Reverse code engineering
Powerfull knowledge, lot of fun and legal for sealguurposes!

Native binary code (assembler)

We will work with OllyDbg (www.ollydbg.de) prograitiat is easy-to-use
disassembler and debugger.

» Basic information available in Wikipedia article gverse engineering (IS
copy REWiki.pdf)

* Download OllyDbg 1.10 (freeware) either from hthgwww.ollydbg.de/ or
(better) from IS (OllyDbg.zip).

» Download tutorials | and Il. by Lena from IS (tutr. and tut2.rar). Remaining
tutorials can be obtained from http://www.tuts4ymum.

» Download Assembler basics from IS (BasicsOfAssentudi).

* Download homework crackme (LabakCrackMe).

OllyDbg shortcuts & most important commands

F3 ... Open binary file

F2 ... Toggle breakpoint (on opcodes, or double click)

F9 ... Run debugged program

Ctrl+F2 ... Restart program, temporary changes are lost!

F8 ... Step over

F7 ... Step into

Spacebar or double click ... allows to set new opcode

Alt+BkSp ... Undo change

Rightclick->Sear ch for->All referenced text strings ... Constant text strings
referenced in code.

Rightclick->Find referencesto->Address constant ... will find references to
particular memory elsewhere in the code — use wberlike to know where the
memory is set or changed.

Ctrl+F1 ... Help on API (WIN32 API help file already prepd in OllyDbg directory
(WIN32.HLP))

; ... add or edit your comment for specific code line

Rightclick->Copy to executable->All modifications (or Selection) ... make changes
permanent. New window with modified code is operidghtclick->Save file to

write patched binary to disk.

Registers (FPU):

Z — zero flag, C — carry flag, S — sign flag. Inveit flag by double click.
EIP ... next address to execute (instruction pojinte

EBX ... usually loop counter

Startup resources

The Reverse Code Engineering Community: http://wewerse-engineering.net/
Tutorials for You: http://www.tuts4you.com
RE on Wikipedia: http://en.wikipedia.org/wiki/Reger engineering

Some hints

Conditional branching: usually realized by two cengive operations
o Comparison operation setting Flags register
o Conditional jumping operation to address basedlagsHBranch 1)
o If not jumped then Branch 2 code is present omthé instruction, or
unconditional jump JMP to Branch 2.
Comparison operation
o CMP EAX, -1 - will set flag(s) in Registers, ZerodaSign flags are
usually of interest. If two values are same (EAX-&¥ Zero flag is set
to 1.
o0 TEST A, B (usually TEST EAX, EAX) — logical AND opation,
results not saved, Flags are set. TEST EAX, EAXtedt if value in
EAX is equal to 0. If EAX == 0 then Zero flag == otherwise.
Jump operation
0 Unconditional JMP —jump every time
o Conditional - based on the current value of flag(s)

JA* Jump if (unsigned) above - CF=0 and ZF=0

JB* Jump if (unsigned) below - CF=1

JE** Jump if equal - ZF=1

JG* Jump if (signed) greater - ZF=0 and SF=0F (SF = Sign Flag)
JGE* Jump if (signed) greater or equal - SF=O0OF

JL* Jump if (signed) less - SF 1= OF (!= is not)

JLE* Jump if (signed) less or equal - ZF=1 and OF != OF

JMP** Jump - Jumps always

JNE** Jump if not equal - ZF=0

Java (Card) bytecode
Intermediate code interpreted by virtual machiree (3avaCard222_ops.pdf).

» Usually easier to understand then assembler code.
» Stack-based oriented execution, no registers @& us
» Operation takes its operands from stack and reasult there.

JAVACARD SOURCE CODE
// ENCRYPT INCOMING BUFFER
void Encrypt(APDU apdu) {
byte[] apdubuf = apdu.getBuffer();
short datalen = apdu.setIncomingAndReceive();
short i

// CHECK EXPECTED LENGTH (MULTIPLY OF 64 bites)
if ((datalLen % 8) != @) ISOException.throwIt(SW_CIPHER_DATA_LENGTH_BAD);

// ENCRYPT INCOMING BUFFER
m_encryptCipher.doFinal(apdubuf, IS07816.0FFSET_CDATA, datalLen, m_ramArray, (short) 0);

// COPY ENCRYPTED DATA INTO OUTGOING BUFFER
Util.arrayCopyNonAtomic(m_ramArray, (short) ©, apdubuf, ISO7816.0FFSET_CDATA, datalen);

// SEND OUTGOING BUFFER
apdu.setOutgoingAndSend(IS07816.0FFSET_CDATA, datalen);
X

JAVACARD BYTECODE

.method Encrypt(Ljavacard/framework/APDU;)V 129 {
.stack 6;
.locals 3;

.descriptor Ljavacard/framework/APDU; 0.10;

LO: aload 1;
invokevirtual 30;
astore_2;
aload 1;
invokevirtual 42;
sstore 3;
sload 3;
bspush 8;
srem;
ifeq L2;

L1. sspush 26384;
invokestatic 41;
goto L2;

L2; getfield_a_this 1;
aload_2;
sconst 5;
sload_3;
getfield_a_this 10;
sconst_0;
invokevirtual 43;
pop;
getfield_a_this 10;
sconst_0;
aload 2;
sconst_5;
sload_3;
invokestatic 44;
pop;
aload_1;
sconst_5;
sload_3;
invokevirtual 45;
return;

Homework

The goal of this assignment is to reverse engisegplied crack me file
(LabakCrackMe.exe), obtain information about itedéor and make program to
continue successfully without error message bya&)hing, b) creating valid license
info. More principally different solutions for treame problem will be awarded by an
extra points.

Hints:
- You may use OllyDbg or any other disassembler.
- Functionfread fail by null exception if invalid file handle isipplied.

Submit:

- Short description of program behavior in texnfioor asannotated C source code
(not only output of some disassembler) (source eedsion will be awarded by 1

extra point).

- Patched crack me binary that let the programenery time successfully with no
errorwithout valid license info.

- Valid license info that let program run succebgfwithout binary modification.

- Deadline is 12.5.2010 {10 points + bonuses}

