
Anatomy of Linux loadable kernel modules
A 2.6 kernel perspective

Skill Level: Intermediate

M. Tim Jones (mtj@mtjones.com)
Consultant Engineer
Emulex Corp.

16 Jul 2008

Linux® loadable kernel modules, introduced in version 1.2 of the kernel, are one of
the most important innovations in the Linux kernel. They provide a kernel that is both
scalable and dynamic. Discover the ideas behind loadable modules, and learn how
these independent objects dynamically become part of the Linux kernel.

The Linux kernel is what's known as a monolithic kernel, which means that the
majority of the operating system functionality is called the kernel and runs in a
privileged mode. This differs from a micro-kernel, which runs only basic functionality
as the kernel (inter-process communication [IPC], scheduling, basic input/output
[I/O], memory management) and pushes other functionality outside the privileged
space (drivers, network stack, file systems). You'd think that Linux is then a very
static kernel, but in fact it's quite the opposite. Linux can be dynamically altered at
run time through the use of Linux kernel modules (LKMs).

More in Tim's Anatomy of... series on
developerWorks

• Anatomy of Linux flash file systems

• Anatomy of Security-Enhanced Linux (SELinux)

• Anatomy of real-time Linux architectures

• Anatomy of the Linux SCSI subsystem

• Anatomy of the Linux file system

• Anatomy of the Linux networking stack

Anatomy of Linux loadable kernel modules
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 1 of 11

mailto:mtj@mtjones.com
http://www.ibm.com/developerworks/linux/library/l-flash-filesystems/
http://www.ibm.com/developerworks/linux/library/l-selinux/
http://www.ibm.com/developerworks/linux/library/l-real-time-linux/
http://www.ibm.com/developerworks/linux/library/l-scsi-subsystem/
http://www.ibm.com/developerworks/linux/library/l-linux-filesystem/
http://www.ibm.com/developerworks/linux/library/l-linux-networking-stack/
http://www.ibm.com/legal/copytrade.shtml

• Anatomy of the Linux kernel

• Anatomy of the Linux slab allocator

• Anatomy of Linux synchronization methods

• All of Tim's Anatomy of... articles

• All of Tim's articles on developerWorks

Dynamically alterable means that you can load new functionality into the kernel,
unload functionality from the kernel, and even add new LKMs that use other LKMs.
The advantage to LKMs is that you can minimize the memory footprint for a kernel,
loading only those elements that are needed (which can be an important feature in
embedded systems).

Linux is not the only monolithic kernel that can be dynamically altered (and it wasn't
the first). You'll find loadable module support in Berkeley Software Distribution (BSD)
variants, Sun Solaris, in older kernels such as OpenVMS, and other popular
operating systems such as Microsoft® Windows® and Apple Mac OS X.

Anatomy of a kernel module

An LKM has some fundamental differences from elements that compile directly into
the kernel and also typical programs. A typical program has a main, where an LKM
has a module entry and exit function (in version 2.6, you can name these functions
anything you wish). The entry function is called when the module is inserted into the
kernel, and the exit function called when it's removed. Because the entry and exit
functions are user-defined, a module_init and module_exit macro exist to
define which functions these are. An LKM also includes a required and optional set
of module macros. These define the license of the module, the module's author, a
description of the module, and more. Figure 1 provides view of a very simple LKM.

Figure 1. Source view of a simple LKM

developerWorks® ibm.com/developerWorks

Anatomy of Linux loadable kernel modules
Page 2 of 11 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/developerworks/linux/library/l-linux-kernel/
http://www.ibm.com/developerworks/linux/library/l-linux-slab-allocator
http://www.ibm.com/developerworks/linux/library/l-linux-synchronization.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=anatomy&search_flag=true&type_by=Articles&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=tim+jones&search_flag=true&type_by=Articles&show_abstract=false&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/legal/copytrade.shtml

The version 2.6 Linux kernel provides a new (simpler) method for building LKMs.
When built, you can use the typical user tools for managing modules (though the
internals have changed): the standard insmod (installing an LKM), rmmod
(removing an LKM), modprobe (wrapper for insmod and rmmod), depmod (to
create module dependencies), and modinfo (to find the values for module macros).
For more information on building LKMs for the version 2.6 kernel, check out
Resources.

Anatomy of a kernel module object

An LKM is nothing more than a special Executable and Linkable Format (ELF) object
file. Typically, object files are linked to resolve their symbols and result in an
executable. But because an LKM can't resolve its symbols until it's loaded into the
kernel, the LKM remains an ELF object. You can use standard object tools on LKMs
(which for version 2.6 have the suffix .ko, for kernel object). For example, if you used
the objdump utility on an LKM, you'd find several familiar sections, such as .text
(instructions), .data (initialized data), and .bss (Block Started Symbol, or uninitialized
data).

You'll also find additional sections in a module to support its dynamic nature. The
.init.text section contains the module_init code, and the .exit.text contains the
module_exit code (see Figure 2). The .modinfo section contains the various
macro text indicating module license, author, description, and so on.

Figure 2. An example of an LKM with various ELF sections

ibm.com/developerWorks developerWorks®

Anatomy of Linux loadable kernel modules
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 3 of 11

http://www.ibm.com/legal/copytrade.shtml

So, with that introduction to the basics of LKMs, let's dig in to see how modules get
into the kernel and are managed internally.

Life cycle of an LKM

The process of module loading begins in user space with insmod (insert module).
The insmod command defines the module to load and invokes the init_module
user-space system call to begin the loading process. The insmod command for the
version 2.6 kernel has become extremely simple (70 lines of code) based on a
change to do more work in the kernel. Rather than insmod doing any of the symbol
resolution that's necessary (working with kerneld), the insmod command simply
copies the module binary into the kernel through the init_module function, where
the kernel takes care of the rest.

The init_module function works through the system call layer and into the kernel
to a kernel function called sys_init_module (see Figure 3). This is the main
function for module loading, making use of numerous other functions to do the
difficult work. Similarly, the rmmod command results in a system call for
delete_module, which eventually finds its way into the kernel with a call to
sys_delete_module to remove the module from the kernel.

developerWorks® ibm.com/developerWorks

Anatomy of Linux loadable kernel modules
Page 4 of 11 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Figure 3. Primary commands and functions involved in module loading and
unloading

During module load and unload, the module subsystem maintains a simple set of
state variables to indicate the operation of a module. If the module is being loaded,
then the state is MODULE_STATE_COMING. If the module has been loaded and is
available, it is MODULE_STATE_LIVE. Otherwise, if the module is being unloaded,
then the state is MODULE_STATE_GOING.

Module loading details

Let's now look at the internal functions for module loading (see Figure 4). When the
kernel function sys_init_module is called, it begins with a permissions check to
see whether the caller can actually perform this operation (through the capable
function). Then, the load_module function is called, which takes care of the
mechanical work to bring the module into the kernel and perform the necessary
plumbing (I review this shortly). The load_module function returns a module
reference that refers to the newly loaded module. This module is loaded onto a
doubly linked list of all modules in the system, and any threads currently waiting for
module state change are notified through the notifier list. Finally, the module's
init() function is called, and the module's state is updated to indicate that it is
loaded and live.

Figure 4. The internal (simplified) module loading process

ibm.com/developerWorks developerWorks®

Anatomy of Linux loadable kernel modules
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 5 of 11

http://www.ibm.com/legal/copytrade.shtml

The internal details of module loading are ELF module parsing and manipulation.
The load_module function (which resides in ./linux/kernel/module.c) begins by
allocating a block of temporary memory to hold the entire ELF module. The ELF
module is then read from user space into the temporary memory using
copy_from_user. As an ELF object, this file has a very specific structure that can
be easily parsed and validated.

The next step is to perform a set of sanity checks on the loaded image (is it a valid
ELF file? is it defined for the current architecture? and so on). When these sanity
checks are passed, the ELF image is parsed and a set of convenience variables are
created for each section header to simplify their access later. Because the ELF

developerWorks® ibm.com/developerWorks

Anatomy of Linux loadable kernel modules
Page 6 of 11 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

objects are based at offset 0 (until relocation), the convenience variables include the
relative offset into the temporary memory block. During the process of creating the
convenience variables, the ELF section headers are also validated to ensure that a
valid module is being loaded.

Any optional module arguments are loaded from user space into another allocated
block of kernel memory (step 4), and the module state is updated to indicate that it's
being loaded (MODULE_STATE_COMING). If per-CPU data is needed (as determined
in the section header checks), a per-CPU block is allocated.

In the prior steps, the module sections are loaded into kernel (temporary) memory,
and you also know which are persistent and which can be removed. The next step
(7) is to allocate the final location for the module in memory and move the necessary
sections (indicated in the ELF headers by SHF_ALLOC, or the sections that occupy
memory during execution). Another allocation is then performed of the size needed
for the required sections of the module. Each section in the temporary ELF block is
iterated, and those that need to be around for execution are copied into the new
block. This is followed by some additional housekeeping. Symbol resolution also
occurs, which can resolve to symbols that are resident in the kernel (compiled into
the kernel image) or symbols that are transient (exported from other modules).

The new module is then iterated for each remaining section and relocations
performed. This step is architecture dependent and therefore relies on helper
functions defined for that architecture (./linux/arch/<arch>/kernel/module.c). Finally,
the instruction cache is flushed (because the temporary .text sections were used), a
bit more housekeeping is performed (free temporary module memory, setup the
sysfs), and the module is finally returned to load_module.

Module unloading details

Unloading the module is essentially a mirror of the load process, except that several
sanity checks must occur to ensure safe removal of the module. Unloading a module
begins in user space with the invocation of the rmmod (remove module) command.
Inside the rmmod command, a system call is made to delete_module, which
eventually results in a call to sys_delete_module inside the kernel (recall from
Figure 3). Figure 5 illustrates the basic operation of the module removal process.

Figure 5. The internal (simplified) module unloading process

ibm.com/developerWorks developerWorks®

Anatomy of Linux loadable kernel modules
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 7 of 11

http://www.ibm.com/legal/copytrade.shtml

When the kernel function sys_delete_module is invoked (with the name of the
module to be removed, passed in as the argument), the first step is to ensure that
the caller has permissions. Next, a list is checked to see whether any other modules
depend on this module. There exists a list called modules_which_use_me that
contains an element per dependent module. If this list is empty, no module
dependencies exist and the module is a candidate for removal (otherwise, an error is
returned). The next test is to see if the module is loaded. Nothing prohibits a user
calling rmmod on a module that's currently being installed, so this check ensures that
the module is live. After a few more housekeeping checks, the penultimate step is to
call the module's exit function (provided within the module itself). Finally, the
free_module function is called.

When free_module is called, the module has been found to be safely removable.
No dependencies exist now for the module, and the process of cleaning up the
kernel can begin for this module. This process begins by removing the module from
the various lists that it was placed on during installation (sysfs, module list, and so

developerWorks® ibm.com/developerWorks

Anatomy of Linux loadable kernel modules
Page 8 of 11 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

on). Next, an architecture-specific cleanup routine is invoked (which can be found in
./linux/arch/<arch>/kernel/module.c). You then iterate the modules that depended on
you and remove this module from their lists. Finally, with the cleanup
complete—from the kernel's perspective—the various memory that was allocated for
the module is freed, including the argument memory, per-CPU memory, and the
module ELF memory (core and init).

Optimizing the kernel for module management

In many applications, the need for dynamic loading of modules is important, but
when loaded, it's not necessary for the modules to be unloaded. This allows the
kernel to be dynamic at startup (load modules based on the devices that are found)
but not dynamic throughout operation. If it's not required to unload a module after it's
loaded, you can make several optimizations to reduce the amount of code needed
for module management. You can "unset" the kernel configuration option
CONFIG_MODULE_UNLOAD to remove a considerable amount of kernel functionality
related to module unloads.

Going further

This has been a high-level view of the module-management process in the kernel.
For the gory details of module management, the best documentation is the source
itself. For the main functions involved in module management, see
./linux/kernel/module.c (and the associated header file in
./linux/include/linux/module.h). You can find several architecture-specific functions in
./linux/arch/<arch>/kernel/module.c. Finally, you can see the kernel auto-load
function (which automatically loads a module from the kernel based on need) in
./linux/kernel/kmod.c. This feature is enabled through the CONFIG_KMOD
configuration option.

ibm.com/developerWorks developerWorks®

Anatomy of Linux loadable kernel modules
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 9 of 11

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Follow Rusty Russell's "Bleeding Edge" blog on his current Linux kernel
developments. Rusty is the lead developer of the new Linux module
architecture.

• The Linux Kernel Module Programming Guide, though a bit dated, provides a
great amount of detailed information on LKMs and their development.

• Check out "Access the Linux Kernel using the /proc filesystem"
(developerWorks, March 2006) for a detailed look at LKM programming with the
/proc file system.

• I Learn more about the details behind system calls in "Kernel command using
Linux system calls" (developerWorks, March 2007).

• To learn more about the Linux kernel, Read Tim's "Anatomy of the Linux Kernel
(developerWorks, June 2007), the first article in this series, to get a high-level
overview of the Linux kernel along with some of its more interesting points.

• Read a great introduction to ELF in "Standards and specs: An unsung hero: the
hardworking ELF" (developerWorks, December 2005). The ELF is the standard
object format for Linux. ELF is a flexible file format that covers executable
images, objects, shared libraries, and even core dumps. You can also find more
detailed information in this format reference (PDF document) and detailed book
on ELF formats.

• The Captain's Universe provides a great introduction to LKM building with
sample makefiles. The process for building LKMs changed with the version 2.6
kernel (for the better).

• There is a small number of module utilities for inserting, removing, and
managing modules. Modules are inserted into the kernel with the insmod
command, and removed with the rmmod command. To query the modules
currently in the kernel, use the lsmod command. Because modules can depend
on the presence of other modules, the depmod command is available to build a
dependency file. To automatically load the dependent modules before the
module of interest, you can use the modprobe command (a wrapper over
insmod). Finally, you can read the module information for an LKM using the
modinfo command.

• The Linux Journal article, "Linkers and Loaders" (November 2002) provides a
great introduction to the purpose behind linkers and loaders using ELF files
(including symbol resolution and relocation).

• In the developerWorks Linux zone, find more resources for Linux developers,
and scan our most popular articles and tutorials.

developerWorks® ibm.com/developerWorks

Anatomy of Linux loadable kernel modules
Page 10 of 11 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://ozlabs.org/~rusty/
http://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html
http://www.ibm.com/developerworks/linux/library/l-proc.html
http://www.ibm.com/developerworks/linux/library/l-system-calls/
http://www.ibm.com/developerworks/linux/library/l-system-calls/
http://www.ibm.com/developerworks/linux/library/l-linux-kernel/
http://www.ibm.com/developerworks/power/library/pa-spec12/index.html
http://www.ibm.com/developerworks/power/library/pa-spec12/index.html
http://www.linuxfoundation.org/spec/book/ELF-generic/ELF-generic/book1.html
http://www.linuxfoundation.org/spec/book/ELF-generic/ELF-generic/book1.html
http://www.captain.at/programming/kernel-2.6/
http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=insmod
http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=rmmod
http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=lsmod
http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=depmod
http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=modprobe
http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=modinfo
http://www.linuxjournal.com/article/6463
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/linux/library/l-top-10.html
http://www.ibm.com/legal/copytrade.shtml

• See all Linux tips and Linux tutorials on developerWorks.

• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

• With IBM trial software, available for download directly from developerWorks,
build your next development project on Linux.

Discuss

• Get involved in the developerWorks community through blogs, forums,
podcasts, and spaces.

About the author

M. Tim Jones
M. Tim Jones is an embedded firmware architect and the author of Artificial
Intelligence: A Systems Approach, GNU/Linux Application Programming (now in its
second edition), AI Application Programming (in its second edition), and BSD
Sockets Programming from a Multilanguage Perspective. His engineering
background ranges from the development of kernels for geosynchronous spacecraft
to embedded systems architecture and networking protocols development. Tim is a
Consultant Engineer for Emulex Corp. in Longmont, Colorado.

Trademarks

IBM, the IBM logo, ibm.com, DB2, developerWorks, Lotus, Rational, Tivoli, and
WebSphere are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other
IBM trademarked terms are marked on their first occurrence in this information with
the appropriate symbol (® or ™), indicating US registered or common law
trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries.
See the current list of IBM trademarks.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

ibm.com/developerWorks developerWorks®

Anatomy of Linux loadable kernel modules
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 11 of 11

http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=linux+tip%3A&search_flag=true&type_by=All+Types&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=&search_flag=&type_by=Tutorials&show_abstract=true&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.ibm.com/developerworks/offers/sek/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/community
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Anatomy of a
 kernel module
	Anatomy of a
 kernel module object
	Life cycle of an
 LKM
	Module loading
 details
	Module unloading
 details
	Optimizing the
 kernel for module management
	Going further
	Resources
	About the author
	Trademarks

