
Reverse code engineering 
Powerfull knowledge, lot of fun and legal for several purposes!  

Native binary code (assembler) 
We will work with OllyDbg (www.ollydbg.de) program that is easy-to-use 
disassembler and debugger.  
 

• Basic information available in Wikipedia article on reverse engineering (IS 
copy REWiki.pdf) 

• Download OllyDbg 1.10 (freeware) either from http://www.ollydbg.de/ or 
(better) from IS (OllyDbg.zip).  

• Download tutorials I and II. by Lena from IS (tut1.rar and tut2.rar). Remaining 
tutorials can be obtained from http://www.tuts4you.com. 

• Download Assembler basics from IS (BasicsOfAssembler.pdf). 
• Download homework crackme (LabakCrackMe). 

OllyDbg shortcuts & most important commands  
F3 ... Open binary file 
F2 ... Toggle breakpoint (on opcodes, or double click) 
F9 ... Run debugged program 
Ctrl+F2 ... Restart program, temporary changes are lost!  
F8 ... Step over 
F7 ... Step into 
Spacebar or double click ... allows to set new opcode 
Alt+BkSp ... Undo change 
Rightclick->Search for->All referenced text strings ... Constant text strings 
referenced in code.  
Rightclick->Find references to->Address constant ... will find references to 
particular memory elsewhere in the code – use when you like to know where the 
memory is set or changed.   
Ctrl+F1 ... Help on API (WIN32 API help file already prepared in OllyDbg directory 
(WIN32.HLP)) 
; ... add or edit your comment for specific code line 
Rightclick->Copy to executable->All modifications (or Selection) … make changes 
permanent. New window with modified code is opened. Rightclick->Save file to 
write patched binary to disk. 
 
 
Registers (FPU):  
Z – zero flag, C – carry flag, S – sign flag. Invert bit flag by double click.  
EIP ... next address to execute (instruction pointer) 
EBX ... usually loop counter 
  

Startup resources 
The Reverse Code Engineering Community: http://www.reverse-engineering.net/ 
Tutorials for You: http://www.tuts4you.com 
RE on Wikipedia: http://en.wikipedia.org/wiki/Reverse_engineering 



Some hints 
• Conditional branching: usually realized by two consecutive operations 

o Comparison operation setting Flags register 
o Conditional jumping operation to address based on Flags (Branch 1) 
o If not jumped then Branch 2 code is present on the next instruction, or 

unconditional jump JMP to Branch 2. 
• Comparison operation  

o CMP EAX, -1 - will set flag(s) in Registers, Zero and Sign flags are 
usually of interest. If two values are same (EAX == -1), Zero flag is set 
to 1. 

o TEST A, B (usually TEST EAX, EAX) – logical AND operation, 
results not saved, Flags are set. TEST EAX, EAX will test if value in 
EAX is equal to 0. If EAX == 0 then Zero flag == 1, 0 otherwise.     

• Jump operation  
o Unconditional JMP – jump every time 
o Conditional - based on the current value of flag(s)  

JA* Jump if (unsigned) above  - CF=0 and ZF=0 

JB* Jump if (unsigned) below  - CF=1 

JE** Jump if equal    - ZF=1 

JG* Jump if (signed) greater  - ZF=0 and SF=OF (SF = Sign Flag) 

JGE* Jump if (signed) greater or equal - SF=OF 

JL* Jump if (signed) less   - SF != OF (!= is not) 

JLE* Jump if (signed) less or equal - ZF=1 and OF != OF 

JMP** Jump     - Jumps always 

JNE** Jump if not equal   - ZF=0 

 



Java (Card) bytecode 
Intermediate code interpreted by virtual machine (see JavaCard222_ops.pdf). 
 

• Usually easier to understand then assembler code.  
• Stack-based oriented execution, no registers are used. 
• Operation takes its operands from stack and return result there. 
 

 

JAVACARD SOURCE CODE  

 // ENCRYPT INCOMING BUFFER 
  void Encrypt(APDU apdu) { 
      byte[]    apdubuf = apdu.getBuffer(); 

      short     dataLen = apdu.setIncomingAndReceive(); 
      short     i; 
 

      // CHECK EXPECTED LENGTH (MULTIPLY OF 64 bites) 
      if ((dataLen % 8) != 0) ISOException.throwIt(SW_CIPHER_DATA_LENGTH_BAD); 
 

      // ENCRYPT INCOMING BUFFER 
      m_encryptCipher.doFinal(apdubuf, ISO7816.OFFSET_CDATA, dataLen, m_ramArray, (short) 0); 

 
      // COPY ENCRYPTED DATA INTO OUTGOING BUFFER 

      Util.arrayCopyNonAtomic(m_ramArray, (short) 0, apdubuf, ISO7816.OFFSET_CDATA, dataLen); 
 
      // SEND OUTGOING BUFFER 

      apdu.setOutgoingAndSend(ISO7816.OFFSET_CDATA, dataLen); 
  } 
 

JAVACARD BYTECODE 

.method  Encrypt(Ljavacard/framework/APDU;)V 129 { 
 .stack 6; 

 .locals 3; 
 
 .descriptor Ljavacard/framework/APDU; 0.10; 

  L0: aload_1; 
   invokevirtual 30;   

   astore_2; 
   aload_1; 

   invokevirtual 42;   
   sstore_3; 
   sload_3; 

   bspush 8; 
   srem; 
   ifeq L2; 

  L1: sspush 26384; 
   invokestatic 41;   
   goto L2; 

  L2: getfield_a_this 1;   
   aload_2; 
   sconst_5; 

   sload_3; 
   getfield_a_this 10;   
   sconst_0; 

   invokevirtual 43;   
   pop; 
   getfield_a_this 10;   
   sconst_0; 

   aload_2; 
   sconst_5; 
   sload_3; 

   invokestatic 44;   
   pop; 
   aload_1; 

   sconst_5; 
   sload_3; 
   invokevirtual 45;   

   return; 
} 



Homework 
The goal of this assignment is to reverse engineer supplied crack me file 
(LabakCrackMe.exe), obtain information about its behavior and make program to 
continue successfully without error message by a) patching, b) creating valid license 
info. More principally different solutions for the same problem will be awarded by an 
extra points.  
 
Hints: 
- You may use OllyDbg or any other disassembler.   
-  Function fread fail by null exception if invalid file handle is supplied. 
 
Submit: 
- Short description of program behavior in text form or as annotated C source code 
(not only output of some disassembler) (source code version will be awarded by 1 
extra point). 
- Patched crack me binary that let the program run every time successfully with no 
error without valid license info.   
- Valid license info that let program run successfully without binary modification.  
- Deadline is 12.5.2010 {10 points + bonuses} 
 


