
7-1

CHAPTER 7

Java Card Virtual Machine
Instruction Set

A Java Card virtual machine instruction consists of an opcode specifying the
operation to be performed, followed by zero or more operands embodying values to
be operated upon. This chapter gives details about the format of each Java Card
virtual machine instruction and the operation it performs.

7.1 Assumptions: The Meaning of “Must”
The description of each instruction is always given in the context of Java Card
virtual machine code that satisfies the static and structural constraints of Chapter 6,
“The CAP File Format”.

In the description of individual Java Card virtual machine instructions, we
frequently state that some situation “must” or “must not” be the case: “The value2
must be of type int.” The constraints of Chapter 6 “The CAP File Format” guarantee
that all such expectations will in fact be met. If some constraint (a “must” or “must
not”) in an instruction description is not satisfied at run time, the behavior of the
Java Card virtual machine is undefined.

7-2 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

7.2 Reserved Opcodes
In addition to the opcodes of the instructions specified later this chapter, which are
used in Java Card CAP files (see Chapter 6, “The CAP File Format”), two opcodes
are reserved for internal use by a Java Card virtual machine implementation. If Sun
Microsystems, Inc. extends the instruction set of the Java Card virtual machine in the
future, these reserved opcodes are guaranteed not to be used.

The two reserved opcodes, numbers 254 (0xfe) and 255 (0xff), have the mnemonics
impdep1 and impdep2, respectively. These instructions are intended to provide
“back doors” or traps to implementation-specific functionality implemented in
software and hardware, respectively.

Although these opcodes have been reserved, they may only be used inside a Java
Card virtual machine implementation. They cannot appear in valid CAP files.

7.3 Virtual Machine Errors
A Java Card virtual machine may encounter internal errors or resource limitations
that prevent it from executing correctly written Java programs. While The Java
Virtual Machine Specification allows reporting and handling of virtual machine
errors, it also states that they cannot ordinarily be handled by application code. This
Virtual Machine Specification for the Java Card Platform, v2.2.2 is more restrictive in
that it does not allow for any reporting or handling of unrecoverable virtual machine
errors at the application code level. A virtual machine error is considered
unrecoverable if further execution could compromise the security or correct
operation of the virtual machine or underlying system software. When an
unrecoverable error occurs, the virtual machine will halt bytecode execution.
Responses beyond halting the virtual machine are implementation-specific policies
and are not mandated in this specification.

In the case where the virtual machine encounters a recoverable error, such as
insufficient memory to allocate a new object, it will throw a SystemException with
an error code describing the error condition. The Virtual Machine Specification for
the Java Card Platform, v2.2.2 cannot predict where resource limitations or internal
errors may be encountered and does not mandate precisely when they can be
reported. Thus, a SystemException may be thrown at any time during the operation
of the Java Card virtual machine.

Chapter 7 Java Card Virtual Machine Instruction Set 7-3

7.4 Security Exceptions
Instructions of the Java Card virtual machine throw an instance of the class
SecurityException when a security violation has been detected. The Java Card virtual
machine does not mandate the complete set of security violations that can or will
result in an exception being thrown. However, there is a minimum set that must be
supported.

In the general case, any instruction that de-references an object reference must throw
a SecurityException if the context (Section 3.4, “Contexts” on page 3-2) in which the
instruction is executing is different than the owning context (Section 3.4, “Contexts”
on page 3-2) of the referenced object. The list of instructions includes the instance
field get and put instructions, the array load and store instructions, as well as the
arraylength, invokeinterface, invokespecial, invokevirtual, checkcast, instanceof and
athrow instructions.

There are several exceptions to this general rule that allow cross-context use of
objects or arrays. These exceptions are detailed in Chapter 6 of the Runtime
Environment Specification for the Java Card Platform, Version 2.2.2. An important detail
to note is that any cross-context method invocation will result in a context switch
(Section 3.4, “Contexts” on page 3-2).

The Java Card virtual machine may also throw a SecurityException if an instruction
violates any of the static constraints of Chapter 6, “The CAP File Format”. The
Virtual Machine Specification for the Java Card Platform, Version 2.2.2 does not mandate
which instructions must implement these additional security checks, or to what
level. Therefore, a SecurityException may be thrown at any time during the
operation of the Java Card virtual machine.

7.5 The Java Card Virtual Machine
Instruction Set
Java virtual machine instructions are represented in this chapter by entries of the
form shown in TABLE 7-1, an example instruction page, in alphabetical order.

7-4 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Each cell in the instruction format diagram represents a single 8-bit byte. The
instruction’s mnemonic is its name. Its opcode is its numeric representation and is
given in both decimal and hexadecimal forms. Only the numeric representation is
actually present in the Java Card virtual machine code in a CAP file.

Keep in mind that there are “operands” generated at compile time and embedded
within Java Card virtual machine instructions, as well as “operands” calculated at
run time and supplied on the operand stack. Although they are supplied from
several different areas, all these operands represent the same thing: values to be
operated upon by the Java Card virtual machine instruction being executed. By
implicitly taking many of its operands from its operand stack, rather than
representing them explicitly in its compiled code as additional operand bytes,
register numbers, etc., the Java Card virtual machine’s code stays compact.

Some instructions are presented as members of a family of related instructions
sharing a single description, format, and operand stack diagram. As such, a family
of instructions includes several opcodes and opcode mnemonics; only the family
mnemonic appears in the instruction format diagram, and a separate forms line lists

TABLE 7-1 Example Instruction Page

mnemonic
Short description of the instruction.
Format

mnemonic

operand1

operand2

...

Forms

mnemonic = opcode

Stack

..., value1, value2 ->

.../ value3

Description

A longer description detailing constraints on operand stack contents or constant pool
entries, the operation performed, the type of the results, and so on.
Runtime Exception
If any runtime exceptions can be thrown by the execution of an instruction, that
instruction must not throw any runtime exceptions except for instances of System
Exception.
Notes
Commands not strictly part of the specification of an instruction are set aside as notes at
the end of the description.

Chapter 7 Java Card Virtual Machine Instruction Set 7-5

all member mnemonics and opcodes. For example, the forms line for the sconst_<s>
family of instructions, giving mnemonic and opcode information for the two
instructions in that family (sconst_0 and sconst_1), is

Forms sconst_0 = 3 (0x3),
sconst_1 = 4 (0x4)

In the description of the Java Card virtual machine instructions, the effect of an
instruction’s execution on the operand stack (Section 3.5, “Frames” on page 3-3) of
the current frame (Section 3.5, “Frames” on page 3-3) is represented textually, with
the stack growing from left to right and each word represented separately. Thus,

Stack…, value1, value2 ->
…, result

shows an operation that begins by having a one-word value2 on top of the operand
stack with a one-word value1 just beneath it. As a result of the execution of the
instruction, value1 and value2 are popped from the operand stack and replaced by a
one-word result, which has been calculated by the instruction. The remainder of the
operand stack, represented by an ellipsis (…), is unaffected by the instruction’s
execution.

The type int takes two words on the operand stack. In the operand stack
representation, each word is represented separately using a dot notation:

Stack…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

The Virtual Machine Specification for the Java Card Platform, v2.2.2 does not
mandate how the two words are used to represent the 32-bit int value; it only
requires that a particular implementation be internally consistent.

7.5.1 aaload
Load reference from array

Format

Forms

aaload = 36 (0x24)

Stack

…, arrayref, index ->
…, value

aaload

7-6 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Description

The arrayref must be of type reference and must refer to an array whose components
are of type reference. The index must be of type short. Both arrayref and index are
popped from the operand stack. The reference value in the component of the array
at index is retrieved and pushed onto the top of the operand stack.

Runtime Exceptions

If arrayref is null, aaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
aaload instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the aaload instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.2 aastore
Store into reference array

Format

Forms

aastore = 55 (0x37)

Stack

…, arrayref, index, value ->
…

Description

The arrayref must be of type reference and must refer to an array whose components
are of type reference. The index must be of type short and the value must be of type
reference. The arrayref, index and value are popped from the operand stack. The
reference value is stored as the component of the array at index.

aastore

Chapter 7 Java Card Virtual Machine Instruction Set 7-7

At runtime the type of value must be confirmed to be assignment compatible with
the type of the components of the array referenced by arrayref. Assignment of a
value of reference type S (source) to a variable of reference type T (target) is allowed
only when the type S supports all of the operations defined on type T. The detailed
rules follow:

n If S is a class type, then:

n If T is a class type, then S must be the same class as T, or S must be a subclass
of T;

n If T is an interface type, then S must implement interface T.

n If S is an interface type1, then:

n If T is a class type, then T must be Object (Section 2.2.2.4, “Classes” on
page 2-7);

n If T is an interface type, T must be the same interface as S or a superinterface of
S.

n If S is an array type, namely the type SC[], that is, an array of components of type
SC, then:

n If T is a class type, then T must be Object.

n If T is an array type, namely the type TC[], an array of components of type TC,
then one of the following must be true:

TC and SC are the same primitive type (Section 3.1, “Data Types and Values”
on page 3-1”).

TC and SC are reference types2 (Section 3.1, “Data Types and Values” on
page 3-1) with type SC assignable to TC, by these rules.

n If T is an interface type, T must be one of the interfaces implemented by arrays.

Runtime Exceptions

If arrayref is null, aastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
aastore instruction throws an ArrayIndexOutOfBoundsException.

Otherwise, if arrayref is not null and the actual type of value is not assignment
compatible with the actual type of the component of the array, aastore throws an
ArrayStoreException.

Notes

1. When both S and T are arrays of reference types, this algorithm is applied recursively using the types of the
arrays, namely SC and TC. In the recursive call, S, which was SC in the original call, may be an interface type.
This rule can only be reached in this manner. Similarly, in the recursive call,T, which was TC in the original
call, may be an interface type.

2. This version of the Java Card virtual machine does not support multi-dimensional arrays. Therefore, neither
SC or TC can be an array type.

7-8 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

In some circumstances, the aastore instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.3 aconst_null
Push null

Format

Forms

aconst_null = 1 (0x1)

Stack

… ->
…, null

Description

Push the null object reference onto the operand stack.

7.5.4 aload
Load reference from local variable

Format

Forms

aload = 21 (0x15)

Stack

… ->
…, objectref

aconst_null

aload

index

Chapter 7 Java Card Virtual Machine Instruction Set 7-9

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (Section 3.5, “Frames” on page 3-3). The local variable at index
must contain a reference. The objectref in the local variable at index is pushed onto
the operand stack.

Notes

The aload instruction cannot be used to load a value of type returnAddress from a
local variable onto the operand stack. This asymmetry with the astore instruction
is intentional.

7.5.5 aload_<n>
Load reference from local variable

Format

Forms

aload_0 = 24 (0x18)
aload_1 = 25 (0x19)
aload_2 = 26 (0x1a)
aload_3 = 27 (0x1b)

Stack

… ->
…, objectref

Description

The <n> must be a valid index into the local variables of the current frame
(Section 3.5, “Frames” on page 3-3). The local variable at <n> must contain a
reference. The objectref in the local variable at <n> is pushed onto the operand stack.

Notes

An aload_<n> instruction cannot be used to load a value of type returnAddress from
a local variable onto the operand stack. This asymmetry with the corresponding
astore_<n> instruction is intentional.

Each of the aload_<n> instructions is the same as aload with an index of <n>, except
that the operand <n> is implicit.

aload_<n>

7-10 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

7.5.6 anewarray
Create new array of reference

Format

Forms

anewarray = 145 (0x91)

Stack

…, count ->
…, arrayref

Description

The count must be of type short. It is popped off the operand stack. The count
represents the number of components of the array to be created. The unsigned
indexbyte1 and indexbyte2 are used to construct an index into the constant pool of
the current package (Section 3.5, “Frames” on page 3-3), where the value of the index
is (indexbyte1 << 8) | indexbyte2. The item at that index in the constant pool must
be of type CONSTANT_Classref (Section 6.7.1, “CONSTANT_Classref” on
page 6-16), a reference to a class or interface type. The reference is resolved. A new
array with components of that type, of length count, is allocated from the heap, and
a reference arrayref to this new array object is pushed onto the operand stack. All
components of the new array are initialized to null, the default value for reference
types.

Runtime Exception

If count is less than zero, the anewarray instruction throws a
NegativeArraySizeException.

7.5.7 areturn
Return reference from method

Format

anewarray

indexbyte1

indexbyte2

areturn

Chapter 7 Java Card Virtual Machine Instruction Set 7-11

Forms

areturn = 119 (0x77)

Stack

…, objectref ->
[empty]

Description

The objectref must be of type reference. The objectref is popped from the operand
stack of the current frame (Section 3.5, “Frames” on page 3-3) and pushed onto the
operand stack of the frame of the invoker. Any other values on the operand stack of
the current method are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to
the invoker.

7.5.8 arraylength
Get length of array

Format

Forms

arraylength = 146 (0x92)

Stack

…, arrayref ->
…, length

Description

The arrayref must be of type reference and must refer to an array. It is popped from
the operand stack. The length of the array it references is determined. That length is
pushed onto the top of the operand stack as a short.

Runtime Exception

If arrayref is null, the arraylength instruction throws a NullPointerException.

Notes

arraylength

7-12 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

In some circumstances, the arraylength instruction may throw a SecurityException if
the current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.9 astore
Store reference into local variable

Format

Forms

astore = 40 (0x28)

Stack

…, objectref ->
…

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (Section 3.5, “Frames” on page 3-3). The objectref on the top of the
operand stack must be of type returnAddress or of type reference. The objectref is
popped from the operand stack, and the value of the local variable at index is set to
objectref.

Notes

The astore instruction is used with an objectref of type returnAddress when
implementing Java’s finally keyword. The aload instruction cannot be used to load a
value of type returnAddress from a local variable onto the operand stack. This
asymmetry with the astore instruction is intentional.

7.5.10 astore_<n>
Store reference into local variable

astore

index

Chapter 7 Java Card Virtual Machine Instruction Set 7-13

Format

Forms

astore_0 = 43 (0x2b)
astore_1 = 44 (0x2c)
astore_2 = 45 (0x2d)
astore_3 = 46 (0x2e)

Stack

…, objectref ->
…

Description

The <n> must be a valid index into the local variables of the current frame
(Section 3.5, “Frames” on page 3-3). The objectref on the top of the operand stack
must be of type returnAddress or of type reference. It is popped from the operand
stack, and the value of the local variable at <n> is set to objectref.

Notes

An astore_<n> instruction is used with an objectref of type returnAddress when
implementing Java’s finally keyword. An aload_<n> instruction cannot be used to
load a value of type returnAddress from a local variable onto the operand stack.
This asymmetry with the corresponding astore_<n> instruction is intentional.

Each of the astore_<n> instructions is the same as astore with an index of <n>,
except that the operand <n> is implicit.

7.5.11 athrow
Throw exception or error

Format

Forms

athrow = 147 (0x93)

Stack

astore_<n>

athrow

7-14 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

…, objectref ->
objectref

Description

The objectref must be of type reference and must refer to an object that is an instance
of class Throwable or of a subclass of Throwable. It is popped from the operand
stack. The objectref is then thrown by searching the current frame (Section 3.5,
“Frames” on page 3-3) for the most recent catch clause that catches the class of
objectref or one of its superclasses.

If a catch clause is found, it contains the location of the code intended to handle this
exception. The pc register is reset to that location, the operand stack of the current
frame is cleared, objectref is pushed back onto the operand stack, and execution
continues. If no appropriate clause is found in the current frame, that frame is
popped, the frame of its invoker is reinstated, and the objectref is rethrown.

If no catch clause is found that handles this exception, the virtual machine exits.

Runtime Exception

If objectref is null, athrow throws a NullPointerException instead of objectref.

Notes

In some circumstances, the athrow instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.12 baload
Load byte or boolean from array

Format

Forms

baload = 37 (0x25)

Stack

…, arrayref, index ->
…, value

baload

Chapter 7 Java Card Virtual Machine Instruction Set 7-15

Description

The arrayref must be of type reference and must refer to an array whose components
are of type byte or of type boolean. The index must be of type short. Both arrayref
and index are popped from the operand stack. The byte value in the component of
the array at index is retrieved, sign-extended to a short value, and pushed onto the
top of the operand stack.

Runtime Exceptions

If arrayref is null, baload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
baload instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the baload instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.13 bastore
Store into byte or boolean array

Format

Forms

bastore = 56 (0x38)

Stack

…, arrayref, index, value ->
…

Description

The arrayref must be of type reference and must refer to an array whose components
are of type byte or of type boolean. The index and value must both be of type short.
The arrayref, index and value are popped from the operand stack. The short value is
truncated to a byte and stored as the component of the array indexed by index.

Runtime Exceptions

bastore

7-16 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

If arrayref is null, bastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
bastore instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the bastore instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.14 bipush
Push byte

Format

Forms

bipush = 18 (0x12)

Stack

… ->
…, value.word1, value.word2

Description

The immediate byte is sign-extended to an int, and the resulting value is pushed
onto the operand stack.

Note – If a virtual machine does not support the int data type, the bipush
instruction will not be available.

7.5.15 bspush
Push byte

bipush

byte

Chapter 7 Java Card Virtual Machine Instruction Set 7-17

Format

Forms

bspush = 16 (0x10)

Stack

… ->
…, value

Description

The immediate byte is sign-extended to a short, and the resulting value is pushed
onto the operand stack.

7.5.16 checkcast
Check whether object is of given type

Format

Forms

checkcast = 148 (0x94)

Stack

…, objectref ->
…, objectref

Description

bspush

byte

checkcast

atype

indexbyte1

indexbyte2

7-18 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The unsigned byte atype is a code that indicates if the type against which the object
is being checked is an array type or a class type. It must take one of the following
values or zero:

If the value of atype is 10, 11, 12, or 13, the values of the indexbyte1 and indexbyte2
must be zero, and the value of atype indicates the array type against which to check
the object. Otherwise the unsigned indexbyte1 and indexbyte2 are used to construct
an index into the constant pool of the current package (Section 3.5, “Frames” on
page 3-3), where the value of the index is (indexbyte1 << 8) | indexbyte2. The item
at that index in the constant pool must be of type CONSTANT_Classref
(Section 6.7.1, “CONSTANT_Classref” on page 6-16), a reference to a class or
interface type. The reference is resolved. If the value of atype is 14, the object is
checked against an array type that is an array of object references of the type of the
resolved class. If the value of atype is zero, the object is checked against a class or
interface type that is the resolved class.

The objectref must be of type reference. If objectref is null or can be cast to the
specified array type or the resolved class or interface type, the operand stack is
unchanged; otherwise the checkcast instruction throws a ClassCastException.

The following rules are used to determine whether an objectref that is not null can
be cast to the resolved type: if S is the class of the object referred to by objectref and
T is the resolved class, array or interface type, checkcast determines whether
objectref can be cast to type T as follows:

n If S is a class type, then:

n If T is a class type, then S must be the same class as T, or S must be a subclass
of T;

n If T is an interface type, then S must implement interface T.

n If S is an interface type1, then:

TABLE 7-2 Array Values

Array Type atype

T_BOOLEAN 10

T_BYTE 11

T_SHORT 12

T_INT 13

T_REFERENCE 14

1. When both S and T are arrays of reference types, this algorithm is applied recursively using the types of the
arrays, namely SC and TC. In the recursive call, S, which was SC in the original call, may be an interface type.
This rule can only be reached in this manner. Similarly, in the recursive call,T, which was TC in the original
call, may be an interface type.

Chapter 7 Java Card Virtual Machine Instruction Set 7-19

n If T is a class type, then T must be Object (Section 2.2.2.4, “Classes” on
page 2-7);

n If T is an interface type, T must be the same interface as S or a superinterface of
S.

n If S is an array type, namely the type SC[], that is, an array of components of type
SC, then:

n If T is a class type, then T must be Object.

n If T is an array type, namely the type TC[], an array of components of type TC,
then one of the following must be true:

TC and SC are the same primitive type (Section 3.1, “Data Types and Values”
on page 3-1).

TC and SC are reference types1 (Section 3.1, “Data Types and Values” on
page 3-1) with type SC assignable to TC, by these rules.

n If T is an interface type, T must be one of the interfaces implemented by arrays.

Runtime Exception

If objectref cannot be cast to the resolved class, array, or interface type, the checkcast
instruction throws a ClassCastException.

Notes

The checkcast instruction is fundamentally very similar to the instanceof instruction.
It differs in its treatment of null, its behavior when its test fails (checkcast throws an
exception, instanceof pushes a result code), and its effect on the operand stack.

In some circumstances, the checkcast instruction may throw a SecurityException if
the current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the value of atype may not
be 13 (array type = T_INT).

7.5.17 dup
Duplicate top operand stack word

1. This version of the Java Card virtual machine specification does not support multi-dimensional arrays.
Therefore, neither SC or TC can be an array type.

7-20 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Format

Forms

dup = 61 (0x3d)

Stack

…, word ->
…, word, word

Description

The top word on the operand stack is duplicated and pushed onto the operand
stack.

The dup instruction must not be used unless word contains a 16-bit data type.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup
instruction operates on an untyped word, ignoring the type of data it contains.

7.5.18 dup_x
Duplicate top operand stack words and insert below

Format

Forms

dup_x = 63 (0x3f)

Stack

…, wordN, …, wordM, …, word1 ->
…, wordM, …, word1, wordN, …, wordM, …, word1

Description

dup

dup_x

mn

Chapter 7 Java Card Virtual Machine Instruction Set 7-21

The unsigned byte mn is used to construct two parameter values. The high nibble,
(mn & 0xf0) >> 4, is used as the value m. The low nibble, (mn & 0xf), is used as the
value n. Permissible values for m are 1 through 4. Permissible values for n are 0 and
m through m+4.

For positive values of n, the top m words on the operand stack are duplicated and
the copied words are inserted n words down in the operand stack. When n equals 0,
the top m words are copied and placed on top of the stack.

The dup_x instruction must not be used unless the ranges of words 1 through m and
words m+1 through n each contain either a 16-bit data type, two 16-bit data types, a
32-bit data type, a 16-bit data type and a 32-bit data type (in either order), or two 32-
bit data types.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup_x
instruction operates on untyped words, ignoring the types of data they contain.

If a virtual machine does not support the int data type, the permissible values for m
are 1 or 2, and permissible values for n are 0 and m through m+2.

7.5.19 dup2
Duplicate top two operand stack words

Format

Forms

dup2 = 62 (0x3e)

Stack

…, word2, word1 ->
…, word2, word1, word2, word1

Description

The top two words on the operand stack are duplicated and pushed onto the
operand stack, in the original order.

The dup2 instruction must not be used unless each of word1 and word2 is a word
that contains a 16-bit data type or both together are the two words of a single 32-bit
datum.

dup2

7-22 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup2
instruction operates on untyped words, ignoring the types of data they contain.

7.5.20 getfield_<t>
Fetch field from object

Format

Forms

getfield_a = 131 (0x83)
getfield_b = 132 (0x84)
getfield_s = 133 (0x85)
getfield_i = 134 (0x86)

Stack

…, objectref ->
…, value

OR

…, objectref ->
…, value.word1, value.word2

Description

The objectref, which must be of type reference, is popped from the operand stack.
The unsigned index is used as an index into the constant pool of the current package
(Section 3.5, “Frames” on page 3-3). The constant pool item at the index must be of
type CONSTANT_InstanceFieldref (Section 6.7.2, “CONSTANT_InstanceFieldref,
CONSTANT_VirtualMethodref, and CONSTANT_SuperMethodref” on page 6-18), a
reference to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a
member of a superclass of the current class, and the field is not declared in the same
package as the current class, then the class of objectref must be either the current
class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:

n a field must be of type reference

getfield_<t>

index

Chapter 7 Java Card Virtual Machine Instruction Set 7-23

n b field must be of type byte or type boolean
n s field must be of type short
n i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset1. The value at that
offset into the class instance referenced by objectref is fetched. If the value is of type
byte or type boolean, it is sign-extended to a short. The value is pushed onto the
operand stack.

Runtime Exception

If objectref is null, the getfield_<t> instruction throws a NullPointerException.

Notes

In some circumstances, the getfield_<t> instruction may throw a SecurityException
if the current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the getfield_i instruction will
not be available.

7.5.21 getfield_<t>_this
Fetch field from current object

Format

Forms

getfield_a_this = 173 (0xad)
getfield_b_this = 174 (0xae)
getfield_s_this = 175 (0xaf)
getfield_i_this = 176 (0xb0)

Stack

1. The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may
define any mapping from token value to offset into an instance.

getfield_<t>_this

index

7-24 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

… ->
…, value

OR

… ->
…, value.word1, value.word2

Description

The currently executing method must be an instance method. The local variable at
index 0 must contain a reference objectref to the currently executing method’s this
parameter. The unsigned index is used as an index into the constant pool of the
current package (Section 3.5, “Frames” on page 3-3). The constant pool item at the
index must be of type CONSTANT_InstanceFieldref (Section 6.7.2,
“CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref” on page 6-18), a reference to a class and a field
token.

The class of objectref must not be an array. If the field is protected, and it is a
member of a superclass of the current class, and the field is not declared in the same
package as the current class, then the class of objectref must be either the current
class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:

n a field must be of type reference
n b field must be of type byte or type boolean
n s field must be of type short
n i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset1. The value at that
offset into the class instance referenced by objectref is fetched. If the value is of type
byte or type boolean, it is sign-extended to a short. The value is pushed onto the
operand stack.

Runtime Exception

If objectref is null, the getfield_<t>_this instruction throws a NullPointerException.

Notes

1. The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may
define any mapping from token value to offset into an instance.

Chapter 7 Java Card Virtual Machine Instruction Set 7-25

In some circumstances, the getfield_<t>_this instruction may throw a
SecurityException if the current context (Section 3.4, “Contexts” on page 3-2) is not
the owning context (Section 3.4, “Contexts” on page 3-2) of the object referenced by
objectref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the getfield_i_this instruction
will not be available.

7.5.22 getfield_<t>_w
Fetch field from object (wide index)

Format

Forms

getfield_a_w = 169 (0xa9)
getfield_b_w = 170 (0xaa)
getfield_s_w = 171 (0xab)
getfield_i_w = 172 (0xac)

Stack

…, objectref ->
…, value

OR

…, objectref ->
…, value.word1, value.word2

Description

The objectref, which must be of type reference, is popped from the operand stack.
The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The constant pool item at the
index must be of type CONSTANT_InstanceFieldref (Section 6.7.2,
“CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref” on page 6-18), a reference to a class and a field
token. The item must resolve to a field of type reference.

getfield_<t>_w

indexbyte1

indexbyte2

7-26 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The class of objectref must not be an array. If the field is protected, and it is a
member of a superclass of the current class, and the field is not declared in the same
package as the current class, then the class of objectref must be either the current
class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:

n a field must be of type reference
n b field must be of type byte or type boolean
n s field must be of type short
n i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset1. The value at that
offset into the class instance referenced by objectref is fetched. If the value is of type
byte or type boolean, it is sign-extended to a short. The value is pushed onto the
operand stack.

Runtime Exception

If objectref is null, the getfield_<t>_w instruction throws a NullPointerException.

Notes

In some circumstances, the getfield_<t>_w instruction may throw a
SecurityException if the current context (Section 3.4, “Contexts” on page 3-2) is not
the owning context Section 3.4, “Contexts” on page 3-2) of the object referenced by
objectref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the getfield_i_w instruction
will not be available.

7.5.23 getstatic_<t>
Get static field from class

Format

1. The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may
define any mapping from token value to offset into an instance.

getstatic_<t>

indexbyte1

indexbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 7-27

Forms

getstatic_a = 123 (0x7b)
getstatic_b = 124 (0x7c)
getstatic_s = 125 (0x7d)
getstatic_i = 126 (0x7e)

Stack

… ->
…, value

OR

… ->
…, value.word1, value.word2

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The constant pool item at the
index must be of type CONSTANT_StaticFieldref (Section 6.7.3,
“CONSTANT_StaticFieldref and CONSTANT_StaticMethodref” on page 6-19), a
reference to a static field.

The item must resolve to a field with a type that matches t, as follows:

n a field must be of type reference
n b field must be of type byte or type boolean
n s field must be of type short
n i field must be of type int

The width of a class field is determined by the field type specified in the instruction.
The item is resolved, determining the field offset. The item is resolved, determining
the class field. The value of the class field is fetched. If the value is of type byte or
boolean, it is sign-extended to a short. The value is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the getstatic_i instruction
will not be available.

7.5.24 goto
Branch always

7-28 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Format

Forms

goto = 112 (0x70)

Stack

No change

Description

The value branch is used as a signed 8-bit offset. Execution proceeds at that offset
from the address of the opcode of this goto instruction. The target address must be
that of an opcode of an instruction within the method that contains this goto
instruction.

7.5.25 goto_w
Branch always (wide index)

Format

Forms

goto_w = 168 (0xa8)

Stack

No change

Description

The unsigned bytes branchbyte1 and branchbyte2 are used to construct a signed 16-
bit branchoffset, where branchoffset is (branchbyte1 << 8) | branchbyte2. Execution
proceeds at that offset from the address of the opcode of this goto instruction. The
target address must be that of an opcode of an instruction within the method that
contains this goto instruction.

goto

branch

goto_w

branchbyte1

branchbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 7-29

7.5.26 i2b
Convert int to byte

Format

Forms

i2b = 93 (0x5d)

Stack

…, value.word1, value.word2 ->
…, result

Description

The value on top of the operand stack must be of type int. It is popped from the
operand stack and converted to a byte result by taking the low-order 16 bits of the
int value, and discarding the high-order 16 bits. The low-order word is truncated to
a byte, then sign-extended to a short result. The result is pushed onto the operand
stack.

Notes

The i2b instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value. The result may also not have the
same sign as value.

If a virtual machine does not support the int data type, the i2b instruction will not be
available.

7.5.27 i2s
Convert int to short

Format

Forms

i2s = 94 (0x5e)

Stack

i2b

i2s

7-30 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

…, value.word1, value.word2 ->
…, result

Description

The value on top of the operand stack must be of type int. It is popped from the
operand stack and converted to a short result by taking the low-order 16 bits of the
int value and discarding the high-order 16 bits. The result is pushed onto the
operand stack.

Notes

The i2s instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value. The result may also not have the
same sign as value.

If a virtual machine does not support the int data type, the i2s instruction will not be
available.

7.5.28 iadd
Add int

Format

Forms

iadd = 66 (0x42)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. The int result is value1 + value2. The result is pushed onto the
operand stack.

If an iadd instruction overflows, then the result is the low-order bits of the true
mathematical result in a sufficiently wide two’s-complement format. If overflow
occurs, then the sign of the result may not be the same as the sign of the
mathematical sum of the two values.

Notes

iadd

Chapter 7 Java Card Virtual Machine Instruction Set 7-31

If a virtual machine does not support the int data type, the iadd instruction will not
be available.

7.5.29 iaload
Load int from array

Format

Forms

iaload = 39 (0x27)

Stack

…, arrayref, index ->
…, value.word1, value.word2

Description

The arrayref must be of type reference and must refer to an array whose components
are of type int. The index must be of type short. Both arrayref and index are popped
from the operand stack. The int value in the component of the array at index is
retrieved and pushed onto the top of the operand stack.

Runtime Exceptions

If arrayref is null, iaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
iaload instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the iaload instruction may throw a SecurityException if the
current context Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the iaload instruction will
not be available.

iaload

7-32 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

7.5.30 iand
Boolean AND int

Format

Forms

iand = 84 (0x54)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. They are popped from the operand
stack. An int result is calculated by taking the bitwise AND (conjunction) of value1
and value2. The result is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iand instruction will not
be available.

7.5.31 iastore
Store into int array

Format

Forms

iastore = 58 (0x3a)

Stack

…, arrayref, index, value.word1, value.word2 ->
…

Description

iand

iastore

Chapter 7 Java Card Virtual Machine Instruction Set 7-33

The arrayref must be of type reference and must refer to an array whose components
are of type int. The index must be of type short and value must be of type int. The
arrayref, index and value are popped from the operand stack. The int value is stored
as the component of the array indexed by index.

Runtime Exception

If arrayref is null, iastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
iastore instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the iastore instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the iastore instruction will
not be available.

7.5.32 icmp
Compare int

Format

Forms

icmp = 95 (0x5f)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result

Description

Both value1 and value2 must be of type int. They are both popped from the operand
stack, and a signed integer comparison is performed. If value1 is greater than value2,
the short value 1 is pushed onto the operand stack. If value1 is equal to value2, the
short value 0 is pushed onto the operand stack. If value1 is less than value2, the
short value –1 is pushed onto the operand stack.

icmp

7-34 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Notes

If a virtual machine does not support the int data type, the icmp instruction will not
be available.

7.5.33 iconst_<i>
Push int constant

Format

Forms

iconst_m1 = 10 (0x09)
iconst_0 = 11 (0xa)
iconst_1 = 12 (0xb)
iconst_2 = 13 (0xc)
iconst_3 = 14 (0xd)
iconst_4 = 15 (0xe)
iconst_5 = 16 (0xf)

Stack

… ->
…, <i>.word1, <i>.word2

Description

Push the int constant <i> (-1, 0, 1, 2, 3, 4, or 5) onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iconst_<i> instruction
will not be available.

7.5.34 idiv
Divide int

Format

iconst_<i>

idiv

Chapter 7 Java Card Virtual Machine Instruction Set 7-35

Forms

idiv = 72 (0x48)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. The int result is the value of the Java expression value1 / value2. The
result is pushed onto the operand stack.

An int division rounds towards 0; that is, the quotient produced for int values in
n/d is an int value q whose magnitude is as large as possible while satisfying | d · q
| <= | n |. Moreover, q is a positive when | n | >= | d | and n and d have the
same sign, but q is negative when | n | >= | d | and n and d have opposite signs.

There is one special case that does not satisfy this rule: if the dividend is the negative
integer of the largest possible magnitude for the int type, and the divisor is –1, then
overflow occurs, and the result is equal to the dividend. Despite the overflow, no
exception is thrown in this case.

Runtime Exception

If the value of the divisor in an int division is 0, idiv throws an ArithmeticException.

Notes

If a virtual machine does not support the int data type, the idiv instruction will not
be available.

7.5.35 if_acmp<cond>
Branch if reference comparison succeeds.

Format

Forms

if_acmpeq = 104 (0x68)
if_acmpne = 105 (0x69)

if_acmp<cond>

branch

7-36 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Stack

…, value1, value2 ->
…

Description

Both value1 and value2 must be of type reference. They are both popped from the
operand stack and compared. The results of the comparisons are as follows:

n eq succeeds if and only if value1 = value2
n ne succeeds if and only if value1 ¼ value2

If the comparison succeeds, branch is used as signed 8-bit offset, and execution
proceeds at that offset from the address of the opcode of this if_acmp<cond>
instruction. The target address must be that of an opcode of an instruction within the
method that contains this if_acmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_acmp<cond> instruction.

7.5.36 if_acmp<cond>_w
Branch if reference comparison succeeds (wide index)

Format

Forms

if_acmpeq_w = 160 (0xa0)
if_acmpne_w = 161 (0xa1)

Stack

…, value1, value2 ->
…

Description

Both value1 and value2 must be of type reference. They are both popped from the
operand stack and compared. The results of the comparisons are as follows:

n eq succeeds if and only if value1 = value2
n ne succeeds if and only if value1 ¼ value2

if_acmp<cond>_w

branchbyte1

branchbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 7-37

If the comparison succeeds, the unsigned bytes branchbyte1 and branchbyte2 are
used to construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 <<
8) | branchbyte2. Execution proceeds at that offset from the address of the opcode of
this if_acmp<cond>_w instruction. The target address must be that of an opcode of
an instruction within the method that contains this if_acmp<cond>_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_acmp<cond>_w instruction.

7.5.37 if_scmp<cond>
Branch if short comparison succeeds

Format

Forms

if_scmpeq = 106 (0x6a)
if_scmpne = 107 (0x6b)
if_scmplt = 108 (0x6c)
if_scmpge = 109 (0x6d)
if_scmpgt = 110 (0x6e)
if_scmple = 111 (0x6f)

Stack

…, value1, value2 ->
…

Description

Both value1 and value2 must be of type short. They are both popped from the
operand stack and compared. All comparisons are signed. The results of the
comparisons are as follows:

n eq succeeds if and only if value1 = value2
n ne succeeds if and only if value1 ¼ value2
n lt succeeds if and only if value1 < value2
n le succeeds if and only if value1 £ value2
n gt succeeds if and only if value1 > value2
n ge succeeds if and only if value1 Š value2

if_scmp<cond>

branch

7-38 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

If the comparison succeeds, branch is used as signed 8-bit offset, and execution
proceeds at that offset from the address of the opcode of this if_scmp<cond>
instruction. The target address must be that of an opcode of an instruction within the
method that contains this if_scmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_scmp<cond> instruction.

7.5.38 if_scmp<cond>_w
Branch if short comparison succeeds (wide index)

Format

Forms

if_scmpeq_w = 162 (0xa2)
if_scmpne_w = 163 (0xa3)
if_scmplt_w = 164 (0xa4)
if_scmpge_w = 165 (0xa5)
if_scmpgt_w = 166 (0xa6)
if_scmple_w = 167 (0xa7)

Stack

…, value1, value2 ->
…

Description

Both value1 and value2 must be of type short. They are both popped from the
operand stack and compared. All comparisons are signed. The results of the
comparisons are as follows:

n eq succeeds if and only if value1 = value2
n ne succeeds if and only if value1 ¼ value2
n lt succeeds if and only if value1 < value2
n le succeeds if and only if value1 £ value2
n gt succeeds if and only if value1 > value2
n ge succeeds if and only if value1 Š value2

if_scmp<cond>_w

branchbyte1

branchbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 7-39

If the comparison succeeds, the unsigned bytes branchbyte1 and branchbyte2 are
used to construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 <<
8) | branchbyte2. Execution proceeds at that offset from the address of the opcode of
this if_scmp<cond>_w instruction. The target address must be that of an opcode of
an instruction within the method that contains this if_scmp<cond>_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_scmp<cond>_w instruction.

7.5.39 if<cond>
Branch if short comparison with zero succeeds

Format

Forms

ifeq = 96 (0x60)
ifne = 97 (0x61)
iflt = 98 (0x62)
ifge = 99 (0x63)
ifgt = 100 (0x64)
ifle = 101 (0x65)

Stack

…, value ->
…

Description

The value must be of type short. It is popped from the operand stack and compared
against zero. All comparisons are signed. The results of the comparisons are as
follows:

n eq succeeds if and only if value = 0
n ne succeeds if and only if value ¼ 0
n lt succeeds if and only if value < 0
n le succeeds if and only if value £ 0
n gt succeeds if and only if value > 0
n ge succeeds if and only if value Š 0

if<cond>

branch

7-40 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

If the comparison succeeds, branch is used as signed 8-bit offset, and execution
proceeds at that offset from the address of the opcode of this if<cond> instruction.
The target address must be that of an opcode of an instruction within the method
that contains this if<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this
if<cond> instruction.

7.5.40 if<cond>_w
Branch if short comparison with zero succeeds (wide index)

Format

Forms

ifeq_w = 152 (0x98)
ifne_w = 153 (0x99)
iflt_w = 154 (0x9a)
ifge_w = 155 (0x9b)
ifgt_w = 156 (0x9c)
ifle_w = 157 (0x9d)

Stack

…, value ->
…

Description

The value must be of type short. It is popped from the operand stack and compared
against zero. All comparisons are signed. The results of the comparisons are as
follows:

n eq succeeds if and only if value = 0
n ne succeeds if and only if value ¼ 0
n lt succeeds if and only if value < 0
n le succeeds if and only if value £ 0
n gt succeeds if and only if value > 0
n ge succeeds if and only if value Š 0

if<cond>_w

branchbyte1

branchbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 7-41

If the comparison succeeds, the unsigned bytes branchbyte1 and branchbyte2 are
used to construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 <<
8) | branchbyte2. Execution proceeds at that offset from the address of the opcode of
this if<cond>_w instruction. The target address must be that of an opcode of an
instruction within the method that contains this if<cond>_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
if<cond>_w instruction.

7.5.41 ifnonnull
Branch if reference not null

Format

Forms

ifnonnull = 103 (0x67)

Stack

…, value ->
…

Description

The value must be of type reference. It is popped from the operand stack. If the
value is not null, branch is used as signed 8-bit offset, and execution proceeds at that
offset from the address of the opcode of this ifnonnull instruction. The target
address must be that of an opcode of an instruction within the method that contains
this ifnonnull instruction.

Otherwise, execution proceeds at the address of the instruction following this
ifnonnull instruction.

7.5.42 ifnonnull_w
Branch if reference not null (wide index)

ifnonnull

branch

7-42 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Format

Forms

ifnonnull_w = 159 (0x9f)

Stack

…, value ->
…

Description

The value must be of type reference. It is popped from the operand stack. If the
value is not null, the unsigned bytes branchbyte1 and branchbyte2 are used to
construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) |
branchbyte2. Execution proceeds at that offset from the address of the opcode of this
ifnonnull_w instruction. The target address must be that of an opcode of an
instruction within the method that contains this ifnonnull_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
ifnonnull_w instruction.

7.5.43 ifnull
Branch if reference is null

Format

Forms

ifnull = 102 (0x66)

Stack

…, value ->
…

Description

ifnonnull_w

branchbyte1

branchbyte2

ifnull

branch

Chapter 7 Java Card Virtual Machine Instruction Set 7-43

The value must be of type reference. It is popped from the operand stack. If the
value is null, branch is used as signed 8-bit offset, and execution proceeds at that
offset from the address of the opcode of this ifnull instruction. The target address
must be that of an opcode of an instruction within the method that contains this
ifnull instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnull
instruction.

7.5.44 ifnull_w
Branch if reference is null (wide index)

Format

Forms

ifnull_w = 158 (0x9e)

Stack

…, value ->
…

Description

The value must be of type reference. It is popped from the operand stack. If the
value is null, the unsigned bytes branchbyte1 and branchbyte2 are used to construct
a signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) |
branchbyte2. Execution proceeds at that offset from the address of the opcode of this
ifnull_w instruction. The target address must be that of an opcode of an instruction
within the method that contains this ifnull_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
ifnull_w instruction.

7.5.45 iinc
Increment local int variable by constant

ifnull_w

branchbyte1

branchbyte2

7-44 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Format

Forms

iinc = 90 (0x5a)

Stack

No change

Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into
the local variables of the current frame (Section 3.5, “Frames” on page 3-3). The local
variables at index and index + 1 together must contain an int. The const is an
immediate signed byte. The value const is first sign-extended to an int, then the int
contained in the local variables at index and index + 1 is incremented by that
amount.

Notes

If a virtual machine does not support the int data type, the iinc instruction will not
be available.

7.5.46 iinc_w
Increment local int variable by constant

Format

Forms

iinc_w = 151 (0x97)

Stack

iinc

index

const

iinc_w

index

byte1

byte2

Chapter 7 Java Card Virtual Machine Instruction Set 7-45

No change

Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into
the local variables of the current frame (Section 3.5, “Frames” on page 3-3). The local
variables at index and index + 1 together must contain an int. The immediate
unsigned byte1 and byte2 values are assembled into an intermediate short where the
value of the short is (byte1 << 8) | byte2. The intermediate value is then sign-
extended to an int const. The int contained in the local variables at index and index
+ 1 is incremented by const.

Notes

If a virtual machine does not support the int data type, the iinc_w instruction will
not be available.

7.5.47 iipush
Push int

Format

Forms

iipush = 20 (0x14)

Stack

… ->
…, value1.word1, value1.word2

Description

The immediate unsigned byte1, byte2, byte3, and byte4 values are assembled into a
signed int where the value of the int is (byte1 << 24) | (byte2 << 16) | (byte3 << 8) |
byte4. The resulting value is pushed onto the operand stack.

Notes

iipush

byte1

byte2

byte3

byte4

7-46 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

If a virtual machine does not support the int data type, the iipush instruction will
not be available.

7.5.48 iload
Load int from local variable

Format

Forms

iload = 23 (0x17)

Stack

… ->
…, value1.word1, value1.word2

Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into
the local variables of the current frame (Section 3.5, “Frames” on page 3-3). The local
variables at index and index + 1 together must contain an int. The value of the local
variables at index and index + 1 is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iload instruction will not
be available.

7.5.49 iload_<n>
Load int from local variable

Format

Forms

iload

index

iload_<n>

Chapter 7 Java Card Virtual Machine Instruction Set 7-47

iload_0 = 32 (0x20)
iload_1 = 33 (0x21)
iload_2 = 34 (0x22)
iload_3 = 35 (0x23)

Stack

… ->
…, value1.word1, value1.word2

Description

Both <n> and <n> + 1 must be a valid indices into the local variables of the current
frame (Section 3.5, “Frames” on page 3-3). The local variables at <n> and <n> + 1
together must contain an int. The value of the local variables at <n> and <n> + 1 is
pushed onto the operand stack.

Notes

Each of the iload_<n> instructions is the same as iload with an index of <n>, except
that the operand <n> is implicit.

If a virtual machine does not support the int data type, the iload_<n> instruction
will not be available.

7.5.50 ilookupswitch
Access jump table by key match and jump

Format

Pair Format

ilookupswitch

defaultbyte1

defaultbyte2

npairs1

npairs2

match-offset pairs…

matchbyte1

matchbyte2

matchbyte3

7-48 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Forms

ilookupswitch = 118 (0x76)

Stack

…, key.word1, key.word2 ->
…

Description

An ilookupswitch instruction is a variable-length instruction. Immediately after the
ilookupswitch opcode follow a signed 16-bit value default, an unsigned 16-bit value
npairs, and then npairs pairs. Each pair consists of an int match and a signed 16-bit
offset. Each match is constructed from four unsigned bytes as (matchbyte1 << 24) |
(matchbyte2 << 16) | (matchbyte3 << 8) | matchbyte4. Each offset is constructed
from two unsigned bytes as (offsetbyte1 << 8) | offsetbyte2.

The table match-offset pairs of the ilookupswitch instruction must be sorted in
increasing numerical order by match.

The key must be of type int and is popped from the operand stack and compared
against the match values. If it is equal to one of them, then a target address is
calculated by adding the corresponding offset to the address of the opcode of this
ilookupswitch instruction. If the key does not match any of the match values, the
target address is calculated by adding default to the address of the opcode of this
ilookupswitch instruction. Execution then continues at the target address.

The target address that can be calculated from the offset of each match-offset pair, as
well as the one calculated from default, must be the address of an opcode of an
instruction within the method that contains this ilookupswitch instruction.

Notes

The match-offset pairs are sorted to support lookup routines that are quicker than
linear search.

If a virtual machine does not support the int data type, the ilookupswitch instruction
will not be available.

matchbyte4

offsetbyte1

offsetbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 7-49

7.5.51 imul
Multiply int

Format

Forms

imul = 70 (0x46)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. The int result is value1 * value2. The result is pushed onto the
operand stack.

If an imul instruction overflows, then the result is the low-order bits of the
mathematical product as an int. If overflow occurs, then the sign of the result may
not be the same as the sign of the mathematical product of the two values.

Notes

If a virtual machine does not support the int data type, the imul instruction will not
be available.

7.5.52 ineg
Negate int

Format

Forms

ineg = 76 (0x4c)

Stack

…, value.word1, value.word2 ->
…, result.word1, result.word2

imul

ineg

7-50 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Description

The value must be of type int. It is popped from the operand stack. The int result is
the arithmetic negation of value, -value. The result is pushed onto the operand stack.

For int values, negation is the same as subtraction from zero. Because the Java Card
virtual machine uses two’s-complement representation for integers and the range of
two’s-complement values is not symmetric, the negation of the maximum negative
int results in that same maximum negative number. Despite the fact that overflow
has occurred, no exception is thrown.

For all int values x, -x equals (~x) + 1.

Notes

If a virtual machine does not support the int data type, the ineg instruction will not
be available.

7.5.53 instanceof
Determine if object is of given type

Format

Forms

instanceof = 149 (0x95)

Stack

…, objectref ->
…, result

Description

instanceof

atype

indexbyte1

indexbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 7-51

The unsigned byte atype is a code that indicates if the type against which the object
is being checked is an array type or a class type. It must take one of the following
values or zero:

If the value of atype is 10, 11, 12, or 13, the values of the indexbyte1 and indexbyte2
must be zero, and the value of atype indicates the array type against which to check
the object. Otherwise the unsigned indexbyte1 and indexbyte2 are used to construct
an index into the constant pool of the current package (Section 3.5, “Frames” on
page 3-3), where the value of the index is (indexbyte1 << 8) | indexbyte2. The item
at that index in the constant pool must be of type CONSTANT_Classref
(Section 6.7.1, “CONSTANT_Classref” on page 6-16), a reference to a class or
interface type. The reference is resolved. If the value of atype is 14, the object is
checked against an array type that is an array of object references of the type of the
resolved class. If the value of atype is zero, the object is checked against a class or
interface type that is the resolved class.

The objectref must be of type reference. It is popped from the operand stack. If
objectref is not null and is an instance of the resolved class, array or interface, the
instanceof instruction pushes a short result of 1 on the operand stack. Otherwise it
pushes a short result of 0.

The following rules are used to determine whether an objectref that is not null is an
instance of the resolved type: if S is the class of the object referred to by objectref and
T is the resolved class, array or interface type, instanceof determines whether
objectref is an instance of T as follows:

n If S is a class type, then:

n If T is a class type, then S must be the same class as T, or S must be a subclass
of T;

n If T is an interface type, then S must implement interface T.

n If S is an interface type1, then:

TABLE 7-3 Array Values

Array Type atype

T_BOOLEAN 10

T_BYTE 11

T_SHORT 12

T_INT 13

T_REFERENCE 14

1. When both S and T are arrays of reference types, this algorithm is applied recursively using the types of the
arrays, namely SC and TC. In the recursive call, S, which was SC in the original call, may be an interface type.
This rule can only be reached in this manner. Similarly, in the recursive call,T, which was TC in the original
call, may be an interface type.

7-52 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

n If T is a class type, then T must be Object (Section 2.2.2.4, “Classes” on
page 2-7);

n If T is an interface type, T must be the same interface as S or a superinterface of
S.

n If S is an array type, namely the type SC[], that is, an array of components of type
SC, then:

n If T is a class type, then T must be Object.

n If T is an array type, namely the type TC[], an array of components of type TC,
then one of the following must be true:

TC and SC are the same primitive type (Section 3.1, “Data Types and Values”
on page 3-1).

TC and SC are reference types1 (Section 3.1, “Data Types and Values” on
page 3-1) with type SC assignable to TC, by these rules.

n If T is an interface type, T must be one of the interfaces implemented by arrays.

Notes

The instanceof instruction is fundamentally very similar to the checkcast instruction.
It differs in its treatment of null, its behavior when its test fails (checkcast throws an
exception, instanceof pushes a result code), and its effect on the operand stack.

In some circumstances, the instanceof instruction may throw a SecurityException if
the current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the value of atype may not
be 13 (array type = T_INT).

7.5.54 invokeinterface
Invoke interface method

Format

1. This version of the Java Card virtual machine specification does not support multi-dimensional arrays.
Therefore, neither SC or TC can be an array type.

invokeinterface

nargs

Chapter 7 Java Card Virtual Machine Instruction Set 7-53

Forms

invokeinterface = 142 (0x8e)

Stack

…, objectref, [arg1, [arg2 …]] ->
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The constant pool item at that
index must be of type CONSTANT_Classref (Section 6.7.1, “CONSTANT_Classref”
on page 6-16), a reference to an interface class. The specified interface is resolved.

The nargs operand is an unsigned byte that must not be zero.

The method operand is an unsigned byte that is the interface method token for the
method to be invoked. The interface method must not be <init> or an instance
initialization method.

The objectref must be of type reference and must be followed on the operand stack
by nargs – 1 words of arguments. The number of words of arguments and the type
and order of the values they represent must be consistent with those of the selected
interface method.

The interface table of the class of the type of objectref is determined. If objectref is an
array type, then the interface table of class Object (Section 2.2.2.4, “Classes” on
page 2-7) is used. The interface table is searched for the resolved interface. The result
of the search is a table that is used to map the method token to a index.

The index is an unsigned byte that is used as an index into the method table of the
class of the type of objectref. If the objectref is an array type, then the method table
of class Object is used. The table entry at that index includes a direct reference to the
method’s code and modifier information.

The nargs – 1 words of arguments and objectref are popped from the operand stack.
A new stack frame is created for the method being invoked, and objectref and the
arguments are made the values of its first nargs words of local variables, with
objectref in local variable 0, arg1 in local variable 1, and so on. The new stack frame

indexbyte1

indexbyte2

method

7-54 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

is then made current, and the Java Card virtual machine pc is set to the opcode of
the first instruction of the method to be invoked. Execution continues with the first
instruction of the method.

Runtime Exception

If objectref is null, the invokeinterface instruction throws a NullPointerException.

Notes

In some circumstances, the invokeinterface instruction may throw a
SecurityException if the current context (Section 3.4, “Contexts” on page 3-2) is not
the context (Section 3.4, “Contexts” on page 3-2) of the object referenced by objectref.
The exact circumstances when the exception will be thrown are specified in Chapter
6 of the Runtime Environment Specification, Java Card Platform, Version 2.2.2. If the
current context is not the object’s context and the Java Card RE permits invocation of
the method, the invokeinterface instruction will cause a context switch (Section 3.4,
“Contexts” on page 3-2) to the object’s context before invoking the method, and will
cause a return context switch to the previous context when the invoked method
returns.

7.5.55 invokespecial
Invoke instance method; special handling for superclass, private, and instance
initialization method invocations

Format

Forms

invokespecial = 140 (0x8c)

Stack

…, objectref, [arg1, [arg2 …]] ->
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. If the invoked method is a
private instance method or an instance initialization method, the constant pool item

invokespecial

indexbyte1

indexbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 7-55

at index must be of type CONSTANT_StaticMethodref (Section 6.7.3,
“CONSTANT_StaticFieldref and CONSTANT_StaticMethodref” on page 6-19), a
reference to a statically linked instance method. If the invoked method is a
superclass method, the constant pool item at index must be of type
CONSTANT_SuperMethodref (Section 6.7.2, “CONSTANT_InstanceFieldref,
CONSTANT_VirtualMethodref, and CONSTANT_SuperMethodref” on page 6-18), a
reference to an instance method of a specified class. The reference is resolved. The
resolved method must not be <clinit>, a class or interface initialization method. If
the method is <init>, an instance initialization method, then the method must only
be invoked once on an uninitialized object, and before the first backward branch
following the execution of the new instruction that allocated the object. Finally, if the
resolved method is protected, and it is a member of a superclass of the current class,
and the method is not declared in the same package as the current class, then the
class of objectref must be either the current class or a subclass of the current class.

The resolved method includes the code for the method, an unsigned byte nargs that
must not be zero, and the method’s modifier information.

The objectref must be of type reference, and must be followed on the operand stack
by nargs – 1 words of arguments, where the number of words of arguments and the
type and order of the values they represent must be consistent with those of the
selected instance method.

The nargs – 1 words of arguments and objectref are popped from the operand stack.
A new stack frame is created for the method being invoked, and objectref and the
arguments are made the values of its first nargs words of local variables, with
objectref in local variable 0, arg1 in local variable 1, and so on. The new stack frame
is then made current, and the Java Card virtual machine pc is set to the opcode of
the first instruction of the method to be invoked. Execution continues with the first
instruction of the method.

Runtime Exception

If objectref is null, the invokespecial instruction throws a NullPointerException.

7.5.56 invokestatic
Invoke a class (static) method

Format

invokestatic

indexbyte1

indexbyte2

7-56 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Forms

invokestatic = 141 (0x8d)

Stack

…, [arg1, [arg2 …]] ->
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The constant pool item at that
index must be of type CONSTANT_StaticMethodref (Section 6.7.3,
“CONSTANT_StaticFieldref and CONSTANT_StaticMethodref” on page 6-19), a
reference to a static method. The method must not be <init>, an instance
initialization method, or <clinit>, a class or interface initialization method. It must be
static, and therefore cannot be abstract.

The resolved method includes the code for the method, an unsigned byte nargs that
may be zero, and the method’s modifier information.

The operand stack must contain nargs words of arguments, where the number of
words of arguments and the type and order of the values they represent must be
consistent with those of the resolved method.

The nargs words of arguments are popped from the operand stack. A new stack
frame is created for the method being invoked, and the words of arguments are
made the values of its first nargs words of local variables, with arg1 in local variable
0, arg2 in local variable 1, and so on. The new stack frame is then made current, and
the Java Card virtual machine pc is set to the opcode of the first instruction of the
method to be invoked. Execution continues with the first instruction of the method.

7.5.57 invokevirtual
Invoke instance method; dispatch based on class

Format

Forms

invokevirtual = 139 (0x8b)

invokevirtual

indexbyte1

indexbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 7-57

Stack

…, objectref, [arg1, [arg2 …]] ->
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The constant pool item at that
index must be of type CONSTANT_VirtualMethodref (Section 6.7.2,
“CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref” on page 6-18), a reference to a class and a virtual
method token. The specified method is resolved. The method must not be <init>, an
instance initialization method, or <clinit>, a class or interface initialization method.
Finally, if the resolved method is protected, and it is a member of a superclass of the
current class, and the method is not declared in the same package as the current
class, then the class of objectref must be either the current class or a subclass of the
current class.

The resolved method reference includes an unsigned index into the method table of
the resolved class and an unsigned byte nargs that must not be zero.

The objectref must be of type reference. The index is an unsigned byte that is used as
an index into the method table of the class of the type of objectref. If the objectref is
an array type, then the method table of class Object (Section 2.2.2.4, “Classes” on
page 2-7) is used. The table entry at that index includes a direct reference to the
method’s code and modifier information.

The objectref must be followed on the operand stack by nargs – 1 words of
arguments, where the number of words of arguments and the type and order of the
values they represent must be consistent with those of the selected instance method.

The nargs – 1 words of arguments and objectref are popped from the operand stack.
A new stack frame is created for the method being invoked, and objectref and the
arguments are made the values of its first nargs words of local variables, with
objectref in local variable 0, arg1 in local variable 1, and so on. The new stack frame
is then made current, and the Java Card virtual machine pc is set to the opcode of
the first instruction of the method to be invoked. Execution continues with the first
instruction of the method.

Runtime Exception

If objectref is null, the invokevirtual instruction throws a NullPointerException.

In some circumstances, the invokevirtual instruction may throw a SecurityException
if the current context (Section 3.4, “Contexts” on page 3-2) is not the context
(Section 3.4, “Contexts” on page 3-2) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2. If the current

7-58 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

context is not the object’s context and the Java Card RE permits invocation of the
method, the invokevirtual instruction will cause a context switch (Section 3.4,
“Contexts” on page 3-2) to the object’s context before invoking the method, and will
cause a return context switch to the previous context when the invoked method
returns.

7.5.58 ior
Boolean OR int

Format

Forms

ior = 86 (0x56)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. An int result is calculated by taking the bitwise inclusive OR of
value1 and value2. The result is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the ior instruction will not be
available.

7.5.59 irem
Remainder int

Format

Forms

irem = 74 (0x4a)

ior

irem

Chapter 7 Java Card Virtual Machine Instruction Set 7-59

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. The int result is the value of the Java expression value1 – (value1 /
value2) * value2. The result is pushed onto the operand stack.

The result of the irem instruction is such that (a/b)*b + (a%b) is equal to a. This
identity holds even in the special case that the dividend is the negative int of largest
possible magnitude for its type and the divisor is –1 (the remainder is 0). It follows
from this rule that the result of the remainder operation can be negative only if the
dividend is negative and can be positive only if the dividend is positive. Moreover,
the magnitude of the result is always less than the magnitude of the divisor.

Runtime Exception

If the value of the divisor for a short remainder operator is 0, irem throws an
ArithmeticException.

Notes

If a virtual machine does not support the int data type, the irem instruction will not
be available.

7.5.60 ireturn
Return int from method

Format

Forms

ireturn = 121 (0x79)

Stack

…, value.word1, value.word2 ->
[empty]

Description

ireturn

7-60 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The value must be of type int. It is popped from the operand stack of the current
frame (Section 3.5, “Frames” on page 3-3) and pushed onto the operand stack of the
frame of the invoker. Any other values on the operand stack of the current method
are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to
the invoker.

Notes

If a virtual machine does not support the int data type, the ireturn instruction will
not be available.

7.5.61 ishl
Shift left int

Format

Forms

ishl = 78 (0x4e)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. An int result is calculated by shifting value1 left by s bit positions,
where s is the value of the low five bits of value2. The result is pushed onto the
operand stack.

Notes

This is equivalent (even if overflow occurs) to multiplication by 2 to the power s.
The shift distance actually used is always in the range 0 to 31, inclusive, as if value2
were subjected to a bitwise logical AND with the mask value 0x1f.

If a virtual machine does not support the int data type, the ishl instruction will not
be available.

ishl

Chapter 7 Java Card Virtual Machine Instruction Set 7-61

7.5.62 ishr
Arithmetic shift right int

Format

Forms

ishr = 80 (0x50)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. An int result is calculated by shifting value1 right by s bit positions,
with sign extension, where s is the value of the low five bits of value2. The result is
pushed onto the operand stack.

Notes

The resulting value is Î(value1) / 2s°, where s is value2 & 0x1f. For nonnegative
value1, this is equivalent (even if overflow occurs) to truncating int division by 2 to
the power s. The shift distance actually used is always in the range 0 to 31, inclusive,
as if value2 were subjected to a bitwise logical AND with the mask value 0x1f.

Notes

If a virtual machine does not support the int data type, the ishr instruction will not
be available.

7.5.63 istore
Store int into local variable

Format

Forms

ishr

istore

index

7-62 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

istore = 42 (0x2a)

Stack

…, value.word1, value.word2 ->
…

Description

The index is an unsigned byte. Both index and index + 1 must be a valid index into
the local variables of the current frame (Section 3.5, “Frames” on page 3-3). The
value on top of the operand stack must be of type int. It is popped from the operand
stack, and the local variables at index and index + 1 are set to value.

Notes

If a virtual machine does not support the int data type, the istore instruction will not
be available.

7.5.64 istore_<n>
Store int into local variable

Format

Forms

istore_0 = 51 (0x33)
istore_1 = 52 (0x34)
istore_2 = 53 (0x35)
istore_3 = 54 (0x36)

Stack

…, value.word1, value.word2 ->
…

Description

Both <n> and <n> + 1 must be a valid indices into the local variables of the current
frame (Section 3.5, “Frames” on page 3-3). The value on top of the operand stack
must be of type int. It is popped from the operand stack, and the local variables at
index and index + 1 are set to value.

Notes

istore_<n>

Chapter 7 Java Card Virtual Machine Instruction Set 7-63

If a virtual machine does not support the int data type, the istore_<n> instruction
will not be available.

7.5.65 isub
Subtract int

Format

Forms

isub = 68 (0x44)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. The int result is value1 - value2. The result is pushed onto the
operand stack.

For int subtraction, a – b produces the same result as a + (–b). For int values,
subtraction from zeros is the same as negation.

Despite the fact that overflow or underflow may occur, in which case the result may
have a different sign than the true mathematical result, execution of an isub
instruction never throws a runtime exception.

Notes

If a virtual machine does not support the int data type, the isub instruction will not
be available.

7.5.66 itableswitch
Access jump table by int index and jump

isub

7-64 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Format

Offset Format

Forms

itableswitch = 116 (0x74)

Stack

…, index ->
…

Description

An itableswitch instruction is a variable-length instruction. Immediately after the
itableswitch opcode follow a signed 16-bit value default, a signed 32-bit value low, a
signed 32-bit value high, and then high – low + 1 further signed 16-bit offsets. The
value low must be less than or equal to high. The high – low + 1 signed 16-bit offsets
are treated as a 0-based jump table. Each of the signed 16-bit values is constructed
from two unsigned bytes as (byte1 << 8) | byte2. Each of the signed 32-bit values is
constructed from four unsigned bytes as (byte1 << 24) | (byte2 << 16) | (byte3 << 8)
| byte4.

The index must be of type int and is popped from the stack. If index is less than low
or index is greater than high, then a target address is calculated by adding default to
the address of the opcode of this itableswitch instruction. Otherwise, the offset at

itableswitch

defaultbyte1

defaultbyte2

lowbyte1

lowbyte2

lowbyte3

lowbyte4

highbyte1

highbyte2

highbyte3

highbyte4

jump offsets…

offsetbyte1

offsetbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 7-65

position index – low of the jump table is extracted. The target address is calculated
by adding that offset to the address of the opcode of this itableswitch instruction.
Execution then continues at the target address.

The target addresses that can be calculated from each jump table offset, as well as
the one calculated from default, must be the address of an opcode of an instruction
within the method that contains this itableswitch instruction.

Notes

If a virtual machine does not support the int data type, the itableswitch instruction
will not be available.

7.5.67 iushr
Logical shift right int

Format

Forms

iushr = 82 (0x52)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. An int result is calculated by shifting the result right by s bit
positions, with zero extension, where s is the value of the low five bits of value2. The
result is pushed onto the operand stack.

Notes

If value1 is positive and s is value2 & 0x1f, the result is the same as that of value1 >>
s; if value1 is negative, the result is equal to the value of the expression (value1 >> s)
+ (2 << ~s). The addition of the (2 << ~s) term cancels out the propagated sign bit.
The shift distance actually used is always in the range 0 to 31, inclusive, as if value2
were subjected to a bitwise logical AND with the mask value 0x1f.

If a virtual machine does not support the int data type, the iushr instruction will not
be available.

iushr

7-66 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

7.5.68 ixor
Boolean XOR int

Format

Forms

ixor = 88 (0x58)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. An int result is calculated by taking the bitwise exclusive OR of
value1 and value2. The result is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the ixor instruction will not
be available.

7.5.69 jsr
Jump subroutine

Format

Forms

jsr = 113 (0x71)

Stack

… ->
…, address

ixor

jsr

branchbyte1

branchbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 7-67

Description

The address of the opcode of the instruction immediately following this jsr
instruction is pushed onto the operand stack as a value of type returnAddress. The
unsigned branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset,
where the offset is (branchbyte1 << 8) | branchbyte2. Execution proceeds at that
offset from the address of this jsr instruction. The target address must be that of an
opcode of an instruction within the method that contains this jsr instruction.

Notes

The jsr instruction is used with the ret instruction in the implementation of the
finally clause of the Java language. Note that jsr pushes the address onto the stack
and ret gets it out of a local variable. This asymmetry is intentional.

7.5.70 new
Create new object

Format

Forms

new = 143 (0x8f)

Stack

… ->
…, objectref

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The item at that index in the
constant pool must be of type CONSTANT_Classref (Section 6.7.1,
“CONSTANT_Classref” on page 6-16), a reference to a class or interface type. The
reference is resolved and must result in a class type (it must not result in an interface
type). Memory for a new instance of that class is allocated from the heap, and the
instance variables of the new object are initialized to their default initial values. The
objectref, a reference to the instance, is pushed onto the operand stack.

Notes

new

indexbyte1

indexbyte2

7-68 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The new instruction does not completely create a new instance; instance creation is
not completed until an instance initialization method has been invoked on the
uninitialized instance.

7.5.71 newarray
Create new array

Format

Forms

newarray = 144 (0x90)

Stack

…, count ->
…, arrayref

Description

The count must be of type short. It is popped off the operand stack. The count
represents the number of elements in the array to be created.

The unsigned byte atype is a code that indicates the type of array to create. It must
take one of the following values:

A new array whose components are of type atype, of length count, is allocated from
the heap. A reference arrayref to this new array object is pushed onto the operand
stack. All of the elements of the new array are initialized to the default initial value
for its type.

Runtime Exception

newarray

atype

TABLE 7-4 Array Values

Array Type atype

T_BOOLEAN 10

T_BYTE 11

T_SHORT 12

T_INT 13

Chapter 7 Java Card Virtual Machine Instruction Set 7-69

If count is less than zero, the newarray instruction throws a
NegativeArraySizeException.

Notes

If a virtual machine does not support the int data type, the value of atype may not
be 13 (array type = T_INT).

7.5.72 nop
Do nothing

Format

Forms

nop = 0 (0x0)

Stack

No change

Description

Do nothing.

7.5.73 pop
Pop top operand stack word

Format

Forms

pop = 59 (0x3b)

Stack

…, word ->
…

Description

nop

pop

7-70 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The top word is popped from the operand stack. The pop instruction must not be
used unless the word contains a 16-bit data type.

Notes

The pop instruction operates on an untyped word, ignoring the type of data it
contains.

7.5.74 pop2
Pop top two operand stack words

Format

Forms

pop2 = 60 (0x3c)

Stack

…, word2, word1 ->
…

Description

The top two words are popped from the operand stack.

The pop2 instruction must not be used unless each of word1 and word2 is a word
that contains a 16-bit data type or both together are the two words of a single 32-bit
datum.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the pop2
instruction operates on an untyped word, ignoring the type of data it contains.

7.5.75 putfield_<t>
Set field in object

pop2

Chapter 7 Java Card Virtual Machine Instruction Set 7-71

Format

Forms

putfield_a = 135 (0x87)
putfield_b = 136 (0x88)
putfield_s = 137 (0x89)
putfield_i = 138 (0x8a)

Stack

…, objectref, value ->
…

OR

…, objectref, value.word1, value.word2 ->
…

Description

The unsigned index is used as an index into the constant pool of the current package
(Section 3.5, “Frames” on page 3-3). The constant pool item at the index must be of
type CONSTANT_InstanceFieldref (Section 6.7.2, “CONSTANT_InstanceFieldref,
CONSTANT_VirtualMethodref, and CONSTANT_SuperMethodref” on page 6-18), a
reference to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a
member of a superclass of the current class, and the field is not declared in the same
package as the current class, then the class of objectref must be either the current
class or a subclass of the current class. If the field is final, it must be declared in the
current class.

The item must resolve to a field with a type that matches t, as follows:

n a field must be of type reference
n b field must be of type byte or type boolean
n s field must be of type short
n i field must be of type int

value must be of a type that is assignment compatible with the field descriptor (t)
type.

putfield_<t>

index

7-72 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset1. The objectref,
which must be of type reference, and the value are popped from the operand stack.
If the field is of type byte or type boolean, the value is truncated to a byte. The field
at the offset from the start of the object referenced by objectref is set to the value.

Runtime Exception

If objectref is null, the putfield_<t> instruction throws a NullPointerException.

Notes

In some circumstances, the putfield_<t> instruction may throw a SecurityException
if the current context Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the putfield_i instruction will
not be available.

7.5.76 putfield_<t>_this
Set field in current object

Format

Forms

putfield_a_this = 181 (0xb5)
putfield_b_this = 182 (0xb6)
putfield_s_this = 183 (0xb7)
putfield_i_this = 184 (0xb8)

Stack

…, value ->
…

OR

1. The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may
define any mapping from token value to offset into an instance.

putfield_<t>_this

index

Chapter 7 Java Card Virtual Machine Instruction Set 7-73

…, value.word1, value.word2 ->
…

Description

The currently executing method must be an instance method that was invoked using
the invokevirtual, invokeinterface or invokespecial instruction. The local variable at
index 0 must contain a reference objectref to the currently executing method’s this
parameter. The unsigned index is used as an index into the constant pool of the
current package (Section 3.5, “Frames” on page 3-3). The constant pool item at the
index must be of type CONSTANT_InstanceFieldref (Section 6.7.2,
“CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref” on page 6-18), a reference to a class and a field
token.

The class of objectref must not be an array. If the field is protected, and it is a
member of a superclass of the current class, and the field is not declared in the same
package as the current class, then the class of objectref must be either the current
class or a subclass of the current class. If the field is final, it must be declared in the
current class.

The item must resolve to a field with a type that matches t, as follows:

n a field must be of type reference
n b field must be of type byte or type boolean
n s field must be of type short
n i field must be of type int

value must be of a type that is assignment compatible with the field descriptor (t)
type.

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset1. The value is
popped from the operand stack. If the field is of type byte or type boolean, the value
is truncated to a byte. The field at the offset from the start of the object referenced by
objectref is set to the value.

Runtime Exception

If objectref is null, the putfield_<t>_this instruction throws a NullPointerException.

Notes

1. The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may
define any mapping from token value to offset into an instance.

7-74 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

In some circumstances, the putfield_<t>_this instruction may throw a
SecurityException if the current context (Section 3.4, “Contexts” on page 3-2) is not
the owning context (Section 3.4, “Contexts” on page 3-2) of the object referenced by
objectref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the putfield_i_this
instruction will not be available.

7.5.77 putfield_<t>_w
Set field in object (wide index)

Format

Forms

putfield_a_w = 177 (0xb1)
putfield_b_w = 178 (0xb2)
putfield_s_w = 179 (0xb3)
putfield_i_w = 180 (0xb4)

Stack

…, objectref, value ->
…

OR

…, objectref, value.word1, value.word2 ->
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The constant pool item at the
index must be of type CONSTANT_InstanceFieldref (Section 6.7.2,
“CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref” on page 6-18), a reference to a class and a field
token.

putfield<t>_w

indexbyte1

indexbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 7-75

The class of objectref must not be an array. If the field is protected, and it is a
member of a superclass of the current class, and the field is not declared in the same
package as the current class, then the class of objectref must be either the current
class or a subclass of the current class. If the field is final, it must be declared in the
current class.

The item must resolve to a field with a type that matches t, as follows:

n a field must be of type reference
n b field must be of type byte or type boolean
n s field must be of type short
n i field must be of type int

value must be of a type that is assignment compatible with the field descriptor (t)
type.

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset1. The objectref,
which must be of type reference, and the value are popped from the operand stack.
If the field is of type byte or type boolean, the value is truncated to a byte. The field
at the offset from the start of the object referenced by objectref is set to the value.

Runtime Exception

If objectref is null, the putfield_<t>_w instruction throws a NullPointerException.

Notes

In some circumstances, the putfield_<t>_w instruction may throw a
SecurityException if the current context (Section 3.4, “Contexts” on page 3-2) is not
the owning context (Section 3.4, “Contexts” on page 3-2) of the object referenced by
objectref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the putfield_i_w instruction
will not be available.

7.5.78 putstatic_<t>
Set static field in class

1. The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may
define any mapping from token value to offset into an instance.

7-76 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Format

Forms

putstatic_a = 127 (0x7f)
putstatic_b = 128 (0x80)
putstatic_s = 129 (0x81)
putstatic_i = 130 (0x82)

Stack

…, value ->
…

OR

…, value.word1, value.word2 ->
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The constant pool item at the
index must be of type CONSTANT_StaticFieldref (Section 6.7.3,
“CONSTANT_StaticFieldref and CONSTANT_StaticMethodref” on page 6-19), a
reference to a static field. If the field is final, it must be declared in the current class.

The item must resolve to a field with a type that matches t, as follows:

n a field must be of type reference
n b field must be of type byte or type boolean
n s field must be of type short
n i field must be of type int

value must be of a type that is assignment compatible with the field descriptor (t)
type.

The width of a class field is determined by the field type specified in the instruction.
The item is resolved, determining the class field. The value is popped from the
operand stack. If the field is of type byte or type boolean, the value is truncated to a
byte. The field is set to the value.

Notes

putstatic_<t>

indexbyte1

indexbyte2

Chapter 7 Java Card Virtual Machine Instruction Set 7-77

In some circumstances, the putstatic_a instruction may throw a SecurityException if
the current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the object being stored in the field. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the putstatic_i instruction
will not be available.

7.5.79 ret
Return from subroutine

Format

Forms

ret = 114 (0x72)

Stack

No change

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (Section 3.5, “Frames” on page 3-3). The local variable at index
must contain a value of type returnAddress. The contents of the local variable are
written into the Java Card virtual machine’s pc register, and execution continues
there.

Notes

The ret instruction is used with the jsr instruction in the implementation of the
finally keyword of the Java language. Note that jsr pushes the address onto the stack
and ret gets it out of a local variable. This asymmetry is intentional.

The ret instruction should not be confused with the return instruction. A return
instruction returns control from a Java method to its invoker, without passing any
value back to the invoker.

ret

index

7-78 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

7.5.80 return
Return void from method

Format

Forms

return = 122 (0x7a)

Stack

… ->
[empty]

Description

Any values on the operand stack of the current method are discarded. The virtual
machine then reinstates the frame of the invoker and returns control to the invoker.

7.5.81 s2b
Convert short to byte

Format

Forms

s2b = 91 (0x5b)

Stack

…, value ->
…, result

Description

The value on top of the operand stack must be of type short. It is popped from the
top of the operand stack, truncated to a byte result, then sign-extended to a short
result. The result is pushed onto the operand stack.

Notes

return

s2b

Chapter 7 Java Card Virtual Machine Instruction Set 7-79

The s2b instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value. The result may also not have the
same sign as value.

7.5.82 s2i
Convert short to int

Format

Forms

s2i = 92 (0x5c)

Stack

…, value ->
…, result.word1, result.word2

Description

The value on top of the operand stack must be of type short. It is popped from the
operand stack and sign-extended to an int result. The result is pushed onto the
operand stack.

Notes

The s2i instruction performs a widening primitive conversion. Because all values of
type short are exactly representable by type int, the conversion is exact.

If a virtual machine does not support the int data type, the s2i instruction will not be
available.

7.5.83 sadd
Add short

Format

Forms

sadd = 65 (0x41)

s2i

sadd

7-80 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is value1 + value2. The result is pushed onto the
operand stack.

If a sadd instruction overflows, then the result is the low-order bits of the true
mathematical result in a sufficiently wide two’s-complement format. If overflow
occurs, then the sign of the result may not be the same as the sign of the
mathematical sum of the two values.

7.5.84 saload
Load short from array

Format

Forms

saload = 38 (0x46)

Stack

…, arrayref, index ->
…, value

Description

The arrayref must be of type reference and must refer to an array whose components
are of type short. The index must be of type short. Both arrayref and index are
popped from the operand stack. The short value in the component of the array at
index is retrieved and pushed onto the top of the operand stack.

Runtime Exceptions

If arrayref is null, saload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
saload instruction throws an ArrayIndexOutOfBoundsException.

Notes

saload

Chapter 7 Java Card Virtual Machine Instruction Set 7-81

In some circumstances, the saload instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.85 sand
Boolean AND short

Format

Forms

sand = 83 (0x53)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 are popped from the operand stack. A short result is
calculated by taking the bitwise AND (conjunction) of value1 and value2. The result
is pushed onto the operand stack.

7.5.86 sastore
Store into short array

Format

Forms

sastore = 57 (0x39)

Stack

…, arrayref, index, value ->
…

sand

sastore

7-82 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Description

The arrayref must be of type reference and must refer to an array whose components
are of type short. The index and value must both be of type short. The arrayref,
index and value are popped from the operand stack. The short value is stored as the
component of the array indexed by index.

Runtime Exception

If arrayref is null, sastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
sastore instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the sastore instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.87 sconst_<s>
Push short constant

Format

Forms

sconst_m1 = 2 (0x2)
sconst_0 = 3 (0x3)
sconst_1 = 4 (0x4)
sconst_2 = 5 (0x5)
sconst_3 = 6 (0x6)
sconst_4= 7 (0x7)
sconst_5 = 8 (0x8)

Stack

… ->
…, <s>

Description

Push the short constant <s> (-1, 0, 1, 2, 3, 4, or 5) onto the operand stack.

sconst_<s>

Chapter 7 Java Card Virtual Machine Instruction Set 7-83

7.5.88 sdiv
Divide short

Format

Forms

sdiv = 71 (0x47)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is the value of the Java expression value1 / value2.
The result is pushed onto the operand stack.

A short division rounds towards 0; that is, the quotient produced for short values in
n/d is a short value q whose magnitude is as large as possible while satisfying | d ·
q | <= | n |. Moreover, q is a positive when | n | >= | d | and n and d have the
same sign, but q is negative when | n | >= | d | and n and d have opposite signs.

There is one special case that does not satisfy this rule: if the dividend is the negative
integer of the largest possible magnitude for the short type, and the divisor is –1,
then overflow occurs, and the result is equal to the dividend. Despite the overflow,
no exception is thrown in this case.

Runtime Exception

If the value of the divisor in a short division is 0, sdiv throws an
ArithmeticException.

7.5.89 sinc
Increment local short variable by constant

sdiv

7-84 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Format

Forms

sinc = 89 (0x59)

Stack

No change

Description

The index is an unsigned byte that must be a valid index into the local variable of
the current frame (Section 3.5, “Frames” on page 3-3). The const is an immediate
signed byte. The local variable at index must contain a short. The value const is first
sign-extended to a short, then the local variable at index is incremented by that
amount.

7.5.90 sinc_w
Increment local short variable by constant

Format

Forms

sinc_w = 150 (0x96)

Stack

No change

Description

sinc

index

const

sinc_w

index

byte1

byte2

Chapter 7 Java Card Virtual Machine Instruction Set 7-85

The index is an unsigned byte that must be a valid index into the local variable of
the current frame (Section 3.5, “Frames” on page 3-3). The immediate unsigned
byte1 and byte2 values are assembled into a short const where the value of const is
(byte1 << 8) | byte2. The local variable at index, which must contain a short, is
incremented by const.

7.5.91 sipush
Push short

Format

Forms

sipush = 19 (0x13)

Stack

… ->
…, value1.word1, value1.word2

Description

The immediate unsigned byte1 and byte2 values are assembled into a signed short
where the value of the short is (byte1 << 8) | byte2. The intermediate value is then
sign-extended to an int, and the resulting value is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the sipush instruction will
not be available.

7.5.92 sload
Load short from local variable

Format

sipush

byte1

byte2

sload

index

7-86 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Forms

sload = 22 (0x16)

Stack

… ->
…, value

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (Section 3.5, “Frames” on page 3-3). The local variable at index
must contain a short. The value in the local variable at index is pushed onto the
operand stack.

7.5.93 sload_<n>
Load short from local variable

Format

Forms

sload_0 = 28 (0x1c)
sload_1 = 29 (0x1d)
sload_2 = 30 (0x1e)
sload_3 = 31 (0x1f)

Stack

… ->
…, value

Description

The <n> must be a valid index into the local variables of the current frame
(Section 3.5, “Frames” on page 3-3). The local variable at <n> must contain a short.
The value in the local variable at <n> is pushed onto the operand stack.

Notes

Each of the sload_<n> instructions is the same as sload with an index of <n>, except
that the operand <n> is implicit.

sload_<n>

Chapter 7 Java Card Virtual Machine Instruction Set 7-87

7.5.94 slookupswitch
Access jump table by key match and jump

Format

Pair Format

Forms

slookupswitch = 117 (0x75)

Stack

…, key ->
…

Description

A slookupswitch instruction is a variable-length instruction. Immediately after the
slookupswitch opcode follow a signed 16-bit value default, an unsigned 16-bit value
npairs, and then npairs pairs. Each pair consists of a short match and a signed 16-bit
offset. Each of the signed 16-bit values is constructed from two unsigned bytes as
(byte1 << 8) | byte2.

The table match-offset pairs of the slookupswitch instruction must be sorted in
increasing numerical order by match.

The key must be of type short and is popped from the operand stack and compared
against the match values. If it is equal to one of them, then a target address is
calculated by adding the corresponding offset to the address of the opcode of this

slookupswitch

defaultbyte1

defaultbyte2

npairs1

npairs2

match-offset pairs…

matchbyte1

matchbyte2

offsetbyte1

offsetbyte2

7-88 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

slookupswitch instruction. If the key does not match any of the match values, the
target address is calculated by adding default to the address of the opcode of this
slookupswitch instruction. Execution then continues at the target address.

The target address that can be calculated from the offset of each match-offset pair, as
well as the one calculated from default, must be the address of an opcode of an
instruction within the method that contains this slookupswitch instruction.

Notes

The match-offset pairs are sorted to support lookup routines that are quicker than
linear search.

7.5.95 smul
Multiply short

Format

Forms

smul = 69 (0x45)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is value1 * value2. The result is pushed onto the
operand stack.

If a smul instruction overflows, then the result is the low-order bits of the
mathematical product as a short. If overflow occurs, then the sign of the result may
not be the same as the sign of the mathematical product of the two values.

7.5.96 sneg
Negate short

smul

Chapter 7 Java Card Virtual Machine Instruction Set 7-89

Format

Forms

sneg = 72 (0x4b)

Stack

…, value ->
…, result

Description

The value must be of type short. It is popped from the operand stack. The short
result is the arithmetic negation of value, -value. The result is pushed onto the
operand stack.

For short values, negation is the same as subtraction from zero. Because the Java
Card virtual machine uses two’s-complement representation for integers and the
range of two’s-complement values is not symmetric, the negation of the maximum
negative short results in that same maximum negative number. Despite the fact that
overflow has occurred, no exception is thrown.

For all short values x, -x equals (~x) + 1.

7.5.97 sor
Boolean OR short

Format

Forms

sor = 85 (0x55)

Stack

…, value1, value2 ->
…, result

Description

sneg

sor

7-90 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by taking the bitwise inclusive OR of
value1 and value2. The result is pushed onto the operand stack.

7.5.98 srem
Remainder short

Format

Forms

srem = 73 (0x49)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is the value of the Java expression value1 – (value1 /
value2) * value2. The result is pushed onto the operand stack.

The result of the irem instruction is such that (a/b)*b + (a%b) is equal to a. This
identity holds even in the special case that the dividend is the negative short of
largest possible magnitude for its type and the divisor is –1 (the remainder is 0). It
follows from this rule that the result of the remainder operation can be negative only
if the dividend is negative and can be positive only if the dividend is positive.
Moreover, the magnitude of the result is always less than the magnitude of the
divisor.

Runtime Exception

If the value of the divisor for a short remainder operator is 0, srem throws an
ArithmeticException.

7.5.99 sreturn
Return short from method

srem

Chapter 7 Java Card Virtual Machine Instruction Set 7-91

Format

Forms

sreturn = 120 (0x78)

Stack

…, value ->
[empty]

Description

The value must be of type short. It is popped from the operand stack of the current
frame (Section 3.5, “Frames” on page 3-3) and pushed onto the operand stack of the
frame of the invoker. Any other values on the operand stack of the current method
are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to
the invoker.

7.5.100 sshl
Shift left short

Format

Forms

sshl = 77 (0x4d)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by shifting value1 left by s bit positions,
where s is the value of the low five bits of value2. The result is pushed onto the
operand stack.

Notes

sreturn

sshl

7-92 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

This is equivalent (even if overflow occurs) to multiplication by 2 to the power s.
The shift distance actually used is always in the range 0 to 31, inclusive, as if value2
were subjected to a bitwise logical AND with the mask value 0x1f.

The mask value of 0x1f allows shifting beyond the range of a 16-bit short value. It is
used by this instruction, however, to ensure results equal to those generated by the
Java instruction ishl.

7.5.101 sshr
Arithmetic shift right short

Format

Forms

sshr = 79 (0x4f)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by shifting value1 right by s bit positions,
with sign extension, where s is the value of the low five bits of value2. The result is
pushed onto the operand stack.

Notes

The resulting value is Î(value1) / 2s°, where s is value2 & 0x1f. For nonnegative
value1, this is equivalent (even if overflow occurs) to truncating short division by 2
to the power s. The shift distance actually used is always in the range 0 to 31,
inclusive, as if value2 were subjected to a bitwise logical AND with the mask value
0x1f.

The mask value of 0x1f allows shifting beyond the range of a 16-bit short value. It is
used by this instruction, however, to ensure results equal to those generated by the
Java instruction ishr.

sshr

Chapter 7 Java Card Virtual Machine Instruction Set 7-93

7.5.102 sspush
Push short

Format

Forms

sspush = 17 (0x11)

Stack

… ->
…, value

Description

The immediate unsigned byte1 and byte2 values are assembled into a signed short
where the value of the short is (byte1 << 8) | byte2. The resulting value is pushed
onto the operand stack.

7.5.103 sstore
Store short into local variable

Format

Forms

sstore = 41 (0x29)

Stack

…, value ->
…

Description

sspush

byte1

byte2

sstore

index

7-94 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (Section 3.5, “Frames” on page 3-3). The value on top of the
operand stack must be of type short. It is popped from the operand stack, and the
value of the local variable at index is set to value.

7.5.104 sstore_<n>
Store short into local variable

Format

Forms

sstore_0 = 47 (0x2f)
sstore_1 = 48 (0x30)
sstore_2 = 49 (0x31)
sstore_3 = 50 (0x32)

Stack

…, value ->
…

Description

The <n> must be a valid index into the local variables of the current frame
(Section 3.5, “Frames” on page 3-3). The value on top of the operand stack must be
of type short. It is popped from the operand stack, and the value of the local variable
at <n> is set to value.

7.5.105 ssub
Subtract short

Format

Forms

ssub = 67 (0x43)

Stack

sstore_<n>

ssub

Chapter 7 Java Card Virtual Machine Instruction Set 7-95

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is value1 - value2. The result is pushed onto the
operand stack.

For short subtraction, a – b produces the same result as a + (–b). For short values,
subtraction from zeros is the same as negation.

Despite the fact that overflow or underflow may occur, in which case the result may
have a different sign than the true mathematical result, execution of a ssub
instruction never throws a runtime exception.

7.5.106 stableswitch
Access jump table by short index and jump

Format

Offset Format

Forms

stableswitch = 115 (0x73)

Stack

stableswitch

defaultbyte1

defaultbyte2

lowbyte1

lowbyte2

highbyte1

highbyte2

jump offsets…

offsetbyte1

offsetbyte2

7-96 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

…, index ->
…

Description

A stableswitch instruction is a variable-length instruction. Immediately after the
stableswitch opcode follow a signed 16-bit value default, a signed 16-bit value low, a
signed 16-bit value high, and then high – low + 1 further signed 16-bit offsets. The
value low must be less than or equal to high. The high – low + 1 signed 16-bit offsets
are treated as a 0-based jump table. Each of the signed 16-bit values is constructed
from two unsigned bytes as (byte1 << 8) | byte2.

The index must be of type short and is popped from the stack. If index is less than
low or index is greater than high, than a target address is calculated by adding
default to the address of the opcode of this stableswitch instruction. Otherwise, the
offset at position index – low of the jump table is extracted. The target address is
calculated by adding that offset to the address of the opcode of this stableswitch
instruction. Execution then continues at the target address.

The target addresses that can be calculated from each jump table offset, as well as
the one calculated from default, must be the address of an opcode of an instruction
within the method that contains this stableswitch instruction.

7.5.107 sushr
Logical shift right short

Format

Forms

sushr = 81 (0x51)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by sign-extending value1 to 32 bits1 and
shifting the result right by s bit positions, with zero extension, where s is the value
of the low five bits of value2. The resulting value is then truncated to a 16-bit result.
The result is pushed onto the operand stack.

sushr

Chapter 7 Java Card Virtual Machine Instruction Set 7-97

Notes

If value1 is positive and s is value2 & 0x1f, the result is the same as that of value1 >>
s; if value1 is negative, the result is equal to the value of the expression (value1 >> s)
+ (2 << ~s). The addition of the (2 << ~s) term cancels out the propagated sign bit.
The shift distance actually used is always in the range 0 to 31, inclusive, as if value2
were subjected to a bitwise logical AND with the mask value 0x1f.

The mask value of 0x1f allows shifting beyond the range of a 16-bit short value. It is
used by this instruction, however, to ensure results equal to those generated by the
Java instruction iushr.

7.5.108 swap_x
Swap top two operand stack words

Format

Forms

swap_x = 64 (0x40)

Stack

…, wordM+N, …, wordM+1, wordM, …, word1 ->
…, wordM, …, word1, wordM+N, …, wordM+1

Description

The unsigned byte mn is used to construct two parameter values. The high nibble,
(mn & 0xf0) >> 4, is used as the value m. The low nibble, (mn & 0xf), is used as the
value n. Permissible values for both m and n are 1 and 2.

The top m words on the operand stack are swapped with the n words immediately
below.

The swap_x instruction must not be used unless the ranges of words 1 through m
and words m+1 through n each contain either a 16-bit data type, two 16-bit data
types, a 32-bit data type, a 16-bit data type and a 32-bit data type (in either order), or
two 32-bit data types.

1. Sign extension to 32 bits ensures that the result computed by this instruction will be exactly equal to that
computed by the Java iushr instruction, regardless of the input values. In a Java Card virtual machine the
expression “0xffff >>> 0x01” yields 0xffff, where “>>>” is performed by the sushr instruction. The same
result is rendered by a Java virtual machine.

swap_x

mn

7-98 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Notes

Except for restrictions preserving the integrity of 32-bit data types, the swap_x
instruction operates on untyped words, ignoring the types of data they contain.

If a virtual machine does not support the int data type, the only permissible value
for both m and n is 1.

7.5.109 sxor
Boolean XOR short

Format

Forms

sxor = 87 (0x57)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by taking the bitwise exclusive OR of
value1 and value2. The result is pushed onto the operand stack.

sxor

8-1

CHAPTER 8

Tables of Instructions

The following pages contain lists of the APDU instructions recognized by the Java
Card platform, organized by opcode value (TABLE 8-1) and by opcode mnemonic
(TABLE 8-2).

TABLE 8-1 Instructions by Opcode Value

dec hex mnemonic dec hex mnemonic

0 00 nop 47 2F sstore_0

1 01 aconst_null 48 30 sstore_1

2 02 sconst_m1 49 31 sstore_2

3 03 sconst_0 50 32 sstore_3

4 04 sconst_1 51 33 istore_0

5 05 sconst_2 52 34 istore_1

6 06 sconst_3 53 35 istore_2

7 07 sconst_4 54 36 istore_3

8 08 sconst_5 55 37 aastore

9 09 iconst_m1 56 38 bastore

10 0A iconst_0 57 39 sastore

11 0B iconst_1 58 3A iastore

12 0C iconst_2 59 3B pop

13 0D iconst_3 60 3C pop2

14 0E iconst_4 61 3D dup

15 0F iconst_5 62 3E dup2

16 10 bspush 63 3F dup_x

17 11 sspush 64 40 swap_x

8-2 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

18 12 bipush 65 41 sadd

19 13 sipush 66 42 iadd

20 14 iipush 67 43 ssub

21 15 aload 68 44 isub

22 16 sload 69 45 smul

23 17 iload 70 46 imul

24 18 aload_0 71 47 sdiv

25 19 aload_1 72 48 idiv

26 1A aload_2 73 49 srem

27 1B aload_3 74 4A irem

28 1C sload_0 75 4B sneg

29 1D sload_1 76 4C ineg

30 1E sload_2 77 4D sshl

31 1F sload_3 78 4E ishl

32 20 iload_0 79 4F sshr

33 21 iload_1 80 50 ishr

34 22 iload_2 81 51 sushr

35 23 iload_3 82 52 iushr

36 24 aaload 83 53 sand

37 25 baload 84 54 iand

38 26 saload 85 55 sor

39 27 iaload 86 56 ior

40 28 astore 87 57 sxor

41 29 sstore 88 58 ixor

42 2A istore 89 59 sinc

43 2B astore_0 90 5A iinc

44 2C astore_1 91 5B s2b

45 2D astore_2 92 5C s2i

46 2E astore_3 93 5D i2b

94 5E i2s 141 8D invokestatic

TABLE 8-1 Instructions by Opcode Value (Continued)

dec hex mnemonic dec hex mnemonic

Chapter 8 Tables of Instructions 8-3

95 5F icmp 142 8E invokeinterface

96 60 ifeq 143 8F new

97 61 ifne 144 90 newarray

98 62 iflt 145 91 anewarray

99 63 ifge 146 92 arraylength

100 64 ifgt 147 93 athrow

101 65 ifle 148 94 checkcast

102 66 ifnull 149 95 instanceof

103 67 ifnonnull 150 96 sinc_w

104 68 if_acmpeq 151 97 iinc_w

105 69 if_acmpne 152 98 ifeq_w

106 6A if_scmpeq 153 99 ifne_w

107 6B if_scmpne 154 9A iflt_w

108 6C if_scmplt 155 9B ifge_w

109 6D if_scmpge 156 9C ifgt_w

110 6E if_scmpgt 157 9D ifle_w

111 6F if_scmple 158 9E ifnull_w

112 70 goto 159 9F ifnonnull_w

113 71 jsr 160 A0 if_acmpeq_w

114 72 ret 161 A1 if_acmpne_w

115 73 stableswitch 162 A2 if_scmpeq_w

116 74 itableswitch 163 A3 if_scmpne_w

117 75 slookupswitch 164 A4 if_scmplt_w

118 76 ilookupswitch 165 A5 if_scmpge_w

119 77 areturn 166 A6 if_scmpgt_w

120 78 sreturn 167 A7 if_scmple_w

121 79 ireturn 168 A8 goto_w

122 7A return 169 A9 getfield_a_w

123 7B getstatic_a 170 AA getfield_b_w

124 7C getstatic_b 171 AB getfield_s_w

TABLE 8-1 Instructions by Opcode Value (Continued)

dec hex mnemonic dec hex mnemonic

8-4 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

125 7D getstatic_s 172 AC getfield_i_w

126 7E getstatic_i 173 AD getfield_a_this

127 7F putstatic_a 174 AE getfield_b_this

128 80 putstatic_b 175 AF getfield_s_this

129 81 putstatic_s 176 B0 getfield_i_this

130 82 putstatic_i 177 B1 putfield_a_w

131 83 getfield_a 178 B2 putfield_b_w

132 84 getfield_b 179 B3 putfield_s_w

133 85 getfield_s 180 B4 putfield_i_w

134 86 getfield_i 181 B5 putfield_a_this

135 87 putfield_a 182 B6 putfield_b_this

136 88 putfield_b 183 B7 putfield_s_this

137 89 putfield_s 184 B8 putfield_i_this

138 8A putfield_i …

139 8B invokevirtual 254 FE impdep1

140 8C invokespecial 255 FF impdep2

TABLE 8-2 Instructions by Opcode Mnemonic

mnemonic dec hex mnemonic dec hex

aaload 36 24 iand 84 54

aastore 55 37 iastore 58 3A

aconst_null 1 01 icmp 95 5F

aload 21 15 iconst_0 10 0A

aload_0 24 18 iconst_1 11 0B

aload_1 25 19 iconst_2 12 0C

aload_2 26 1A iconst_3 13 0D

aload_3 27 1B iconst_4 14 0E

anewarray 145 91 iconst_5 15 0F

areturn 119 77 iconst_m1 9 09

TABLE 8-1 Instructions by Opcode Value (Continued)

dec hex mnemonic dec hex mnemonic

Chapter 8 Tables of Instructions 8-5

arraylength 146 92 idiv 72 48

astore 40 28 if_acmpeq 104 68

astore_0 43 2B if_acmpeq_w 160 A0

astore_1 44 2C if_acmpne 105 69

astore_2 45 2D if_acmpne_w 161 A1

astore_3 46 2E if_scmpeq 106 6A

athrow 147 93 if_scmpeq_w 162 A2

baload 37 25 if_scmpge 109 6D

bastore 56 38 if_scmpge_w 165 A5

bipush 18 12 if_scmpgt 110 6E

bspush 16 10 if_scmpgt_w 166 A6

checkcast 148 94 if_scmple 111 6F

dup 61 3D if_scmple_w 167 A7

dup_x 63 3F if_scmplt 108 6C

dup2 62 3E if_scmplt_w 164 A4

getfield_a 131 83 if_scmpne 107 6B

getfield_a_this 173 AD if_scmpne_w 163 A3

getfield_a_w 169 A9 ifeq 96 60

getfield_b 132 84 ifeq_w 152 98

getfield_b_this 174 AE ifge 99 63

getfield_b_w 170 AA ifge_w 155 9B

getfield_i 134 86 ifgt 100 64

getfield_i_this 176 B0 ifgt_w 156 9C

getfield_i_w 172 AC ifle 101 65

getfield_s 133 85 ifle_w 157 9D

getfield_s_this 175 AF iflt 98 62

getfield_s_w 171 AB iflt_w 154 9A

getstatic_a 123 7B ifne 97 61

getstatic_b 124 7C ifne_w 153 99

getstatic_i 126 7E ifnonnull 103 67

TABLE 8-2 Instructions by Opcode Mnemonic (Continued)

mnemonic dec hex mnemonic dec hex

8-6 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

getstatic_s 125 7D ifnonnull_w 159 9F

goto 112 70 ifnull 102 66

goto_w 168 A8 ifnull_w 158 9E

i2b 93 5D iinc 90 5A

i2s 94 5E iinc_w 151 97

iadd 66 42 iipush 20 14

iaload 39 27 iload 23 17

iload_0 32 20 putstatic_s 129 81

iload_1 33 21 ret 114 72

iload_2 34 22 return 122 7A

iload_3 35 23 s2b 91 5B

ilookupswitch 118 76 s2i 92 5C

imul 70 46 sadd 65 41

ineg 76 4C saload 38 26

instanceof 149 95 sand 83 53

invokeinterface 142 8E sastore 57 39

invokespecial 140 8C sconst_0 3 03

invokestatic 141 8D sconst_1 4 04

invokevirtual 139 8B sconst_2 5 05

ior 86 56 sconst_3 6 06

irem 74 4A sconst_4 7 07

ireturn 121 79 sconst_5 8 08

ishl 78 4E sconst_m1 2 02

ishr 80 50 sdiv 71 47

istore 42 2A sinc 89 59

istore_0 51 33 sinc_w 150 96

istore_1 52 34 sipush 19 13

istore_2 53 35 sload 22 16

istore_3 54 36 sload_0 28 1C

isub 68 44 sload_1 29 1D

TABLE 8-2 Instructions by Opcode Mnemonic (Continued)

mnemonic dec hex mnemonic dec hex

Chapter 8 Tables of Instructions 8-7

itableswitch 116 74 sload_2 30 1E

iushr 82 52 sload_3 31 1F

ixor 88 58 slookupswitch 117 75

jsr 113 71 smul 69 45

new 143 8F sneg 75 4B

newarray 144 90 sor 85 55

nop 0 00 srem 73 49

pop 59 3B sreturn 120 78

pop2 60 3C sshl 77 4D

putfield_a 135 87 sshr 79 4F

putfield_a_this 181 B5 sspush 17 11

putfield_a_w 177 B1 sstore 41 29

putfield_b 136 88 sstore_0 47 2F

putfield_b_this 182 B6 sstore_1 48 30

putfield_b_w 178 B2 sstore_2 49 31

putfield_i 138 8A sstore_3 50 32

putfield_i_this 184 B8 ssub 67 43

putfield_i_w 180 B4 stableswitch 115 73

putfield_s 137 89 sushr 81 51

putfield_s_this 183 B7 swap_x 64 40

putfield_s_w 179 B3 sxor 87 57

putstatic_a 127 7F

putstatic_b 128 80

putstatic_i 130 82

TABLE 8-2 Instructions by Opcode Mnemonic (Continued)

mnemonic dec hex mnemonic dec hex

8-8 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Glossary-1

Glossary

active applet
instance an applet instance that is selected on at least one of the logical channels.

AID (application
identifier) defined by ISO 7816, a string used to uniquely identify card applications and

certain types of files in card file systems. An AID consists of two distinct
pieces: a 5-byte RID (resource identifier) and a 0 to 11-byte PIX (proprietary
identifier extension). The RID is a resource identifier assigned to companies by
ISO. The PIX identifiers are assigned by companies.

A unique AID is assigned for each package. In addition, a unique AID is
assigned for each applet in the package. The package AID and the default AID
for each applet defined in the package are specified in the CAP file. They are
supplied to the converter when the CAP file is generated.

APDU an acronym for Application Protocol Data Unit as defined in ISO 7816-4.

API an acronym for Application Programming Interface. The API defines calling
conventions by which an application program accesses the operating system
and other services.

applet within the context of this document, a Java Card applet, which is the basic unit
of selection, context, functionality, and security in Java Card technology.

applet developer a person creating an applet using Java Card technology.

applet execution
context context of a package that contains currently active applet.

applet firewall the mechanism that prevents unauthorized accesses to objects in contexts other
than currently active context.

applet package see library package.

assigned logical
channel the logical channel on which the applet instance is either the active applet

instance or will become the active applet instance.

Glossary-2 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

atomic operation an operation that either completes in its entirety or no part of the operation
completes at all.

atomicity state in which a particular operation is atomic. Atomicity of data updates
guarantee that data are not corrupted in case of power loss or card removal.

ATR an acronym for Answer to Reset. An ATR is a string of bytes sent by the Java
Card platform after a reset condition.

basic logical channel logical channel 0, the only channel that is active at card reset. This channel is
permanent and can never be closed.

big-endian a technique of storing multibyte data where the high-order bytes come first.
For example, given an 8-bit data item stored in big-endian order, the first bit
read is considered the high bit.

binary compatibility in a Java Card system, a change in a Java programming language package
results in a new CAP file. A new CAP file is binary compatible with
(equivalently, does not break compatibility with) a preexisting CAP file if
another CAP file converted using the export file of the preexisting CAP file can
link with the new CAP file without errors.

bytecode machine-independent code generated by the compiler and executed by the Java
virtual machine.

CAD an acronym for Card Acceptance Device. The CAD is the device in which the
card is inserted.

CAP file the CAP file is produced by the Converter and is the standard file format for the
binary compatibility of the Java Card platform. A CAP file contains an
executable binary representation of the classes of a Java programming
language package. The CAP file also contains the CAP file components (see also
CAP file component). The CAP files produced by the converter are contained in
Java™ Archive (JAR) files.

CAP file component a Java Card platform CAP file consists of a set of components which represent a
Java programming language package. Each component describes a set of
elements in the Java programming language package, or an aspect of the CAP
file. A complete CAP file must contain all of the required components: Header,
Directory, Import, Constant Pool, Method, Static Field, and Reference Location

The following components are optional: the Applet, Export, and Debug. The
Applet component is included only if one or more Applets are defined in the
package. The Export component is included only if classes in other packages
may import elements in the package defined. The Debug component is
optional. It contains all of the data necessary for debugging a package.

card session a card session begins with the insertion of the card into the CAD. The card is
then able to exchange streams of APDUs with the CAD. The card session ends
when the card is removed from the CAD.

cast the explicit conversion from one data type to another.

Glossary-3

constant pool the constant pool contains variable-length structures representing various
string constants, class names, field names, and other constants referred to
within the CAP file and the Export File structure. Each of the constant pool
entries, including entry zero, is a variable-length structure whose format is
indicated by its first tag byte. There are no ordering constraints on entries in
the constant pool entries. One constant pool is associated with each package.

There are differences between the Java platform constant pool and the Java
Card technology-based constant pool. For example, in the Java platform
constant pool there is one constant type for method references, while in the
Java Card constant pool, there are three constant types for method references.
The additional information provided by a constant type in Java Card
technologies simplifies resolution of references.

context protected object space associated with each applet package and Java Card RE.
All objects owned by an applet belong to context of the applet's package.

context switch a change from one currently active context to another. For example, a context
switch is caused by an attempt to access an object that belongs to an applet
instance that resides in a different package. The result of a context switch is a
new currently active context.

Converter a piece of software that preprocesses all of the Java programming language
class files that make up a package, and converts the package to a CAP file. The
Converter also produces an export file.

currently active
context when an object instance method is invoked, an owning context of this object

becomes the currently active context.

currently selected
applet the Java Card RE keeps track of the currently selected Java Card applet. Upon

receiving a SELECT FILE command with this applet’s AID, the Java Card RE
makes this applet the currently selected applet. The Java Card RE sends all
APDU commands to the currently selected applet.

custom CAP file
component a new component added to the CAP file. The new component must conform to

the general component format. It is silently ignored by a Java Card virtual
machine that does not recognize the component. The identifiers associated
with the new component are recorded in the custom_component item of the
CAP file's Directory component.

default applet an applet that is selected by default on a logical channel when it is opened. If
an applet is designated the default applet on a particular logical channel on the
Java Card platform, it becomes the active applet by default when that logical
channel is opened using the basic channel.

EEPROM an acronym for Electrically Erasable, Programmable Read Only Memory.

entry point objects see Java Card RE entry point objects.

Glossary-4 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Export file a file produced by the Converter that represents the fields and methods of a
package that can be imported by classes in other packages.

externally visible in the Java Card platform, any classes, interfaces, their constructors, methods,
and fields that can be accessed from another package according to the Java
programming language semantics, as defined by the Java Language Specification,
and Java Card API package access control restrictions (see Java Language
Specification, section 2.2.1.1).

Externally visible items may be represented in an export file. For a library
package, all externally visible items are represented in an export file. For an
applet package, only those externally visible items that are part of a shareable
interface are represented in an export file.

finalization the process by which a Java virtual machine (VM) allows an unreferenced
object instance to release non-memory resources (for example, close and open
files) prior to reclaiming the object's memory. Finalization is only performed on
an object when that object is ready to be garbage collected (meaning, there are
no references to the object).

Finalization is not supported by the Java Card virtual machine. The method
finalize() is not called automatically by the Java Card virtual machine.

firewall see applet firewall.

flash memory a type of persistent mutable memory. It is more efficient in space and power
than EPROM. Flash memory can be read bit by bit but can be updated only as
a block. Thus, flash memory is typically used for storing additional programs
or large chunks of data that are updated as a whole.

framework the set of classes that implement the API. This includes core and extension
packages. Responsibilities include applet selection, sending APDU bytes, and
managing atomicity.

garbage collection the process by which dynamically allocated storage is automatically reclaimed
during the execution of a program.

heap a common pool of free memory usable by a program. A part of the computer's
memory used for dynamic memory allocation, in which blocks of memory are
used in an arbitrary order. The Java Card virtual machine's heap is not required
to be garbage collected. Objects allocated from the heap are not necessarily
reclaimed.

installer the on-card mechanism to download and install CAP files. The installer receives
executable binary from the off-card installation program, writes the binary into
the smart card memory, links it with the other classes on the card, and creates
and initializes any data structures used internally by the Java Card Runtime
Environment.

installation program the off-card mechanism that employs a card acceptance device (CAD) to
transmit the executable binary in a CAP file to the installer running on the card.

Glossary-5

instance variables also known as non-static fields.

instantiation in object-oriented programming, to produce a particular object from its class
template. This involves allocation of a data structure with the types specified
by the template, and initialization of instance variables with either default
values or those provided by the class’s constructor function.

instruction a statement that indicates an operation for the computer to perform and any
data to be used in performing the operation. An instruction can be in machine
language or a programming language.

internally visible items that are not externally visible. These items are not described in a
package’s export file, but some such items use private tokens to represent
internal references. See also externally visible.

JAR file an acronym for Java Archive file, which is a file format used for aggregating
many files into one.

Java Card Platform
Remote Method

Invocation a subset of the Java Platform Remote Method Invocation (RMI) system. It
provides a mechanism for a client application running on the CAD platform to
invoke a method on a remote object on the card.

Java Card Runtime
Environment (Java

Card RE) consists of the Java Card virtual machine, the framework, and the associated
native methods.

Java Card Virtual
Machine (Java Card

VM) a subset of the Java virtual machine, which is designed to be run on smart
cards and other resource-constrained devices. The Java Card VM acts an engine
that loads Java class files and executes them with a particular set of semantics.

Java Card RE entry
point objects objects owned by the Java Card RE context that contain entry point methods.

These methods can be invoked from any context and allow non-privileged
users (applets) to request privileged Java Card RE system services. Java Card
RE entry point objects can be either temporary or permanent:

temporary - references to temporary Java Card RE entry point objects cannot
be stored in class variables, instance variables or array components. The Java
Card RE detects and restricts attempts to store references to these objects as
part of the firewall functionality to prevent unauthorized reuse. Examples of
these objects are APDU objects and all Java Card RE-owned exception objects.

permanent - references to permanent Java Card RE entry point objects can be
stored and freely reused. Examples of these objects are Java Card RE-owned
AID instances.

Glossary-6 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

JDK™ software an acronym for Java Development Kit. The JDK software is a Sun
Microsystems, Inc. product that provides the environment required for
software development in the Java programming language. The JDK software is
available for a variety of operating systems, for example Sun Microsystems
Solaris™ OS and Microsoft Windows.

library package a Java programming language package that does not contain any non-abstract
classes that extend the class javacard.framework.Applet. An applet
package contains one or more non-abstract classes that extend the
javacard.framework.Applet class.

local variable a data item known within a block, but inaccessible to code outside the block.
For example, any variable defined within a method is a local variable and
cannot be used outside the method.

logical channel as seen at the card edge, works as a logical link to an application on the card. A
logical channel establishes a communications session between a card applet
and the terminal. Commands issued on a specific logical channel are
forwarded to the active applet on that logical channel. For more information,
see the ISO/IEC 7816 Specification, Part 4. (http://www.iso.org).

MAC an acronym for Message Authentication Code. MAC is an encryption of data
for security purposes.

mask production
(masking) refers to embedding the Java Card virtual machine, runtime environment, and

applets in the read-only memory of a smart card during manufacture.

method a procedure or routine associated with one or more classes in object-oriented
languages.

multiselectable
applets implements the javacard.framework.MultiSelectable interface.

Multiselectable applets can be selected on multiple logical channels at the same
time. They can also accept other applets belonging to the same package being
selected simultaneously.

multiselected applet an applet instance that is selected and, therefore, active on more than one
logical channel simultaneously.

namespace a set of names in which all names are unique.

native method a method that is not implemented in the Java programming language, but in
another language. The CAP file format does not support native methods.

nibble four bits.

object-oriented a programming methodology based on the concept of an object, which is a data
structure encapsulated with a set of routines, called methods, which operate on
the data.

Glossary-7

object owner the applet instance within the currently active context when the object is
instantiated. An object can be owned by an applet instance, or by the Java Card
RE.

objects in object-oriented programming, unique instances of a data structure defined
according to the template provided by its class. Each object has its own values
for the variables belonging to its class and can respond to the messages
(methods) defined by its class.

origin logical
channel the logical channel on which an APDU command is issued.

owning context the context in which an object is instantiated or created.

package a namespace within the Java programming language that can have classes and
interfaces.

PCD an acronym for Proximity Coupling Device. The PCD is a contactless card
reader device.

persistent object persistent objects and their values persist from one CAD session to the next,
indefinitely. Objects are persistent by default. Persistent object values are
updated atomically using transactions. The term persistent does not mean
there is an object-oriented database on the card or that objects are serialized
and deserialized, just that the objects are not lost when the card loses power.

PIX see AID.

RAM (random access

memory) temporary working space for storing and modifying data. RAM is non-
persistent memory; that is, the information content is not preserved when
power is removed from the memory cell. RAM can be accessed an unlimited
number of times and none of the restrictions of EEPROM apply.

reference
implementation a fully functional and compatible implementation of a given technology. It

enables developers to build prototypes of applications based on the technology.

remote interface an interface which extends, directly or indirectly, the interface
java.rmi.Remote.

Each method declaration in the remote interface or its super-interfaces includes
the exception java.rmi.RemoteException (or one of its superclasses) in its
throws clause.

In a remote method declaration, if a remote object is declared as a return type,
it is declared as the remote interface, not the implementation class of that
interface.

In addition, Java Card RMI imposes additional constraints on the definition of
remote methods. These constraints are as a result of the Java Card platform
language subset and other feature limitations.

Glossary-8 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

remote methods the methods of a remote interface.

remote object an object whose remote methods can be invoked remotely from the CAD client.
A remote object is described by one or more remote interfaces.

RFU acronym for Reserved for Future Use.

RID see AID.

RMI an acronym for Remote Method Invocation. RMI is a mechanism for invoking
instance methods on objects located on remote virtual machines (meaning, a
virtual machine other than that of the invoker).

ROM (read-only

memory) memory used for storing the fixed program of the card. A smart card’s ROM
contains operating system routines as well as permanent data and user
applications. No power is needed to hold data in this kind of memory. ROM
cannot be written to after the card is manufactured. Writing a binary image to
the ROM is called masking and occurs during the chip manufacturing process.

runtime
environment see Java Card Runtime Environment (Java Card RE).

shareable interface an interface that defines a set of shared methods. These interface methods can
be invoked from an applet in one context when the object implementing them
is owned by an applet in another context.

shareable interface
object (SIO) an object that implements the shareable interface.

smart card a card that stores and processes information through the electronic circuits
embedded in silicon in the substrate of its body. Unlike magnetic stripe cards,
smart cards carry both processing power and information. They do not require
access to remote databases at the time of a transaction.

terminal a Card Acceptance Device that is typically a computer in its own right and can
integrate a card reader as one of its components. In addition to being a smart
card reader, a terminal can process data exchanged between itself and the
smart card.

thread the basic unit of program execution. A process can have several threads
running concurrently each performing a different job, such as waiting for
events or performing a time consuming job that the program doesn't need to
complete before going on. When a thread has finished its job, it is suspended or
destroyed.

The Java Card virtual machine can support only a single thread of execution.
Java Card technology programs cannot use class Thread or any of the thread-
related keywords in the Java programming language.

transaction an atomic operation in which the developer defines the extent of the operation
by indicating in the program code the beginning and end of the transaction.

Glossary-9

transient object the state of transient objects do not persist from one CAD session to the next,
and are reset to a default state at specified intervals. Updates to the values of
transient objects are not atomic and are not affected by transactions.

verification a process performed on a CAP file that ensures that the binary representation of
the package is structurally correct.

word an abstract storage unit. A word is large enough to hold a value of type byte,
short, reference or returnAddress. Two words are large enough to hold a
value of integer type.

