
CreateThread
The CreateThread function creates a thread to execute within the virtual address space of the calling process.

To create a thread that runs in the virtual address space of another process, use the CreateRemoteThread
function.

HANDLE CreateThread(
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 SIZE_T dwStackSize,
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter,
 DWORD dwCreationFlags,
 LPDWORD lpThreadId
);

Parameters

lpThreadAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be
inherited by child processes. If lpThreadAttributes is NULL, the handle cannot be inherited.

The lpSecurityDescriptor member of the structure specifies a security descriptor for the new thread. If
lpThreadAttributes is NULL, the thread gets a default security descriptor. The ACLs in the default security
descriptor for a thread come from the primary or impersonation token of the creator.

dwStackSize
[in] Initial size of the stack, in bytes. The system rounds this value to the nearest page. If this parameter is
zero, the new thread uses the default size for the executable. For more information, see Thread Stack Size.

lpStartAddress
[in] Pointer to the application-defined function to be executed by the thread and represents the starting
address of the thread. For more information on the thread function, see ThreadProc.

lpParameter
[in] Pointer to a variable to be passed to the thread.

dwCreationFlags
[in] Flags that control the creation of the thread. If the CREATE_SUSPENDED flag is specified, the thread is
created in a suspended state, and will not run until the ResumeThread function is called. If this value is
zero, the thread runs immediately after creation.

Windows Server 2003 and Windows XP: If the STACK_SIZE_PARAM_IS_A_RESERVATION flag is
specified, the dwStackSize parameter specifies the initial reserve size of the stack. Otherwise, dwStackSize
specifies the commit size.

lpThreadId
[out] Pointer to a variable that receives the thread identifier. If this parameter is NULL, the thread identifier
is not returned.

Windows Me/98/95: This parameter may not be NULL.

Return Values

If the function succeeds, the return value is a handle to the new thread.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Note that CreateThread may succeed even if lpStartAddress points to data, code, or is not accessible. If the
start address is invalid when the thread runs, an exception occurs, and the thread terminates. Thread
termination due to a invalid start address is handled as an error exit for the thread's process. This behavior is
similar to the asynchronous nature of CreateProcess, where the process is created even if it refers to invalid
or missing dynamic-link libraries (DLLs).

Windows Me/98/95: CreateThread succeeds only when it is called in the context of a 32-bit program. A
32-bit DLL cannot create an additional thread when that DLL is being called by a 16-bit program.

Remarks

The number of threads a process can create is limited by the available virtual memory. By default, every thread
has one megabyte of stack space. Therefore, you can create at most 2028 threads. If you reduce the default
stack size, you can create more threads. However, your application will have better performance if you create
one thread per processor and build queues of requests for which the application maintains the context
information. A thread would process all requests in a queue before processing requests in the next queue.

The new thread handle is created with the THREAD_ALL_ACCESS access right. If a security descriptor is not
provided, the handle can be used in any function that requires a thread object handle. When a security
descriptor is provided, an access check is performed on all subsequent uses of the handle before access is
granted. If the access check denies access, the requesting process cannot use the handle to gain access to the

 Platform SDK: DLLs, Processes, and Threads

thread. If the thread impersonates a client, then calls CreateThread with a NULL security descriptor, the
thread object created has a default security descriptor which allows access only to the impersonation token's
TokenDefaultDacl owner or members. For more information, see Thread Security and Access Rights.

The thread execution begins at the function specified by the lpStartAddress parameter. If this function returns,
the DWORD return value is used to terminate the thread in an implicit call to the ExitThread function. Use the
GetExitCodeThread function to get the thread's return value.

The thread is created with a thread priority of THREAD_PRIORITY_NORMAL. Use the GetThreadPriority and
SetThreadPriority functions to get and set the priority value of a thread.

When a thread terminates, the thread object attains a signaled state, satisfying any threads that were waiting
on the object.

The thread object remains in the system until the thread has terminated and all handles to it have been closed
through a call to CloseHandle.

The ExitProcess, ExitThread, CreateThread, CreateRemoteThread functions, and a process that is starting
(as the result of a call by CreateProcess) are serialized between each other within a process. Only one of
these events can happen in an address space at a time. This means that the following restrictions hold:

Do not create a thread while impersonating another user. The call will succeed, however the newly created
thread will have reduced access rights to itself when calling GetCurrentThread. The access rights granted are
derived from the access rights the impersonated user has to the process. Some access rights including
THREAD_SET_THREAD_TOKEN and THREAD_GET_CONTEXT may not be present, leading to unexpected
failures.

During process startup and DLL initialization routines, new threads can be created, but they do not begin
execution until DLL initialization is done for the process.

Only one thread in a process can be in a DLL initialization or detach routine at a time.

ExitProcess does not return until no threads are in their DLL initialization or detach routines.

A thread that uses functions from the static C run-time libraries should use the beginthread and endthread C
run-time functions for thread management rather than CreateThread and ExitThread. Failure to do so results
in small memory leaks when ExitThread is called. Note that this is not a problem with the C run-time in a DLL.

Example Code

For an example, see Creating Threads.

Requirements

Client: Included in Windows XP, Windows 2000 Professional, Windows NT Workstation, Windows Me,
Windows 98, and Windows 95.
Server: Included in Windows Server 2003, Windows 2000 Server, and Windows NT Server.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also

Processes and Threads Overview, Process and Thread Functions, CloseHandle, CreateProcess,
CreateRemoteThread, ExitProcess, ExitThread, GetExitCodeThread, GetThreadPriority,
ResumeThread, SetThreadPriority, SECURITY_ATTRIBUTES, ThreadProc

Platform SDK Release: February 2003
What did you think of this topic? Order a Platform SDK CD

