strain. The qualitative equilibrium state corresponds
to the spo− phenotype, because the concentration of σ F , a
sigma factor essential for the development of the forespore
(Stragier and Losick, 1996), has not reached the threshold
above which it directs the transcription of its target genes.
Whereas in some qualitative behaviors the system directly
reaches the qualitative equilibrium state, in others it first
passes through a period of transitory sigF expression,
which corresponds to the spo+ phenotype.

A typical qualitative behavior for sporulation as well
as for vegetative growth are shown in Figure 4. For ease
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of presentation, only four of the nine state variables are
represented. The initial phosphorylation of Spo0A leads
to downregulation of abrB, which favors expression of
sigH and sinI. Increasing levels of σ H and SinI lead to an
increase in spo0A and kinA expression. As a consequence,
Spo0A∼P levels continue to rise and activate sigF after
some time, as can be seen in (a). On the other hand,
as shown in (b), abrB downregulation also causes the
Spo0E concentration to rise, which prevents Spo0A∼P
from accumulating to the point where sinI is expressed
at a level sufficient to inactivate SinR. This leaves SinR
repression of the σ H -dependent promoter of Spo0A intact,
and thus prevents the initiation of sporulation.

The transition graph faithfully represents the two
possible responses to nutrient depletion that are observed
for B.subtilis: either the bacterium continues vegeta-
tive growth or it enters sporulation. The initiation of
sporulation is determined by positive feedback loops
acting through Spo0A and KinA, and a negative feedback
loop involving Spo0E. When the rate of accumulation
of the kinase outpaces the rate of accumulation of the
phosphatase, we observe transient expression of sigF, i.e.
a spo+ phenotype (Figure 4(a)). If the kinetics of these
processes are inversed, sigF is never activated and we
observe a spo− phenotype (Figure 4(b)).

The expression of sigF in the sporulation behavior is
transitory, because the concentration of Spo0E continues
to rise and therefore the concentration of Spo0A∼P
eventually falls below the level required for sigF activation
(Figure 4(b)). The reversion of the sporulation decision
through the continuing accumulation of Spo0E is due to
the fact that the genes and interactions required for later
stages of sporulation have not been included in our model.

In the case of the sinI deletion strain, no expression, not
even transitory, of sigF occurs. That is, a sinI mutant is
not predicted to sporulate, an observation supported by
biological data (Bai and Mandić-Mulec, 1993). Deletion
of sinI disrupts the positive feedback loops, because
SinR repression of the σ H -dependent promoter of Spo0A
cannot be relieved, thus preventing further Spo0A∼P
accumulation.

DISCUSSION
We have presented the computer tool GNA for the
qualitative simulation of genetic regulatory networks and
illustrated its use in the analysis of the network of
interactions controlling the initiation of sporulation in
B.subtilis. GNA implements a simulation method that
is based on a class of PL differential equation models
described in mathematical biology (de Jong et al., 2002b).
While abstracting from precise molecular mechanisms,
the PL models capture essential aspects of gene regulation.
Instead of giving numerical values to the parameters

and initial conditions, which are usually not available,
we use qualitative constraints in the form of algebraic
inequalities. These are obtained by directly translating
biological data into a mathematical formalism.

The predictions obtained through qualitative simulation
have the form of a graph of qualitative states and transi-
tions between qualitative states. A path of qualitative states
in the transition graph is a prediction of the qualitative
shape of the solution obtained for some combination of
parameter values consistent with the parameter inequali-
ties. Although the predictions obtained through qualitative
simulation are less precise than their numerical counter-
parts, it has been demonstrated that no solution of a quan-
titative model subsumed by the qualitative model is omit-
ted. That is, the qualitative behavior abstracted from each
such solution is covered by the transition graph (de Jong
et al., 2002b). GNA thus provides guaranteed coverage of
the solutions of the class of quantitative models consistent
with the qualitative model, without performing exhaustive
numerical simulation.

The lack of quantitative information on kinetic param-
eters and molecular concentrations has stimulated an in-
terest in other methods and tools for qualitative simulation
(de Jong, 2002). For example, the method QSIM (Kuipers,
1994) has been used to model and simulate λ phage growth
in E.coli (Heidtke and Schulze-Kremer, 1998). A major
problem in the application of qualitative simulation ap-
proaches is their lack of upscalability. GNA differs from
traditional qualitative simulators in that it has been tai-
lored to a class of PL models with favorable mathematical
properties. This allows it to deal with large and complex
genetic regulatory networks, as illustrated by the sporu-
lation example. In comparison with the logical method
of Thomas and colleagues (Thomas et al., 1995), which
is based on comparable abstractions of regulatory inter-
actions, GNA has been developed for differential equa-
tion models. We believe that the latter formalism is intu-
itively clear and of large generality. Moreover, it facilitates
the integration of any quantitative data becoming available
through advances in measurement technologies.

The graphical user interface of GNA allows the user to
analyze the simulation results, by manipulating the transi-
tion graph and by exploring the predicted qualitative be-
haviors of the system on the level of individual protein
concentrations. GNA also visualizes the interactions be-
tween the genes and proteins in the regulatory network, as
described by the model. In order to facilitate the specifica-
tion of the model and initial conditions, a graphical model
editor is currently under development.

Simulation of the sporulation network by means of
GNA reveals that essential features of the initiation of
sporulation can be reproduced by means of a model
constructed from the experimental literature (de Jong
et al., 2002a). Because sporulation in B.subtilis is one
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of the best-studied prokaryotic model systems, it is an
excellent case study for the validation of the simulation
tool. However, the real interest of tools like GNA comes
from the simulation of genetic regulatory networks that
are less understood and the use of the predictions thus
obtained for guiding further experimental work. We
are currently applying GNA in the context of studies
of the global regulation of transcription in E.coli and
Synechocystis.
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