HOURNAL OF COMPUTATIONAL PLIVSICS T4, BG Y2 (1993)

New Optimization Heuristics
The Great Deluge Algorithm and the Record-to-Record Travel

GUNTER PDUECK

IBM Germany, Heidelberg Scientific Center,

Received December 4, 1990,

In a former paper we introduced a very effective new general
purpose optimization principle. We compared this method, which
we called threshold accepting (TA), with the well-known simulated
annealing (SA} method for discrete optimization. The empirical
results demonstrated the superiority of the TA algorithm. In further
experiments with the TA principle we discovered two new powerful
optimization heuristics: The great deluge afgorithm (GDA) and the
record-to-record travel (RRT). These algorithms resemble in their
structure the formerly studied TA and the SA method. The differences
lie in their acceptance rules for worse intermediate solutions. Both, the
GDA and the BRT, are nssentinlly one-parameter algorithms; i.e,, for the
achievement of best possible performance, a good choice is necessary
only for a single parameter. This is in contrast for instance 1o the classi-
cal SA algorithm, where it is necessary 1o choose carefully a certain
sequence of parameters, the so-called annealing schedule. The quality
of the computational results obtained so far by RRT and GDA shows
‘that the new algorithms behave equally well as TA and thus a fortiori
better than SA, 1€ 1993 Academic Press. tnc.

INTRODUCTION

In [1] we introduced the threshold acceptling (TA)
principle which yiclded computational results superior
to the well-known simulated annealing {SA) method. We
demonstrated in tests on traveling salesman problems that

TA

= yields much better results than SA
« neceds considerably less computing time

« is more insensitive in its parameters.

During tests of TA on other problems, especially on knap-
sack problems (o detailed report will follow), we found that
one can simplify even the TA principle. This resulled in two
new optimization heuristics which we called the great deluge
algorithm (GDA) and the Record-to-Record Travel (RRT).
We give a description of all these algorithms in discussion
here.

In many typical optimization problems one wants to find

0021-9991,93 §5.00 86
Copyright @) 1993 by Academic Press. Inc.

All rights of reproduction in any form reserved.

Tiergartenstrasse 15, D-6900 Heidelherg

revised October 29, 1994

among many configurations one configuration which maxi-
mizes or minimizes a certain “quality-function.” In the
familiar traveling salesman problem one wants to find a cir-
cuit of travel through a given number of cities with minimal
tour length, The algorithms we discuss here work as follows.
First an initial configuration is chosen. Then each step of the
four algorithms consists of a slight change of the old
configuration into a new one. The “qualities” of the two
configurations are compared. Then a decision is made it the
new configuration is “acceptable.”™ I the new configuration
is acceptable it serves as the “old” configuration for the next
step. I it is not acceptable, the algerithm proceceds with a
new change of the old configuration.

The four algorithms differ in their decision rule to
determine whether a configuration is acceptable or not.
Kirkpatrick ef al. [2] introduced the concept of “annealing”
and combined it with the well-known Monte-Carlo algo-
rithm by Metropolis ef al. [3] which originally was used to
numerically perform averages over large systems f{rom
statistical mechanics. The idea of SA runs as follows. The
“qualities” of the two confipurations (the old one and the
new one) are compared. If the new confliguration is better
then it serves as the “old” configuration for the next step. If
it is worse then it is accepted only with a certain probability
as the current configuration for the next step. This proba-
bility depends on a time-dependent parameter called tem-
perature and on the decrease in quality. The probability that
a worse configuration is accepted is stowly lowered during
the running time. We make these explanations more pricise:

SA ALGORITHM FOR MAXIMIZATION.

choose an initial conhguration
choose an initial temperature 7'>
Opt: choose a new configuration which is a stochastic small
perturbation of the old configuration
compute AF :=quality (new configuration)-quality
(old configuration)
IF AE >0
THEN old configuration := new configuration

NEW OPTIMIZATION HEURISTICS 87

ELSE with probability exp(4E/T)
old configuration := new configuration
IF a long time no increase in quality or too many
iterations
THEN lower temperature T
IF some time no change in quality anymore
THEN stop
GOTO Opt

Note that if the temperature is high, very often worse
configurations are accepted. It is a kind of art to choose a
successful annealing schedule, that is, a rule for lowering
the temperature in the algorithm. In most applications the
success of the algorithm is very sensitive against the choice
of the annealing schedule.

We explain briefly the parameters above within the
framework of the traveling salesman problem (TSP). Here,
the task is to find a minimum length tour through a given
number of “cities.” As an initial configuration, one chooses
a random tour through all of the cities. A new configuration
is obtained by small changes in the tour. The quality of a
tour is given by its length.

The method called fhreshold cecepting {TA) which we
studied in [1], is formally very similar to SA.

TA ALGORITHM FOR MAXIMIZATION.

Choose an initial configuration
Choose an initial THRESHOLD T 0
Opt: choose a new configuration which is a stochastic small
perturbation of the old configuration
compute AE :=quality (new configuration)-quality
(old configuration)
IFAE> —-T
THEN old configuration := new configuration
IF a long time no increase in guality or too many
iterations :
Then lower THRESHOLD T
IF some time no change in quality anymore
THEN stop
GOTO Opt.

TA accepts every new configuration which is nor much
worse than the old one (SA accepts worse solutions only
with rather small probabilities).

THE GREAT DELUGE ALGORITHM FOR MAXIMIZATION,

Choose an initial configuration

choose the “rain speed” UP >0

choose the initial WATER-LEVEL >0

Opt: choose a new configuration which is a stochastic
small
perturbation of the old configuration
compute E := quality (new configuration)

IF E>WATER-LEVEL
THEN old configuration := new configuration
WATER-LEVEL := WATER-LEVEL + UP
IF a long time no increase in quality or too many
iterations '
THEN stop
GOTO Opt

Imagine, the GDA is to find the maximum point on a cet-
tain surface, for instance, the highest point in a fictitious
empty country. Then, “we let it rain without end” in this
country. The algorithm “walks around” in this country, but
it never makes a step beyond the ever increasing water level.
And it rains and rains ---. Our idea is that in the end the
GDA “gets wet feet” when it has reached one of the very
heighest points in the country so that is has found a point
close to the optimum.

Originally, we did not really believe in this procedure,
because our intuition mentioned: If you start this algorithm
on an isle with no mountains then yon will obtain very poor
results, If the rain decomposes the country very quickly into
different continents then you cannot hope to always reach
very high points, etc. Nevertheless, we shall sce that it
works, and it works extremely well.

THE RECORD-TO-RECORD TRAVEL FOR MAXIMIZATION

Choose an initial configuration

choose an allowed DEVIATION >0

set RECORD := quality (initiai config.)

Opt: choose a new configuration which is a stochastic
small perturbation of the old configuration
compute E := quality (new configuration)

IF E> RECORD-DEVIATION
THEN old cnfiguration := new configuration
IF £>RECORD
THEN RECORD :=E
IF a long time no increase in quality or too many
iterations
THEN stop
GOTO Opt

During a run of RT any configuration is accepted the
quality of which is not much worse than the best value
RECORD obtained so far. RRT is in some sense a variant
of GDA. “The water level” in the RRT is the value of
RECORD-DEVIATION.

The new optimization heuristics have the advantage that
they depend only on one single parameter. For the GDA it is
necessary to choose the rain speed UP ouly. The value UP is
the only parameter which is responsible for the computation
speed and for the quality of the resulis. If the rain speed is
high, the algorithm is very fast and produces results of only
minor quality. If UP is chosen to be very small then the
algorithm produces an excellent result after a long computa-
tion time.

88 GUNTER DUECK

In the RRT algorithm, a very similar behaviour can be
observed when varying the parameter DEVIATION. A
small value gives a quick poor result, a large one excellent
results after a long time.

In our experiments with the GDA we found a reasonable
rule for the choice of the parameter UP: the best UP should
be somewhat smaller than 1 % of the average gap between
the quality of the current configuration and the water level.
This easy rule revealed to us very quickly a very good choice
for UP in all cases that we tried to attack an optimization
problem with GDA,

We see that GDA and RRT are extremely easy to imple-
ment, and they depend only on a single parameter which is
not hard to choose in a satisfactory manner.

It is left now to report the computational results. We have
studied TA until now for the TSP, for finding good error-
correcting codes, for the minimization of spin-glass
Hamiltonians, for 0—1 linear programming, 0—1 quadratic
programming, quadratic assignment problems, etc. In a
forthcoming report we shall present our results on integer
programming, together with a report on a large customer
project. In the present paper we give a comparison of the
new heuristics only for two typical traveling salesman
problems, the 442-cities problem of Grétschel [4] and the
532-cities problem of Padberg and Rinaldi [8]. For these
two problems, many papers have been written with com-
putational results, Furthermore, the optimum tour lengths
have been recently determined.

" GROTSCHEL’S 442-PROBLEM:
THE ALGORITHMS

Grotschel’s 442-cities problem is a Euclidean TSP. There
are given the coordinates of 442 cities in the Euclidean
plane. It is asked for a closed polygonal tour of minimum
length joining all the given points (cities). If C is the set of
cities, a tour can be regarded as a permutation n; C — C.
Given a permutation =n, the corresponding tour starts in
7(1), goes to n(2), ..., goes to n(N), and ends in n(1), where
N is the number of cities (here N =442),

All our algorithms start with a random permutation on C
as an initial tour. As in [5], we choose the LIN-2-OPT
exchange as a procedure to construct a new perturbation
tour from an old one. This rule has been applied successfully
to Euclidean TSPs (cf. [9]).

LIN-2-OPT.

choose i, je C, i< j
cut in the tour the connections between the cities
a(iyand z(i+ 1) (m(N+1):=n(1))
and #(j)and n{j+ 1) (=(N+1):=nr(1))

insert connections between
(i)Y and n(J)
and =(i+1}and m(j+ 1)
(T(N+1):=n(1)}

Formally, the new permutation is given by

(k) for
n(i+j+1—k) for

ﬁ(k}z{ f'csior'k>j
i<k<j

Rossier ez al. [5] used SA with this rule for the choice of the
new configurations. A comparison of SA and TA results for
the 442-problem is given in {1]. In [1], we found out that
deterministic versions of TA are much faster and nearly
equally well. In this paper we consider therefore only those
algorithms. In [1], we considered the following algorithm
for the 422-problem,

In a preprocessing run we compute for each city the next
nb (we use mostly nb = 10) neighbors (the n& cities with the
feast distance). Then the deterministic algorithm performs a
LIN-2-OPT trial for each threshold, each city, and each of
the nearest nb neighbors of that city in a prescribed order.
In tests we had seen that it makes no sense to try LIN-2-
OPT exchanges with two cities which are rather far away
from each other. Thus we try to narrow the reach of the
LIN-2-OPT trials. The parameter rb measures “how local”
exchanges can be. For small nb, only exchanges in the very
neighborhood are permitted. If one looks at pictures of
optimal TSP-solutions, one can observe that most of the
cities are connected with cities in the very neighborhood.
The computational results will show that it is sufficient to
try only neighbored LIN-2-OPT changes. This is a very
important observation, because “one round” through the
foliowing algorithm needs only linearly many trials rather
than a quadraticly growing number.

DETERMINISTIC TA ALGORITHM {ORIGINAL ForM)

fix a positive integer nb
compute for every city the nearest nb neighbor cities
choose initial random tour
thresholds:
0.099, 0.098, 0.097, ..., 0.003, 0.002, 0.001, 0
FOR every threshold 7=0.099, .., 0
FOR everycity i =1, ..., 442
FOR every city being one of the nb nearest neighbors of
city f
DO perform LIN-2-OPT
IF length (new tour) < length (old tour)+ T
THEN old tour := new tour

A complete run of this algorithm performs 442 *ab* 100
LIN-2-OPT trials. Thus, the running time depends essen-
tially on the parameter nb, In further experiments with the
deterministic TA algorithms, it turned out that it is much

NEW OPTIMIZATION HEURISTICS 89

better to exchange the loops in the above algorithm. We use
in the sequel the

DeTERMINISTIC TA ALGORITHM (IMPROVED FoORM).
Here, the loop over the cities is the outer loop, the loop over
the thresholds the inner one: The improvement is quite
significant. It seems to be important to try a LIN-2-OPT
exchange first with cities being far from another and then
with cities being close to another.

For the 442-cities problem, the GDA is of the following
form.

DETERMINISTIC GREAT DELUGE ALGORITHM.

fix a positive integer nb

compute for every city the nearest nb neighbor cities

choose imtial random tour

initial (water) LEVEL: length of the initial tour
Nextround:;

Thkkkk ek ek ok ko hkkp Rk kckkkkkk bk kR Rk kk Rk kK *

FOR every j=nb, .., |
FOR everycity i= 1, ..., 442
perform LIN-2-OPT with city { and its jth nearest
neighbor
IF L :=length (new tour) < LEVEL
THEN old tour :=new tour
LEVEL 1 := LEVEL —0.01
LEVEL 2 :=LEVEL — (LEVEL — L)/500.
LEVEL :=minimum (LEVEL 1, LEVEL 2)

ok kkkkkk kR kR m Ak kkkkkokk Rk kR Rk Rk kk Rk kk k%

IF there has been a decrease in LEVEL in this round
THEN GOTO Nextround
ELSE stop

Note that this algorithm is not of the pure form we gave
in the Introduction. We lower the level here by the difference
between the level and the length of the current tour divided
by 500, but at jeast by 0.01. One can run the algorithm aiso
by setting UP :=0.01 and using the pure form. The qualities
of the results are equally good, However, the form given
above runs cousiderably faster. The reason is simply that in
the first part of the algorithm “the rain speed” can be higher
than in the last fraction of time without any effect on the
result gquality.

In a similar way, the deterministic record-to-record travel
is designed for the particular TSP case.

GROTSCHEL’S 442 PROBLEM:
COMPUTATIONAL RESULTS

We recall some of the computational results on
Grotschel’s TSP on 442 cities (cf. [1] for more details).
Rossier et al. [5] report that they performed the pure LIN-
2-OPT exchange algorithm many times (accept LIN-2-

TABLE 1
Resulis for 442-TSP by Deterministic TA

Average Number of
running Smallest Largest tours with
Number Parameter time in tour tour length
of runs nb seconds length length below 52.00
100 4 1.62 51.71 61.73 4
100 6 222 51.57 56.29 10
100 8 288 51.41 53.24 19
100 10 344 51.04 53.01 39
100 12 396 5145 53.35 45
100 14 4.46 5144 53.11 19
100 16 499 51.53 53.18 39
100 18 5.61 51.39 5330 49
100 20 5.99 5134 52.80 35

OPT improvements until no further improvement is
possible). The best result was 57.30.

Using the SA approach with neighborhood conditions
similar to the neighborhood conditions we use in this paper,
Rossier et al. [5] achieved as their best result 51.76. With
more sophisticated neighborhood conditions which seem to
be suited for the 442 problem (however, not for general
TSPs), they could compute a solution with tour length
51.42. At this time, this was the best known solution for this
problem.

Miihlenbein er al. obtained in [6] solutions of length
51.24 and 51.21 with evolution algorithms which consume a
great deal of CPU time (many hours). Holland in [7]
obtained an optimal solution. Its tour length is 50.80 (in
real* §; Holland originally gave an “integer solution™ of
tour length 50.69).

In [1] we reported the computational results for the TA
algorithm and the deterministic TA algorithm. Here, we

give the results of the improved TA algorithm, the GDA,

TABLE 11
Results for 442-TSP by Deterministic TA (Improved Form)

-Average Number of
runining Smallest Largest tours with
Number Parameter lime in tour tour length
of runs nh seconds length length below 52,00
100 4 1.53 50.98 54.05 24
100 6 226 51.22 5379 55
100 3 im 51.24 5293 64
100 10 3.69 50.90 52.81 67
100 12 4.49 51.23 52.86 80
100 14 5.17 51.21 52.79 75
100 16 5.84 50.98 52.88 70
100 18 6.56 51.17 5272 76
100 20 7.07 51.27 52.86 74

90 GUNTER DUECK

TABLE 111
Results for 442-TSP by Deterministic Record-to-Record Travel

Average Number of
runmng Smallest Largest tours with
Number Parameter time in tour tour length
of runs nb seconds length length below 52.00
100 4 3.30 51.22 54.55 37
100 6 4.62 512 5292 69
100 3 6.04 51.12 5297 72
100 10 7.31 51.15 5234 9l
100 12 872 51.21 52.45 80
100 14 10.19 51.21 5281 o0
100 16 11.57 51.03 52.36 87
100 18 12.87 5095 52.23 94
100 20 14.19 SL15 5238 89

and the RRT. It is very interesting to compare the TA algo-
rithm and its improved form. For this purpose, we recall the
table with the computational results for the TA from {17
We give the range of the tour lengths, the running times, and
the number of resulting tour lengths below 52.00 (Table 1).

In Table II we report the results of the improved TA ver-
sion. Only the order of the loops has been exchanged. This
simple trick results in a tremendous improvement in the
tour lengths. We see that the new version gives excellent
results. A large fraction of the solutions have a tour length
less than 52.00. In a recent paper, Miihlenbein [10] gives a
statistic of the running time of his genetic algorithm. Tt is
reported that a 16-processor machine (MEGAFRAME
SUPERCLUSTER consisting of 16 transputers) is able to
achieve solutions below 52.00 within 5000 s. 32 processors
need 1500s, 64 processors 600 s. (We have used only one
processor of a IBM 3090 with vector facility.) Furthermore,
we achieve with our algorithm easily solutions below 51.20
in 3-4 min of time.

The Table IIl shows the results of the RRT. For the
442-problem, it turned out that some more rounds are

TABLE IV
Resuits for 442-TSP by Deterministic Great Deluge Algorithm

Average Number of
running Smallest Largest tours with
Number Parameter time in tour tour length
of runs nb seconds length length below 52.00
100 5 2.52 5144 55.00 32
100 15 6.50 5118 5292 62
100 25 10.83 5114 52.63 73
160 35 14,22 5117 52.90 71
100 45 19.10 51.03 52.69 7
100 35 2514 51.01 5274 87

necessary than in the TA algorithm, where we ran 100
rounds. After a very few runs of the RRT it was clear that
200 are sufficient, and the following results have been
obtained within 200 rounds. (Afterwards, we observed that
nearly the same quality of results is achievable in about 160
runs.) Hence, the computation times are longer using RRT
(approximately two times}.

We observe that if nb is greater or equal to 10, then RRT
gives nearly equally good resuits. The same is true for the
GDA. We hoped that we could possibly achieve better
results for large nb. Table 1V for the GDA results shows that
also here small neighborhood parameters are compietely
sufficient.

From these data we see that ail these three algorithms
give very good results, and it would be hard to decide
wether one of them is superior to the others. However, GDA
and RRT are much easier to implement, because they are
only single-parameter dependent. The tables above give
only the best and worst tour lengths out of series of 100
program runs. In order to give an overview of the full result
we now show a complete list of the 100 tour lengths
obtained by RRT with parameter #b equal to 10 (see
Table V).

TABLEV

Number of Neighbors = 10

51.15218 51.50959 51.65645 51.88964
51.19908 5151166 51.69684 51.90404
51.20750 51.5159¢6 51.70575 5191516
51.21960 51.51639 51.71298 51.92648
51.25765 51.52743 51.72124 51.92985
5128157 51.54187 5172490 5194372
51.30762 51.54449 51.72714 51.96005
§1.32246 51.57118 51.73302 51.96446
51.33484 51.57459 5173340 5197546
51.34033 51.58344 51.74033 51.99759
51.36479 51.58921 5174247 5201247
51.36934 51.59735 51.74993 5202172
51.38676 51.59795 51.74970 52.06296
5139428 51.60586 51.75121 52.06343
51.40242 51.60654 51.76048 5206737
51.41333 51.60880 51.77002 5212821
51.41458 51.60816 51.77520 52.16198
51.42540 51.61629 51.80050 5228577
51.43057 51.63180 51.80341 52.34396
51.44337 51.63486 51.81393
5144392 5163512 5184111
5145236 51.64210 51.85109
51.45799 51.65594 51.85835
5146776 5166754 51.85979
51.47778 51.67024 51.87803
51.49124 51.68682 51.87907
51.49804 51.68936 51.88855
Nore. Average time=7.31s.

NEW OPTIMIZATION HEURISTICS g1

RESULTS ON THE 532-CITY TSP OF
PADBERG AND RINALDI

In [8]. Padberg and Rinaidi solved a 532-city TSP. The
optimal tour length for this problem is shown to be 27,686.

We recall briefly here some results and remarks from [11].
For their solution of the 532-city TSP Padberg and Rinaldi
needed 50 good solutions for that problem. They used as an
heuristic an adaption of the well-known algorithm of Lin
and Kernighan [11]. The solutions they obtained range
between 28,150 and 29,143, It is reported, that the running
time to obtain those 50 solutions was about 4h on a
VAX 11/780.

We shall see that the deterministic TA algorithm, the
GDA, and the RRT are of equal quality compared with the
Lin—Kernighan algorithm for this problem, that they run
considerably faster, and, of course, that they are much easier
to implement. If one compares the results obtained by TA
for the 442 problem and for the 532 probiem, then one can
hardly observe a different behavior.

In [10], Miihlenbein reports resuits obtained with a
parallel algorithm using concepts of genetics and learning,
The best solution obtained by this algorithm is 27,702,
which is very close to the optimum. On the other hand, the
computation of this soiution needed nearly 10,000 s of time
for any of 64 transputers. It is not reported how many trials
were necessary for such a high quality solution. It is men-
tioned, however, that the algorithm needs about 1000 s on
64 transputers to achieve solutions of a length of 28,500 or
iess.

We conclude that Mithlenbein’s algorithm generates bet-
ter solutions for the 532 problem than our algorithms do.
For the 442 problem, however, we obtained considerably
better results. In any case, our algorithms are orders of

TABLE VI
Results for 532-TSP by Deterministic TA (Improved Form)

TABLE V¥II
Results for 532-TSP by Deterministic Record-to-Record Travel

Number Number Number

of tours of tours of tours
Average with with with

Number Param- running Smallest Largest length length length

of eler ume in 1our tour below below below

runs nb seconds length length 28,000 28,250 28,500
100 4 182 28059 31647 0]) 8
100 6 5.21 28001 29074 0 37 84
100 8 6.41 27921 289063 3 47 90
100 10 1.72 27880 28729 2 42 92
100 12 351 27900 287%4 5 45 94
100 14 10.04 27893 28.629 5 53 94
100 16 11.53 27879 28635 5 47 95
100 18 12.66 27898 28543 6 60 95
100 20 13.74 27875 28745 11 60 96

magnitude faster. We give in the sequel the computational
results for the 532 problem within the same framework as
for the 442 problem {Table VI).

Again we see from the following results for the GDA and
the RRT that the achievable tour lengths are in quite the
same range. Table VII shows the results of the RRT (200
rounds).

As for the 442 problem we observe that it is sufficient to
run the algorithms with a rather smail neighborhood
parameter.

The GDA times for the 532 problem are faster than the
computation times for RRT and TA. On the average, GDA
ran about 130 rounds. GDA and RRT give better results
than TA; GDA here is the most successful algorithm.

TABLE VIII
Results for 532-TSP by Deterministic Great Deluge Algorithm

Number Number Number
of tours of tours of tours
Average with with with
Number Param- running Smallest Largest length length length
of eter timein tour tour below below below
runs nh seconds length length 28,000 28,250 28,500
100 4 4384 29722 38632 0] Q
100 6 6.74 28202 30669 0 & 23
100 8 8.56 27934 29678 1 18 63
100 10 10.42 28014 29476 0 28 78
100 12 1217 27890 29006 4 36 82
100 14 1383 27858 28912 4 51 97
100 16 15.62 27972 28748 L 51 90
100 18 17.49 27990 28646 1 42 &9
190 20 19.24 17947 28657 2 46 89

Number Number Number
of tours of {ours of tours
Average with with with
Number Param- running Smallest Largest length length length
of eter limein tour tour below below below
runs nb seconds length length 28,000 28,250 28,500
100 4 622 27962 31928 1 17 37
100 6 714 275353 29306 6 52 93
100 8 8.8 27938 28382 10 60 98
100 0 9.03 27854 28626 4 53 936
100 12 10.29 27920 28339 6 56 97
100 14 11.54 27873 28512 7 65 93
100 16 12.87 27888 28507 11 39 99
100 18 14.47 274931 18540 7 64 98
100 20 15.71 27863 18561] 65 o7

92 GUNTER DUECK

CONCLUDING REMARKS

We demonstrated the power of the new heuristics for
the solution of well-known TSPs. In the IBM plant in
Sindelfingen, Germany, there are many thousands of
_puncher patterns of the kind of the 442 problem. The
machines do not run according to the Euclidean metric. It
is necessary to implement the maximum metric or the
Manhattan metric (and in these cases not really the distance
is important, but the time needed for this distance). The
optimized tours obtained by GDA look very good in all
patterns: There are sparse, dense, regular, clustered patterns.
However, we do not know the true optima in these cases, s0
we cannot report analogous results for such patterns.

Meanwhile we tried the much harder problem class of
chip placement with these algorithms. For two IBM internal
reference chips we obtained much better results (10% less
wire length) than any other previously known ones
{including, for instance, SA results). For publication of such
resuits the problem will occur that the chip data are not
public domain. In a forthcoming report we shall quantify
our results. We plan to generate an artificial chip data set for
the research community.

Studies are ready also for transportation/distribution

problems as well as studies for large production scheduling
cases and for food mixing (integer programming). In all
these studies we were able to achieve better results than
concurrent methods. We could achieve excellent solutions
in large problems where the classical method or program
packages have size problems (CPU time or storage).

REFERENCES

1. G. Dueck and T. Schever, J. Comput. Phys. 90, 161 (1990).
2. 8. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science 220, 671 (1983),

3. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,
J. Chem. Phys. 21, 1087 (1953},

4. M. Grotschel, Preprint No. 38, Universitit Augsburg (unpublished).

5. Y. Rossier, M. Troyon, and Th. M. Liebling, OR Spektrum 8, 151
(1986).

6. H. Mihlenbein, M. Gorges-Schlenter, and O. Kriamer, Pgralle!
Comput. T, 65 (1988).

7. O. A, Holland, Dissertation, University of Bonn {1987).
8 M. Padberg and G. Rinaldi, Oper. Res. Lest. 6, 1 {1987).
9. 8. Lin, Belf Syst. Tech. J. 44, 2245 (1965),
10. H. Miihlenbein, preprint (1988).
11. S. Lin and B. Kernighan, Oper. Res. 21, 498 (1973).

