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Abstract

The recent Variable Neighborhood Search (VNS) metaheuristic combines local search with systematic changes
of neighborhood in the descent and escape from local optimum phases. When solving large instances of various
problems, its efficiency may be enhanced through decomposition. The resulting two level VNS, called Variable
Neighborhood Decomposition Search (VNDS), is presented and illustrated on the p-median problem. Results
on 1400, 3038 and 5934 node instances from the TSP library show VNDS improves notably upon VNS in less
computing time, and gives much better results than Fast Interchange (FI), in the same time that FI takes for a single
descent. Moreover, Reduced VNS (RVNS), which does not use a descent phase, gives results similar to those of
FI in much less computing time.
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1. Introduction

Consider a finite but large set S. Combinatorial optimization problem consist in finding
xopt ∈ X ⊆ S such that some objective function f is minimized,

min{ f (x) : x ∈ X, X ⊆ S}. (1)

S, X, x and f are solution space, feasible set, feasible solution, and real valued function,
respectively. Most combinatorial optimization problems are NP-hard and heuristic (sub-
optimal) solution methods are needed to solve them (at least for large instances or as an
initial solution for some exact procedure).

In local (or neighborhood) search heuristic methods the set of neighborhood solutions
N (x) of any solution x is defined. The procedure starts with a feasible solution x0; then, at
iteration k, the objective function value of each x ′

k ∈ Vk ⊆ N (xk) is evaluated. If a better
solution xk+1 ∈ Vk is found the procedure continues with xk+1 as a new current solution.
Otherwise, it stops in a local minimum, whose objective function value could be much
larger than the globally minimum one.

Several ways to do better within the local search framework have been suggested in the
literature. The easiest is the Multistart approach, where the same procedure is restarted a
given number of times, from different initial solutions and the best local minimum is re-
tained. Simulated Annealing (Kirkpatrick et al., 1983), Tabu Search (Glover, 1989, 1990;
Hansen and Jaumard, 1990; Glover and Laguna, 1993, 1997) and Variable Neighborhood
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Search (Mladenović, 1995; Mladenović and Hansen, 1997; Hansen and Mladenović, 1998)
methods, explore the vicinity of the local minima, as they are found. The first two methods
follow trajectories, accept ascent moves by different means, and most often use a single
neighborhood structure in the search. On the other hand, the third method explores in-
creasingly far neighborhoods of the current local minimum, with a descent method, and
re-centers the search if a better solution than the incumbent is found.

Note that on occasion, use of several types of moves was proposed by various authors
in heuristics for specific problems, without however this being the main idea or principle
advocated. For instance, it was suggested long ago to use the interchange heuristic after
the ATTILA or BABEL (stingy or greedy) heuristics for the simple plant location problem
(e. g., Kaufman and Hansen, 1972). Another example is an informal discussion of “manage-
rial robots” for employee scheduling problems by Glover, McMillan, and Glover (1984),
who consider adding a tour (for a particular person on a particular day) deleting a tour,
modifying a tour by changing its lunch period or breaks, etc.

Performance of all local search metaheuristics such as those above-mentioned commonly
depends on the efficiency of their descent phase. For small and medium size problems,
descent local searches are very fast and general heuristics usually use much longer CPU
times. But, for very large problem instances, local search algorithms often require substantial
amounts of running time. One way to reduce the running time is by using parallelism, another
by using decomposition.

In this paper we propose a new heuristic decomposition method for combinatorial opti-
mization problems. We call it Variable Neighborhood Decomposition Search (VNDS) as
the method follows a basic VNS scheme. In the next section both the basic VNS and VNDS
heuristics are described. Section 3 presents our implementation of VNDS for solving the
p-Median problem. Computer results are reported in Section 4, while Section 5 concludes
the paper.

2. Variable neighborhood decomposition search

Let us denote a finite set of pre-selected neighborhood structures withNk, (k = 1, . . . , kmax),
and with Nk(x) the set of solutions in the kth neighborhood of x . Note that local search
heuristics usually use one neighborhood structure, i. e., kmax = 1. The basic VNS heuristic
comprises the steps given in figure 1.

The stopping condition may be e.g., maximum number of iterations, maximum number
of iterations between two improvements or maximum CPU time allowed. Often successive
neighborhoods Nk will be nested. Note that the point x ′ is generated at random in Step 2a
in order to avoid cycling, which might occur if any deterministic rule was used.

It is worth stressing the ease of implementation of both the basic version of VNS (with
only one parameter kmax) and various simple extensions discussed below. Even this single
parameter can be disposed of by taking nested neighborhoods which partition the solution
space, e.g. the sets of boolean n-vectors at Hamming distance 1, 2, . . . , n of the incumbent
solution when solving a problem in n 0-1 variables. Step 2a is easy to program. For example,
if Nk is obtained by k-interchanges of solution attributes, one need only add a few lines to
an existing code for a local search method (Step 2b).
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Figure 1. Steps of the basic VNS.

Figure 2. Steps of the basic VND.

As a local optimum within a given neighborhood is not necessarily one within another,
change of neighborhoods can be performed during the local search phase too. In some cases,
as when applying VNS to graph theory, the use of many neighborhoods in the local search
is crucial. This local search is then called Variable neighborhood Descent (VND) and its
steps are given in figure 2.

The basic VNS is in fact a descent, first improvement method. Without much additional
effort it could be transformed into a descent-ascent method: in Step 2c set also x ← x ′′ with
some probability even if the solution is worse than the incumbent, and/or a best improvement
method: make a move to the best neighborhood k∗ among all kmax of them. Other variants of
the basic VNS are described in Hansen and Mladenović (1998). We only recall here one of
them, called Reduced VNS (RVNS). It results from an elementary to implement but quite
drastic change: in the basic scheme remove the local search Step (2b).

RVNS is useful for very large instances for which local search is costly. It is akin to a
Monte-Carlo method, but more systematic. Its relationship to the Monte-Carlo method is
the same as that of VNS to Multistart local search.

We now describe Variable Neighborhood Decomposition Search. This method follows a
basic VNS scheme within a successive approximations decomposition method. For a given
solution x , all but k attributes (or variables or subset of variables) are fixed in the local
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Figure 3. Steps of the basic VNDS.

search phase. All possible such fixations define a neighborhood Nk(x). As in VNS, we
start with a random solution x ′ from N1(x). But, instead of performing local search in the
whole solution space S with x ′ as a starting point, we solve a one-dimensional problem in
the space of the unfixed variable (or subset of variables) that has been chosen at random.
We then return a new value for this variable into the solution and compute (or update) the
objective function value. The other steps are the same as in VNS: if the new solution is not
better than the incumbent, we set k = k + 1, i.e., we look for improvement in the subspace
where all but two variables are fixed, etc.; otherwise a move has been made and we set
k ← 1 again. The steps of the basic VNDS are given in figure 3.

Note that the only difference between the basic VNS and VNDS is in Step 2b: instead of
applying some local search method in the whole solution spaceS (starting from x ′ ∈Nk(x)),
in VNDS we solve at each iteration a subproblem in some subspace Vk ⊆ Nk(x)with x ′ ∈ Vk .
If a given local search heuristic is used for solving this subproblem (in Step 2b of VNDS),
then VNDS uses a single parameter, kmax. However, we can use some better heuristic, such
as VNS, and then an additional problem specific parameter, say b, can be considered. Its
aim is to strike a balance between the number of subproblems solved and the desired quality
of the solution of each subproblem. Parameter b could represent, e.g., maximum CPU time
allowed for solving each subproblem, or maximum size of the subproblem we are willing
to solve. If the CPU time or the size of the subproblem exceeds its limit, we set k ← 1,
i.e., we continue the decomposition by solving smaller subproblems. In this case we have
in fact a recursive, two level, VNS heuristic. Note that it may be worthwhile to consider
neighborhoods built from close smaller ones if there is a significant proximity relation
between them. This happens in the p-median problem next discussed.

Fixing temporarily some variables in an optimization problem, improving the resulting
solution and iterating is, as mentioned above, an application of the idea of successive
approximations, which is well-known in mathematics at least since the 19th century. Its use
in combinatorial optimization goes back to the beginnings of dynamic programming (e.g.,
Bellman and Dreyfus, 1962) and perhaps earlier. Another early application is the alternate
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heuristic for bilinear programming (Griffith and Stewart, 1961). Although from its definition
(as far as one is given), the idea of referent domain optimization (Glover and Laguna, 1997,
pp. 354–356) appears to be quite different, one of the examples given there can also be
viewed as an application of successive approximations. Of course, no claim is made in this
paper to have discovered (or rediscovered) the idea of successive approximations. What it
does is exploit this idea together with the VNS principle to build a two-level VNS, or VNDS
framework, and apply it to the p-median problem.

3. VNDS for the p-median problem

Consider a set L of m potential locations for p facilities and a set U of locations of n given
users. The p-median problem (PM) is to locate simultaneously the p facilities at locations
of L in order to minimize the total transportation cost for satisfying the demand of the users,
each supplied from its closest facility. This model is a basic one in location theory (see e.g.,
Mirchandani and Francis, 1990, for an introduction to discrete location theory).

The p-median problem and its extensions are useful to model many real word situations,
such as the location of industrial plants, warehouses and public facilities (see for example
(Christofides, 1975), for a list of applications). PM can also be interpreted in terms of
cluster analysis; locations of users are then replaced by points in an m-dimensional space
(see Hansen and Jaumard (1997) for a survey of cluster analysis from a mathematical
programming viewpoint). Moreover, PM can be defined as a purely mathematical problem:
given an n × m matrix D, select p columns of D in order that the sum of minimum
coefficients in each line within these columns be smallest possible.

Consider a set L of m potential facilities (or location points or medians), a set U of n
users (or customers or demand points) and a n × m matrix D of distances traveled (or
costs incurred) for satisfying the demand of the user located at i from the facility located
at j , for all j ∈ L and i ∈ U . The objective is to minimize the sum of these distances (or
transportation costs), i.e.,

(min)
∑

i∈U

min
j∈J

dij.

where J ⊆ L and |J | = p. Beside this combinatorial formulation, the PM problem has an
integer programming one:

(min)

n∑

i=1

m∑

j=1

dij xij (2)

subject to

m∑

j=1

xij = 1, ∀i, (3)

xij ≤ y j , ∀i, j (4)
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m∑

j=1

y j = p, (5)

xij, y j ∈ {0, 1} (6)

where y j = 1 signifies a facility is located at j; xij = 1 if user i is assigned to facility j
(and 0 otherwise).

Constraints (2) express that the demand of each user must be met. Constraints (3) prevent
any user from being supplied from a site with no open facility. The total number of open
facilities is set to p by constraint (4).

The p-median problem is NP-hard (Kariv and Hakimi, 1969). Many heuristics and exact
methods have been proposed for solving it. Exact algorithms were developed by Beasley
(1985) and Hanjoul and Peeters (1985), among others. Extensive references to work on this
and related problems are contained in Cornuejols et al. (1977), Brandeau and Chiu (1989),
Mirchandani and Francis (1990) and Drezner (1995).

Classical heuristics for PM often cited in the literature, are Greedy (Kuehn and
Hamburger, 1963), Alternate (Maranzana, 1964) and Interchange (Teitz and Bart, 1968).
Several hybrids of these heuristics have been suggested. For example, in the GreedyG heuris-
tic (Captivo, 1991), in each step of Greedy, the Alternate procedure is run. A combination
of Alternate and Interchange heuristics has been suggested in Pizzolato (1994). In Moreno
et al. (1991), a variant of reverse Greedy is compared with Greedy + Alternate and Multi-
start Alternate, etc. The combination of Greedy and Interchange, where the Greedy solution
is chosen as initial one for Interchange, has been most often used for comparison with other
newly proposed methods (see for example Voss (1996) and Hansen and Mladenović (1997)).

Another type of heuristics suggested in the literature is based on the relaxed dual of
the integer programming formulation of PM and uses the well-known Dual ascent heuris-
tic DUALOC (Erlenkotter, 1978). Such heuristics for solving the p-median problem are
proposed in Galvao (1980) and in Captivo (1991).

Three different Tabu Search (Glover, 1989, 1990; Hansen and Jaumard, 1990) methods
have recently been proposed for solving PM (see Glover and Laguna (1993, 1997) for
an introduction to Tabu Search). In Mladenovic et al. (1995) a 1-interchange move is
extended into a so-called 1-chain-substitution move. Another TS heuristic is suggested by
Voss (1996), where a few variants of the so-called reverse elimination method are discussed.
In Rolland et al. (1996), a 1-interchange move is divided into add and drop moves which
do not necessary follow each other and so feasibility is not necessary maintained during the
search; this approach, within TS, is known as strategic oscillation (see Glover and Laguna
(1993)).

A simple parameter free Variable Neighborhood Search (VNS) method for solving the
p-median problem has been proposed in Hansen and Mladenović (1997). Since the quality
of the solution obtained by VNS depends in general on the local search subroutine used,
an efficient implementation of the Fast Interchange (FI) (or vertex substitution) method
(Whitaker, 1983) has been developed. Different neighborhood structures for VNS are in-
duced by a single metric function introduced in the solution space. The proposed method
has been extensively compared with Greedy + Fast Interchange and with two Tabu search
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methods, on standard test problems from the literature, as well as on very large problem
instances (up to 3038 nodes and 500 facilities). Results obtained by VNS were favorable.
However, computing times went up to several hours for the largest instances. This suggests
that decomposition might be worthwhile in heuristics for very large p-median problems.

Let us denote with X = {x | x = {m1, m2, . . . , m p}, mi ∈ L , |L| = m} a solution space
of the problem. The cardinality of X is obviously ( m

p ). Note that each choice of p (out of m)
medians uniquely defines a partition of the users set U into p disjoint subsets {U1, . . . , Up},
because each user should be served by its closest facility mi . Note also that the opposite
does not hold, i.e., |X | is less than the number of all partitions of U . Thus, solution of the
p-median problem can be represented as a set of users subsets, {U1, . . . , Up}. We say that
the distance between two solutions x1 and x2 (x1, x2 ∈ X) is equal to k, if and only if they
differ in k locations. Since X is a set of sets, a (symmetric) distance function ρ can be
defined as

ρ(x1, x2) = |x1\x2| = |x2\x1|, ∀x1, x2 ∈ X. (7)

It can easily be checked that ρ is a metric function in X , thus, X is a metric space. The
neighborhood structures used in Hansen and Mladenović (1997) were induced by metric ρ,
i.e., k locations of facilities (k ≤ p) from the current solution are replaced by k others inNk .
The same metric will be used in VNDS below. We denote withNk, k = 1, . . . , kmax (kmax ≤
p) the set of such neighborhood structures and with Nk(x) the set of solutions forming
neighborhood Nk of a current solution x . More formally

x2 ∈ Nk(x1) ⇐⇒ ρ(x1, x2) = k. (8)

For solving large problem instances by VNDS, it is important to get an initial solution
quickly. Moreover, it needs to be of good quality. As mentioned before, greedy heuristics
do not match both of these goals. Here we use reduced VNS (or RVNS for short), initially
proposed by Mladenović (1995). The difference between VNS for the p-median problem
suggested by Hansen and Mladenović (1997), and RVNS which we are using here is that
RVNS does not have Step 2b: the local search is simply skipped. The steps of the VNDS
method for solving large p-median problems are given in figure 4.

4. Computer results

The sets of problem instances used in testing are: (i) 40 ORLIB problems from Beasley
(1985); (ii) four problems from Rolland et al. (1996); (iii) three large problems from the
TSP library (Reinelt, 1991) with n = 1400, n = 3038 and n = 5934 with m = n and p ∈
[10, 1500].

All methods compared are coded in FORTRAN 77 and run on a SUN Ultra I System
(143-MHz). In order to decrease running time, compiling is done with the optimizing
option, i.e., with ‘ f 77-cg92-O4’. The CPU times reported in the tables below are in seconds,
while the % error are calculated as f − fopt

fopt
· 100, where f denotes the best solution found by

the heuristic.
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Figure 4. VNDS for solving large PM.

In all tests reported in this section the maximum number of neighborhoods is fixed at
p, 2, and p for VNS, RVNS and VNDS respectively. For the second level of VNS (within
VNDS), k ′′

max is fixed at 5, and bmax is set to 400. Parameter rmax for RVNS is set to 1000.

4.1. OR-LIB test problems

We first tested three methods (FI, RVNS and VNDS) on 40 ORLIB problems from Beasley
(1985), where the set of facilities is equal to the set of users (m = n). The problem parameters
range from instances with n = 100 nodes and p = 5, 10, 20 and 33 up to instances with
n = 900 and p = 5, 10, 90. All these test problems were solved exactly (Beasley, 1985)
on a modern mainframe with vector processing capabilities (i.e., on a Cray-1S computer),
which makes them suitable for computational comparisons. In order to get matrix D that is
used by the FI procedure, an all shortest paths algorithm is run first (the CPU time for this
O(n3) procedure is not included in the Table 1 below). We did not include basic VNS in the
comparison, because the results of an extensive empirical analysis on them have already
been reported in Hansen and Mladenović (1997) (38 among 40 test problems are solved
exactly, with an average error of 0.01%).

In column 4 of Table 1, known optimal values ( fopt) are reported, followed by values
obtained by FI, RVNS and VNDS. The CPU times (in seconds) when the best solution
has been found by each method are given in columns 8–10. In column 11 maximum time
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Table 1. 40 OR-LIB test problems.

Objective values CPU time % Error
Pr.
No. n p fopt FI RVNS VNDS FI RVNS VNDS VNDS FI RVNS VNDS

1 100 5 5819 5819 5819 5819 0.02 0.09 0.09 0.14 0.00 0.00 0.00

2 100 10 4093 4105 4105 4105 0.03 0.08 0.08 0.11 0.29 0.29 0.29

3 100 10 4250 4250 4270 4270 0.04 0.08 0.08 0.11 0.00 0.47 0.47

4 100 20 3034 3034 3034 3034 0.04 0.08 0.08 0.12 0.00 0.00 0.00

5 100 33 1355 1361 1358 1358 0.05 0.08 0.08 0.12 0.44 0.22 0.22

6 200 5 7824 7824 7824 7824 0.11 0.41 0.41 2.06 0.00 0.00 0.00

7 200 10 5631 5645 5639 5639 0.15 0.51 0.51 2.10 0.25 0.14 0.14

8 200 20 4445 4445 4474 4454 0.30 0.39 1.15 2.28 0.00 0.65 0.20

9 200 40 2734 2738 2753 2753 0.36 0.70 0.70 2.33 0.15 0.69 0.69

10 200 67 1255 1256 1288 1259 0.47 0.47 1.93 2.42 0.08 2.63 0.32

11 300 5 7696 7696 7696 7696 0.24 1.10 1.10 8.18 0.00 0.00 0.00

12 300 10 6634 6634 6634 6634 0.46 0.65 0.65 8.39 0.00 0.00 0.00

13 300 30 4374 4387 4374 4374 0.92 0.95 0.95 8.85 0.30 0.00 0.00

14 300 60 2968 2969 2980 2969 1.72 1.13 5.77 9.48 0.03 0.40 0.03

15 300 100 1729 1752 1742 1731 2.51 0.95 5.13 10.08 1.33 0.75 0.12

16 400 5 8162 8162 8162 8162 0.58 1.30 1.30 20.63 0.00 0.00 0.00

17 400 10 6999 6999 7010 7009 0.73 1.59 20.37 20.65 0.00 0.16 0.14

18 400 40 4809 4813 4815 4811 2.31 1.88 11.49 22.06 0.08 0.12 0.04

19 400 80 2845 2852 2862 2849 4.88 2.09 16.45 24.32 0.25 0.60 0.14

20 400 133 1789 1797 1796 1789 7.12 2.22 25.11 26.13 0.45 0.39 0.00

21 500 5 9138 9138 9138 9138 0.57 1.08 1.08 42.26 0.00 0.00 0.00

22 500 10 8579 8579 8592 8579 1.40 1.57 15.20 43.07 0.00 0.15 0.00

23 500 50 4619 4641 4623 4623 5.24 4.27 4.27 46.44 0.48 0.09 0.09

24 500 100 2961 2993 2968 2961 12.52 3.99 9.68 53.47 1.08 0.24 0.00

25 500 167 1828 1841 1842 1830 14.73 2.90 54.27 54.94 0.71 0.77 0.11

26 600 5 9917 9917 9924 9924 0.85 1.93 1.93 79.48 0.00 0.07 0.07

27 600 10 8307 8310 8314 8310 2.05 2.08 3.65 80.34 0.04 0.08 0.04

28 600 60 4498 4505 4506 4505 9.73 3.54 9.10 87.24 0.16 0.18 0.16

29 600 120 3033 3045 3042 3039 20.28 3.97 17.39 96.53 0.40 0.30 0.20

30 600 200 1989 2021 2004 1990 26.00 4.30 29.24 101.45 1.61 0.75 0.05

31 700 5 10086 10086 10086 10086 1.57 2.45 2.45 132.87 0.00 0.00 0.00

32 700 10 9297 9301 9326 9297 3.31 2.73 7.93 133.94 0.04 0.31 0.00

33 700 70 4700 4723 4707 4703 19.33 5.37 39.30 148.44 0.49 0.15 0.06

34 700 140 3013 3037 3021 3016 40.49 9.23 163.74 166.46 0.80 0.27 0.10

35 800 5 10400 10400 10400 10400 2.13 3.33 3.33 197.65 0.00 0.00 0.00

36 800 10 9934 9934 9989 9988 3.87 3.48 4.85 199.45 0.00 0.55 0.54

(Continued on next page.)
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Table 1. (Continued ).

Objective values CPU time % Error
Pr.
No. n p fopt FI RVNS VNDS FI RVNS VNDS VNDS FI RVNS VNDS

37 800 80 5057 5076 5074 5066 34.44 5.70 46.44 226.32 0.38 0.34 0.18

38 900 5 11060 11060 11071 11071 2.74 4.63 4.63 283.27 0.00 0.10 0.10

39 900 10 9423 9423 9423 9423 4.80 6.48 6.48 285.36 0.00 0.00 0.00

40 900 90 5128 5137 5134 5134 51.06 10.47 10.47 326.62 0.18 0.12 0.12

Average 7.00 2.51 13.22 73.90 0.25 0.30 0.12

allowed for VNDS (VNDS∗) is presented (it is obtained as a time for reading data + time
of FI). The % errors of the three methods are reported in columns 12 to 14.

It appears that: (i) there is no need for decomposition for this relatively small set of
instances, since VNS performed better than VNDS; (ii) the average % error of VNDS is
less than that of FI (compare 0.12% error of VNDS with 0.25% of FI); (iii) results of
similar quality are obtained by FI and RVNS (compare 0.25% with 0.30% error), but RVNS
spent less CPU time on average (compare 7.0 with 2.5 seconds); (iv) although VNDS was
allowed to run 73.9 seconds on average, it used only 13.22 seconds on average to find
the best solution it obtained. This suggests better parameter settings for this small size set
of instances. We changed the two parameters of RVNS to k ′

max = 5 and rmax = 2000,
i.e., we allowed longer running time for initial solution of VNDS, and thus less time for
its iterations. Then % errors of 0.19, and 0.08 are obtained (instead of 0.30 and 0.12) for
RVNS and VNDS respectively.

4.2. Rolland et al. test problems

In a recent paper by Roland et al. (1996), a Tabu search (TS) method for p-Median is
proposed and tested on random graphs with m = n = 200, 300, 400 and 500 nodes, having
p = 10, 15 and 20 facilities. The (symmetric) distance between any two nodes are generated
at random from the integer interval [0, 100], thus, the triangular inequality is not satisfied.
In other words, the dij can be larger than the distance on the shortest path between nodes
i and j . In addition, since the weights are associated to users, asymmetric distances are
involved in the model as well (obtained as dij ← wi dij). These test instances are called
‘large’ problems, and since the optimal solutions were not found by available software, the
best known solutions are reported. The proposed TS method was compared with two local
search procedures: classical Interchange (called Node substitution) (Teitz and Bart, 1968),
and Global/Regional interchange algorithm (Densham and Rushton, 1992). In 11 among 12
large test problems, the best known solutions reported were obtained by TS. More recently,
those results were compared with the Heuristic Concentration (HC) method (Rosing et al.,
1998), but results for n = 200 only were reported. However, in Table 2, we present results
obtained by HC for all test instances, kindly communicated by Rosing (1998).

Here we compare the quality of the solutions obtained by several heuristics, on the
‘large’ test instances from Roland et al. (1996): (i) Fast Interchange (FI) (Whitaker, 1983;
Hansen and Mladenović, 1997); (ii) Basic Variable Neighborhood Search (VNS) (Hansen
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Table 2. Results for test problems from Rolland et al. (1997).

% Error CPU time

n p
Best

known FI VNS HC CSTS TS RVNS VNDS FI VNS CSTS TS RVNS VNDS

200 10 48912. 1.21 0.00 0.00 0.02 0.68 0.00 0.00 5.2 80.3 59.1 381.9 31.1 43.2

15 31153. 1.29 0.00 0.00 0.00 2.80 1.00 1.00 7.5 121.2 118.9 401.1 29.8 44.7

20 23323. 1.96 0.00 0.65 0.00 0.74 2.42 2.32 9.6 161.6 163.2 416.6 32.8 45.3

300 10 82664. 3.58 0.00 0.00 1.08 0.47 1.91 1.91 12.3 248.2 179.2 1241.0 53.1 60.7

15 52685. 4.47 0.00 0.17 0.50 1.98 3.07 3.07 19.4 373.3 311.8 1321.6 47.3 81.7

20 38244. 3.34 0.00 1.35 0.72 2.49 3.80 3.23 24.4 475.8 467.0 1378.3 56.5 92.7

400 10 123464. 0.19 0.00 0.00 0.12 3.79 3.68 2.99 24.5 463.4 361.3 2910.6 76.1 109.3

15 79872. 5.20 0.00 0.75 2.50 5.15 5.77 5.36 32.0 631.5 463.1 3096.8 74.1 130.4

20 58459. 7.08 0.46 0.00 0.92 1.17 5.66 5.66 45.4 958.6 653.3 3218.3 83.5 103.1

500 10 150112. 2.03 0.00 0.00 0.14 1.52 2.94 2.94 40.6 864.9 474.3 9732.2 92.1 175.2

15 97624. 3.54 0.00 0.00 1.55 0.79 1.49 1.49 54.7 1164.2 887.2 9731.1 121.6 157.9

20 72856. 4.86 0.00 0.41 1.46 0.41 1.92 1.92 74.5 1593.4 1350.0 9748.4 117.8 161.9

Average 3.23 0.04 0.27 0.75 1.83 2.80 2.66 29.2 594.7 457.4 3631.5 67.9 100.5

Maximum time allowed for CSTS and VNS is set to be 30 times those of FI; the best solution found in 50 trials
of FI, CSTS, VNS, RVNS and VNDS are reported.

and Mladenović, 1997); (iii) Heuristic Concentration (HC) (Rosing and ReVelle, 1996;
Rosing, 1998); (iv) Chain Substitution Tabu Search (CSTS) (Mladenović et al., 1995);
(v) Tabu Search (TS) (Roland et al., 1996); (vi) Reduced Variable Neighborhood Search
(RVNS); and (vii) Variable Neighborhood Decomposition Search (VNDS).

Although the problems are not very large, their ‘unpleasant’ structure (distances are
not symmetric and do not satisfy the triangular inequality), did not allow us to get global
optimal solutions with the exact codes we have. Thus, in column 3 of Table 2, the best
known solutions are reported. In columns 4 to 10 the % error of each method compared
with the best known solution are given, while columns 11–16 consist of corresponding
computing times (the times for HC were not available (Rosing, 1998)). All methods, except
TS and HC, are restarted 50 times (from different initial solutions). In each run VNS and
CSTS started with FI solution and terminate the search when CPU time exceeds 30 times
those of FI. In each run RVNS stops after rmax = 1000 unsuccessful trials, while the VNDS
starts with RVNS solution and works until time for reading data + time for one FI descent
is not exceeded.

From Tables 2, the following observations can be derived: (i) the best known solutions
obtained by TS are improved upon in all cases; (ii) VNS and HC outperform other heuristics.
VNS reaches the best known solution 11 times with an average error of 0.04%, while HC
reaches the best known solutions 7 times with an average error of 0.27%; (iii) both structure
and size of the problem instances are not convenient for the decomposition method. Most of
the time the solutions obtained by RVNS have not been improved by VNDS; (iii) among the
two Tabu search methods (CSTS and TS), CSTS gives the better results (compare 0.75%
error of CSTS with 1.83% error of TS) and takes the least time.
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4.3. TSP-LIB test problems

In the next tables, FI, VNS, RVNS and VNDS are compared on three large problem instances
taken from TSPLIB (Reinelt, 1991): (i) RL1400 (n = m = 1400); (ii) PCB3038 (n = m =
3038); (iii) RL5934 (n = m = 5934). The tests on all problems are done in the same way:
(i) initial solution is generated at random; (ii) the solution so obtained is used as initial one
for the fast interchange heuristic (FI) and for RVNS; (iii) the solution obtained by FI is used
as initial one for the basic VNS, allowing five times longer CPU running time for VNS
than for FI; (iv) the solution obtained by RVNS is used as initial one for VNDS; maximum
running time for VNDS is set to be equal to the CPU time FI spends for a single descent.
Since CPU time can be very long for some test examples, each instance is run only once,
i.e., we do not report the average results for each n and p.

Some computer results on the first two problems have already been reported in Hansen
and Mladenović (1997), where Greedy, Greedy + FI, CSTS and basic VNS were compared.
Since the best known solution had always been obtained by VNS, the second columns of
Tables 3 and 4 contain those values. Using the method proposed in du Merle et al. (1998), the
RL1400 problem was solved exactly for p = 10, . . . , 70 and for p = 90. We indicate in bold

Table 3. 1400-customer problem.

Objective values CPU time % Error r.t VNS

p VNS FI RVNS VNDS FI RVNS VNDS FI RVNS VNDS

10 101249.47 101941.88 101276.11 101249.47 14.78 6.34 9.25 0.69 0.03 0.00

20 57857.55 58644.50 57857.55 57857.55 25.60 13.55 13.55 1.36 0.00 0.00

30 44086.53 44389.07 44099.32 44087.78 35.61 15.93 18.65 0.69 0.03 0.00

40 35005.82 35031.07 35037.22 35012.53 45.62 17.59 25.73 0.07 0.09 0.02

50 29130.10 29130.10 29228.42 29089.78 65.61 19.49 21.71 0.00 0.34 −0.14

60 25176.47 25335.92 25501.19 25166.15 90.05 15.90 31.41 0.63 1.29 −0.04

70 22186.14 22383.90 22205.34 22125.53 101.05 23.87 96.96 0.89 0.09 −0.27

80 19900.66 20016.74 19990.21 19877.88 110.07 17.46 50.09 0.58 0.45 −0.11

90 18055.94 18210.47 18129.06 17987.94 137.52 18.63 46.78 0.86 0.40 −0.38

100 16551.20 16718.28 16642.21 16586.68 165.53 20.17 39.41 1.01 0.55 0.21

150 12035.56 12121.79 12120.68 12032.65 215.90 35.04 150.26 0.72 0.71 −0.02

200 9362.99 9466.94 9421.32 9360.01 283.13 42.93 148.83 1.11 0.62 −0.03

250 7746.96 7794.77 7772.68 7742.70 362.21 31.75 122.69 0.62 0.33 −0.06

300 6628.92 6681.50 6675.19 6624.52 389.38 43.47 366.37 0.79 0.70 −0.07

350 5739.28 5832.61 5800.82 5727.02 407.88 38.97 360.74 1.63 1.07 −0.21

400 5045.84 5084.86 5078.97 5020.50 479.77 49.42 136.51 0.77 0.66 −0.50

450 4489.93 4514.54 4521.20 4487.73 467.14 33.58 77.58 0.55 0.70 −0.05

500 4062.86 4094.67 4080.59 4049.03 423.53 27.94 285.66 0.78 0.44 −0.34

Average 212.24 26.22 111.23 0.76 0.47 −0.11

Bold represent that optimal solution is reached.
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Table 4. 3038-customer problem.

Objective values CPU time % Error r.t VNS

p VNS FI RVNS VNDS FI RVNS VNDS FI RVNS VNDS

10 1213082.12 1216205.62 1213641.62 1213506.75 116.90 43.79 43.79 0.26 0.05 0.04

20 841560.25 846910.62 841432.00 841349.12 316.35 45.78 70.05 0.64 −0.02 −0.03

30 680540.06 686703.31 683510.25 683168.56 257.06 52.83 243.12 0.91 0.44 0.39

40 574575.25 576184.38 576375.50 573407.44 394.22 87.68 290.20 0.28 0.31 −0.20

50 507809.50 510330.19 510216.38 507655.19 612.87 60.71 311.15 0.50 0.47 −0.03

60 462293.53 465578.47 462794.34 462232.94 702.79 88.18 477.86 0.71 0.11 −0.01

70 428474.06 429152.31 429556.72 428062.66 902.57 73.81 679.82 0.16 0.25 −0.10

80 398081.28 401627.03 398617.22 397990.28 944.54 120.71 732.84 0.89 0.13 −0.02

90 375110.69 375737.53 374995.34 373846.97 1164.15 94.28 663.62 01.17 −0.03 −0.34

100 354488.69 356005.06 356666.34 353255.22 1248.77 158.95 1062.94 0.43 0.61 −0.35

150 281911.91 284158.97 283024.56 281772.09 1896.87 167.12 1862.07 0.80 0.39 −0.05

200 239086.41 240646.23 241355.64 238622.98 2526.70 139.85 2335.87 0.65 0.95 −0.19

250 209718.00 210612.94 210727.70 209343.34 3114.28 195.36 2846.61 0.43 0.48 −0.18

300 188142.30 189467.47 188709.30 187807.06 3358.40 169.75 1913.19 0.70 0.30 −0.18

350 171726.81 172668.55 172388.47 171009.30 3645.59 199.01 2951.38 0.55 0.39 −0.42

400 157910.08 158549.50 158805.00 157079.67 5308.28 206.29 4772.22 0.40 0.57 −0.53

450 146087.80 146727.20 147061.95 145448.98 5491.01 233.34 2148.47 0.44 0.67 −0.44

500 136081.72 136680.48 136664.97 135467.97 6044.12 272.65 3379.78 0.44 0.43 −0.45

550 127029.12 127804.91 127989.73 126867.38 6407.13 318.19 2883.01 0.61 0.76 −0.13

600 119554.00 120330.77 120408.42 119107.99 4845.88 196.81 3392.02 0.65 0.71 −0.37

650 112516.82 113386.11 113190.49 112090.28 5275.87 243.98 5160.90 0.77 0.60 −0.38

700 106194.02 107065.33 106960.07 105893.39 5346.42 188.82 3421.69 0.82 0.72 −0.28

750 100744.98 101590.45 101512.59 100362.55 5108.20 202.88 5095.70 0.84 0.76 −0.38

800 95832.92 96599.56 96681.89 95445.06 5024.91 164.18 4143.99 0.80 0.89 −0.40

850 91452.21 92021.92 92317.28 91023.87 5023.56 157.50 4733.62 0.62 0.95 −0.47

900 87337.32 88051.39 88149.26 87041.84 5656.95 193.38 5549.94 0.82 0.93 −0.34

950 83654.05 84202.81 84217.28 83310.19 5079.25 238.98 4328.75 0.66 0.67 −0.41

1000 80213.42 80692.07 80662.78 79900.52 4883.87 205.55 4879.89 0.60 0.56 −0.39

Average 3239.20 161.44 2513.37 0.59 0.50 −0.24

the values in Table 3 where the heuristic solution is equal to the optimal one. The RL5934
problem appears to be larger than p-Median problems previously reported in the literature.
The second column of Table 5 contains the best value found by the three methods compared.

It appears that: (i) solutions of similar quality are obtained by FI and RVNS, despite
the fact that this last method uses no local search, but RVNS is about 8, 20 and 40 times
faster then FI in Tables 3–5 respectively; (ii) VNDS outperforms FI within similar CPU
times; (iii) VNDS is 0.11% and 0.24% better on average than VNS, using five times less
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Table 5. 5934-customer problem.

Objective value CPU times % Error

p Best known FI RVNS VNDS FI RVNS VNDS

10 9794951.00 642.83 85.56 85.56 0.00 0.01 0.01

20 6729282.50 2143.16 66.73 66.73 0.23 0.00 0.00

30 5405661.50 2061.82 183.99 275.59 0.25 0.01 0.00

40 4574374.00 2915.30 331.86 854.07 0.51 0.23 0.00

50 4053917.75 4257.26 418.05 550.18 0.72 0.06 0.00

60 3655898.75 4640.17 241.67 516.79 1.03 0.08 0.00

70 3353885.00 5847.18 296.33 1264.27 0.58 0.08 0.00

80 3104877.75 5451.85 501.01 891.03 0.63 0.11 0.00

90 2903895.25 5722.39 420.01 1453.24 0.39 0.44 0.00

100 2733817.25 6637.48 510.20 6087.75 0.36 0.15 0.00

150 2151018.50 9971.28 373.54 2657.35 0.90 0.86 0.00

200 1809064.38 14966.05 663.69 14948.37 0.79 0.36 0.00

250 1571813.50 17118.27 620.14 11042.62 0.73 0.40 0.00

300 1394715.12 20127.91 541.76 17477.51 0.65 0.51 0.00

350 1257900.00 22003.88 868.85 21769.56 0.82 0.55 0.00

400 1145669.38 23630.95 618.62 22283.04 0.82 0.59 0.00

450 1053450.88 66890.41 1898.83 21683.38 0.90 0.79 0.00

500 974275.31 29441.97 954.10 10979.77 0.98 0.51 0.00

600 848459.38 32957.36 768.95 18996.37 0.78 0.47 0.00

700 752068.38 36159.45 768.84 32249.00 0.64 0.50 0.00

800 676846.12 38887.40 813.38 20371.81 0.61 0.53 0.00

900 613367.44 41607.78 731.71 27060.09 0.55 0.53 0.00

1000 558802.38 44176.27 742.70 26616.96 0.73 0.66 0.00

1100 511813.19 45763.18 740.33 28740.89 0.90 0.63 0.00

1200 470295.38 46387.06 674.87 15886.20 0.99 0.91 0.00

1300 433597.44 46803.63 740.48 26150.85 1.00 0.82 0.00

1400 401853.00 47184.10 708.90 44944.41 0.87 1.18 0.00

1500 374061.41 47835.35 823.95 44727.36 0.98 0.93 0.00

Average 24008.30 611.04 15026.60 0.68 0.47 0.00

CPU times. Moreover, VNDS solved exactly 5 among 8 problems from Table 3, where the
optimal solution is known.

5. Conclusions

A new decomposition heuristic method for solving combinatorial and global optimization
problems, named Variable Neighborhood Decomposition Search (VNDS) is proposed. It
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follows the rules of the recent Variable Neighborhood Search metaheuristic and combines
them with a successive approximation decomposition method. The sequence of subproblems
(problems of smaller sizes than the initial one) are generated from the different preselected
set of neighborhoods. If the solution of the subproblem does not lead to an improvement
in the whole space, the neighborhood is changed. Otherwise, the search continues from
the incumbent in the first pre-selected neighborhood. The process is iterated until some
stopping condition is met.

A VNDS heuristic is presented and illustrated on the p-Median problem. It is shown that
for medium size instances, VNDS does not always give satisfactory results (compared with
basic VNS), but for very large problems it can be very useful. Results on 1400, 3038 and
5934 node instances from the TSP library show VNDS improves notably upon VNS in less
computing time, and gives much better results than Fast Interchange (FI), in the same time
that FI takes for a single descent.
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