Using Google App Engine

Bohuslav Kabrda

December 13, 2009

Introduction

The aim of this paper is to provide a description of using Google App Engine (or GAFE)
with Python. It contains all important information about using the webapp framework
and the Datastore. I concentrated on making this paper shorter than the Google tutorials
and references [1], while heavily drawing from them. Therefore, this paper is not meant
to be innovative — it is rather a compilation of information that I thought were important
for creating real applications for GAE.

I added my own examples and tried to find and explain problems that are left
unexplained or not talked about in Google references.

Contents

(1 What Is Google App Engine?|
[L1 Java Runtime Environmentl 0oL,

1.2 Python Runtime Environment|.

2__Datastorel
2.1 A Closer Look Inside — BigTablef
[2.1.1 BigTlable Data Model|,
[2.1.2 BigTable Technologies|

[3 Python Applications on Google App Engine|
[3.1 Setting Up the Working Environment|
(3.2 Hello, World!]
[3.2.1 Examining the Project|.
[3.2.2 Running the Application|.
3.3 The webapp Framework|
[3.3.1 Creating a Sophisticated Application|.
I;i.;i,z && lla‘ l)!zs:s [ll‘ls l)!z?l

[4 Using Datastore With Python|
4.1 Data Modelling|
4.1.1 Models and Properties|
4.1.2 Special Properties|
4.2 Storing and Retrieving Datal.
4.2.1 Keysl o e
4.2.2 Creating and Updating Entities|.
4.2.3 Retrieving Entities — Queries| 0oL
4.2.4 Deleting Entities| oo o oL
4.3 Entity Groups and Relationships|
4.3.1 Entity Groups|
4.3.2 Filtering Entities By Ancestors|
4.4 Transactions
4.4.1 Using Transactions|

[4.5.1 Explaining Indexes| oo L
4.5.2 Exploding Indexes| oL

5 Conclusion|

12
12
12
13
14
14
14
15
18
19
19
19
20
20
20
21
21
22

23

1 What Is Google App Engine?

GAFE is a mechanism which lets web applications run on Google infrastructure. It is
based on cloud computing and it spans applications over multiple servers. It was first
released in April 2008 (as a beta version). The main purpose of this technology is to let
the web developers to focus on programming itself, while deploying, scaling and database
management is done automatically.

Applications may be written using Java technologies (which means either Java with
JavaEE technologies or any language that can run inside the Java JVM — for example
Ruby — can be used) or using Python.

GAF provides applications with a persistent storage, the so called Datastore, that
has the ability to scale automatically according to the way it is being used. It can be
used with JPA/JDO or Python modeling API.

All applications run in a Sandboz, which means that they have some limitations (for
example they cannot write to the file system, only read from it), on the other hand, this
ensures that they can scale more efficiently and automatically.

1.1 Java Runtime Environment

The JRE used provides applications with most standard Java web development tools
(such as JSP, JPA/JDO, JavaMail, etc. .., but neither EJB nor JDBC).

JRE on Google App Engine currently uses Java 6, the JVM runs inside the already
mentioned Sandboz.

1.2 Python Runtime Environment

Java App Engine uses optimized Python interpreter (currently version 2.5) and it also
provides developers with a special web application framework (called webapp) and tools
for accessing the stored data. Other web frameworks such as DjangoE] may also be used.

Due to the Sandbozx restrictions, the code must be written in Python exclusively,
extensions written in C language are not supported.

!See http://www.djangoproject.com/

http://www.djangoproject.com/

2 Datastore

The Datastore provides applications running on Google App Engine with the only option
to store the application data.
The Datastore:

e scales “on demand” (which means it scales by monitoring amounts of stored data
and number of queries).

e supports developers with transactions (using optimistic concurrency contm@.
e is strongly consistent.
The Datastore is not:

e traditional relational database — entities (data objects) are stored and loaded based
on values of their properties.

e based on tables — the entities are schemaless, their structure is provided by the
application code.

2.1 A Closer Look Inside — BigTable

This section draws from [2].

The Datastore is built on BigTable, a technology based on Google File System (GF'S).
BigTable is designed to be a very fast and extremely scalable DBMS. It is, for example,
used for storing data for Google projects like web indexing or Google Earth.

2.1.1 BigTable Data Model

BigTable is basically a multi-dimensional sorted map. It is indexed by a row key, column
key and a timestamp, each value is an uninterpreted array of bytes.

The row keys (names of the rows) are arbitrary strings and each operation under a
single row key is atomic. The data is maintained in lexicographic order (ordered by the
row key). The range of the rows is partitioned, making each range (called tablet) a basic
unit of distribution and load balancing.

The column keys are divided into sets called column families. The column families
are the basic units of access control. All data in one family typically have the same type
and are compressed together. The column keys are used in the format family:qualifier,
thus forming a kind of a multi-level hashtable.

The timestamp dimension of BigTable is used for keeping different versions of data.

2 Optimistic concurrency control is a concurrency control method, in which the transaction assumes
that it will not be interrupted while executing, therefore it doesn’t lock the table. Before committing, it
checks that the data haven’t been modified by any other transactions. If they have been modified, the
transaction rolls back.

2.1.2 BigTable Technologies

As already mentioned, BigTable is based on GFS. It is designed to operate on a cluster and
depends on a cluster management system, which manages resources and schedules jobs.
BigTable also relies on distributed lock service Chubby, that uses the Paxos algorithnﬂ.

2.2 Datastore API

The primary subject of storing is an entity (also called data object, DO). Each entity has
one or more properties of several basic data types, including a reference to another entity.
The datastore API is discussed in the chapter []

3Basically, the participants of the process have to agree on the result. See 3] for more information.

3 Python Applications on Google App Engine

This section shows how to develop few simple applications for Google App Engine using
Python. You will need Python 2.5 interpreter, GAE SDK and a Python editor (i suggest
using Eclipse with the Pydev module).

3.1 Setting Up the Working Environment

Install the Python interpreteIEI GoogleAppEngineSDKﬂ and Eclipseﬂ with Pydevﬂ In
Eclipse, add the directory containing GoogleAppEngineSDK directory with libraries (e.g.
google_appengine\lib to Python Libraries — use Window — Pydev — Interpreter
- Python — New Folder . The environment is now ready and you can create your first
project.

3.2 Hello, World!

In Eclipse, choose File — New — 0Other — Pydev — Pydev Google App Engine
Project then click the Next button. Type helloworld as the project name. Then
choose grammar version 2.5 and click Next again. On the next page, browse to the folder
with your instalation of GAFE (e.g. C:\Program Files\Google\google appengine))
and again click the Next button. Select “Hello world” template and click the Finish
button. The project is now created.

3.2.1 Examining the Project

As you can see, one directory (src) containing two files (app.yaml and helloworld.py)
was created. The helloworld.py is just a simple script that outputs the Content-type
header and a line “Hello world”:

print ’Content-Type: text/plain’
print 7’
print ’Hello, world!’

The second file is more interesting for us. It is a file written in YAMI¥| and we will
call it the configuration file:

application: sample-app
version: 1

runtime: python
api_version: 1

“Download from URL http://www.python.org/download/releases/2.5/

*Download from URL http://code.google.com/intl/cs/appengine/downloads.html#Google_App_
Engine_SDK_for_Python

°Download from URL http://www.eclipse.org/downloads/

"Download from URL http://pydev.org/download.html

8 “A human-readable data serialization format”, see http://www.yaml.org/

http://www.python.org/download/releases/2.5/
http://code.google.com/intl/cs/appengine/downloads.html#Google_App_Engine_SDK_for_Python
http://code.google.com/intl/cs/appengine/downloads.html#Google_App_Engine_SDK_for_Python
http://www.eclipse.org/downloads/
http://pydev.org/download.html
http://www.yaml.org/

handlers:
- url: /.x*
script: helloworld.py

The line application: sample-app is called the application identifier. The version
line contains the number of a version — it is very important to use it properly, because
after uploading newer version of the application to the App Engine, you can always go
back to the older versions. Runtime environment is, of course, Python and the version of
the API is set to 1 (currently, there is only this version, but more are to come in the
future). The handlers section is responsible for mapping URLs to the scripts (or images,
stylesheets etc...). Note, that regular expressions can be used in mapping patterns.

3.2.2 Running the Application

Run the GAFE Launcher (which was installed with GoogleAppEngineSDK) and add the
“Hello, World!” application (File — Add existing application and input the path to
the src in the helloworld directory of the application. Select the project, click Run and
browse http://localhost:8080/ in your browser. You should see the “Hello, world!”
greeting.

3.3 The webapp Framework

There are several Python frameworks for web development, like Djangaﬂ, CherryPy{T_U] or
web.pﬂ Google, however, have decided to make their own simple framework embedded
in GoogleAppEngineSDK (which means you don’t have to install it, everything is ready
to go, you only need to include it in the source files). This framework is called webapp
and we will be using it throughout this whole tutorial. We will also use some Django
functionality - namely the HTML templates{T_Zl

The application written in webapp has three important parts:

e a part that processes request and builds response — it consists of one or more classes
extending RequestHandler

e an instance of WSGIApplication which routes the requests to handlers based on
URL

e a main routine that runs the WSGIApplication

9http://www.djangoproject.com/
http://www.cherrypy.org/
"http://webpy.org/
12°See http://docs.djangoproject.com/en/dev/ref /templates/

 http://www.djangoproject.com/
http://www.cherrypy.org/
http://webpy.org/
http://docs.djangoproject.com/en/dev/ref/templates/

3.3.1 Creating a Sophisticated Application

Rewrite the helloworld.py file to look like this:

import os

from google.appengine.ext import webapp

from google.appengine.ext.webapp import template

from google.appengine.ext.webapp.util import run_wsgi_app

class MainPage(webapp.RequestHandler)
def get(self):

template_values = {
‘title’: ’Hello, world!’,
’header’: ’Hello, sophisticated world!’

}

path = os.path.join(os.path.dirname(__file__),
’index.html’)

self .response.out.write(template.render(path,
template_values))

class ErrorPage(webapp.RequestHandler):
def get(self):

template_values = {
’title’: ’Error!’,
’header’: ’Yikes, this page doesn\’t exist!’

}

path = os.path.join(os.path.dirname(__file__),
’index.html’)

self .response.out.write(template.render(path,
template_values))

#the action done by the MainPage handler is

#mapped to ’/’ and to ’/sayhello’ URLs

application = webapp.WSGIApplication([(’/’, MainPage),
(’/sayhello’, MainPage),
(°/.*x’, ErrorPage)],
debug=True)

def main():
run_wsgi_app(application)

if __name__ == "__main__":

main()

Then change the app.yaml:

application: sample-app
version: 1

runtime: python
api_version: 1

handlers:
- url: /stylesheets/.*
static_dir: stylesheets

- url: /.*
script: helloworld.py

After altering the configuration file, create a new directory in src, called stylesheets
and create a simple stylesheet style.css in it:

body {
background-color: brown;
3
hi {
color: white;
3

Finally, create the index.html template in the src directory:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">

<link rel="stylesheet" type="text/css"
href="/stylesheets/style.css">

<title>{{ title }}</title>

</head>

<body>

<h1>{{ header }}</h1>

{% ifequal title ’Error!’ %}

This is so sad...

{% else %}

You made it!

{% endifequal %}

</body>

</html>

Save all modified and created files and try to reload the http://localhost:8080/
page. Note, that you don’t need to restart the application in Google App Engine Launcher,
it reloads automatically.

3.3.2 What Does This Do?

How does this code work? When an HTTP request is sent to the server, the requested
URL is checked against the app.yaml file, resolving the name of file to use for creating a
response. The response can be made by serving a static file or running a script. It is
important to know, that the URL patterns are tested from top to bottom as written
in the configuration file, which means that if we had switched the two patterns, the
helloworld.py script would have been used everytime, and the second pattern would
have never come to use (and the stylesheet wouldn’t have been loaded). So, as you can
see, if the client is asking for a file inside the stylesheets folder, it gets the file directly,
otherwise the helloworld.py script is run and the result is returned.

Probably the most interesting thing on this example is the HTML file template and
how we have used it. If you take a closer look at the helloworld.py file, you will notice,
that the two handlers (MainPage and ErrorPage) don’t output any HTML code directly.
They ather save the parameters to a dictiomzry{ig]7 which is then used by the template to
make the response page.

The index.html file is a simple HTML template written using Django functionality
implemented in webapp. You can use templates to output various data computed by
request handlers. Templates also support basic condition handling and loops.

3.3.3 Conclusion of This Basic Example

There are several important things to notice about this example:
e The order of patterns in app.yaml is important.

e The order of patterns in application variable in the script file is also important
(for the same reason).

e You have to discriminate between scripts and static files.

e You can use Django templates when writing applications in webapp framework.

3.4 Limitations

This section lists all important limitiations for applications running on GAE.

1. Request handler has a limited amount of time to process request (currently 30
seconds), when this deadline is reached, the handler is interrupted.

2. The application cannot write to the filesystem (Sandboz restriction).

13A Python data structure

10

3. The application cannot connect to any host directly, it has to use the GAFE URL
fetch service (Sandboz restriction).

4. The application cannot spawn sub-process or thread (Sandbox restriction).

5. All code has to be in pure Python, no C (or other languages) extensions can be
included.

6. All imports are cached, which means, that global variables are initialized only once,
when the module is first imported, their value then remains the same between
requests.

In the next chapter, we will finally get to the main focus of this work — using Datastore.

11

4 Using Datastore With Python

4.1 Data Modelling

The Datastore API (namely package google.appengine.ext.db) doesn’t need any table
definitions like relational databases do. The format of the stored data is described by
subclasses of the db.Model, db.Expando and db.PolyModel classes.

4.1.1 Models and Properties

Let’s look at a small example:

class Chair(db.Model):
legs = db.IntegerProperty(required = True)
description = db.StringProperty()
is_armchair = db.BooleanProperty(required = True)
created_on = db.DateProperty(auto_now_add = True)
owned_by = db.UserProperty(auto_current_user_add = True)
materials = db.ListProperty(basestring)

We have created a class representing a chair with six attributes. The first four
attributes store data as you would expect using common data types. Some of the
attributes are marked as required (which means, that they need to be passed to the
constructor when creating an instance). Attributes that are not required and not set are
stored as None values. The property created_on will be assigned current date on storing,
if uninitialized. Property owned by is a reference to a Google account (it defaults to
currently signed user). With webapp, you can even use Google accounts for authentication
in your application. The last property is a list of strings, which can also be defined as
db.StringListProperty. You can now make an instance of the Chair class:

broken_chair = Chair(legs = 3,
is_armchair = False,
materials = [’rust’, ’wood_worm’],
created_on = datetime(1900, 1, 1))

Any attributes that you might assign to the chair that are not specified in the model
will not be saved in the datastore (which could be useful for storing values used only at
runtime).

Sometimes you might need to store different attributes for instances of the same class.
That is what the Expando Models are used for. The db.Expando class is a subclass
of db.Model. It can define both fixed and dynamic properties. All properties of each
instance are stored in the database:

class Person(db.Expando) :
sex = db.StringProperty(required = True,

12

choices = set([’female’, ’male’, ’alien’]))
height = db.IntegerProperty()

p = Person(sex = ’female’)
p.name = ’Monty’

The attributes defined in the class definitions have the same semantics as in the
db.Model definition, but all the dynamic attributes will be stored as well. Note, that
dynamic attribute with value None is not the same as a dynamic attribute that doesn’t
exist (which means that the entity simply doesn’t have it).

The last type of model is a Polymorphic Model (db.PolyModel). It is used to create
class hierarchy:

class Food(db.PolyModel):
calories = db.IntegerProperty(required = True)

class Spam(Food):
is_tasty = db.BooleanProperty(required = True)

class Beans(Food):

quantity = db.IntegerProperty(required = True)

All Spam and Food instances will now have the calories attribute. A Datastore
query (described in for Food will return Food, Spam and Beans entities, while a
query for Spam will only return Spam.

Dynamic attributes for db.PolyModel descendants aren’t stored.

4.1.2 Special Properties

There are few interesting properties, that we will now have a closer look at.

A string can be stored as db.StringProperty (indexed) with maximum length of
500 bytes or as a db.TextProperty with maximum length of 1 megabyte (unindexed).
Binary data can be stored in similar types — 500 bytes long indexed db.ByteString and
1 megabyte long unindexed db.BlobProperty.

What you have probably thought of already is how to model entity relations. This
can be achieved by using db.ReferenceProperty:

class Alien(db.Model):
has_flying_saucer = db.BooleanProperty(required = True)

class Human(db.Model):
kidnapped_by = db.ReferenceProperty(Alien, required = True)

13

alien = Alien(has_flying_saucer = True)

#these two lines do the same
humanl = Human(kidnapped_by = alien)
alien.key())

human2 = Human(kidnapped_by

The humanl and human2 have been kidnapped by the same alien, as you have
probably expected. If alien is not in the memory, but only in the Datastore and one of
the human entities is used, the alien is fetched automatically. The key () method will
be described in

You can use db.SelfReferenceProperty for reffering to an entity of the same kind.

For detailed description of all datatypes, see http://code.google.com/intl/cs/
appengine/docs/python/datastore/typesandpropertyclasses.html.

4.2 Storing and Retrieving Data
Up until now, we haven’t stored a single byte of data into the Datastore. To do that, we
will first need to know what a Key is.

4.2.1 Keys

A key (represented by a Key object) is a unique identifier for the entity across all entities
for one application. Each key has several components:

e path — describes parent-child relationship between this entity and another entity
(we will talk entity relationships in [4.3))

e kind of the entity
e cither a name assigned to entity by application or an ID assigned by the datastore

The Key attribute is created upon storing the entity and cannot be changed!

4.2.2 Creating and Updating Entities

Creating and updating entity is very simple. The only thing you need is to call the put ()
method of db.Model/db.Expando/db.PolyModel subclass instance and the Datastore
API takes care of the rest. When you call this method for an instance that hasn’t yet
been stored, it is saved and given a Key. If the entity already exists in Datastore upon
calling put () method, its properties are updated.

The put () method returns the Key of the stored entity.

You can use the db.put () function to put a list of entities (list of Keys is returned in
this case).

Examples:

14

http://code.google.com/intl/cs/appengine/docs/python/datastore/typesandpropertyclasses.html
http://code.google.com/intl/cs/appengine/docs/python/datastore/typesandpropertyclasses.html

class Movie(db.Model):
title = db.StringProperty(required = True)
length = db.IntegerProperty()
director = db.StringProperty()

life_of_brian = Movie(title = ’Life of Brian’
length = 123)

#store this movie
life_of_brian.put()

#update this movie
life_of_brian.length = 234
life_of_brian.put()

holy_grail = Movie(title = ’Monty Python and the Holy Grail’
length = 100)
best_of = Movie(title = ’Best of Monty Python\’s Flying Circus’)

#put more movies at once
db.put ([holy_grail, best_of])

4.2.3 Retrieving Entities — Queries

The Datastore API provides you with two similar ways of retrieving the stored data: the
Query interface and the GqlQuery interface.

The Query interface lets you get entities using the all() class method of a
db.Model/db.Expando subclass. Calling this method returns a Query object repre-
senting a query for all entities of given kind. You can than adjust this query by calling
its methods: filter (), order(), ancestor(). The ancestor () method is explained in
4.3l

Using more than one filter in query means, that objects returned by the query will
match all conditions (in other words, filters are interpreted as a conjunction of predicates).
Unfortunatelly, there is no “LIKE” operator for matching string properties, the application
has to filter those in the program code.

You can order entities ascending (use property name as a parameter for order()) or
descending (use property name prefixed by - as a parameter for order()). If the values
of the property used for ordering have different types, they are first ordered by type and
then by value.

This kind of query also lets you to pull out only the Keys of the entities by passing
keys_only = True to its constructor.

Examples:

query = Movie.all()

15

#select all movies directed by Steven Spielberg, shorter than
#200 minutes and sort them by title descending
query.filter(’length <’, 200)

query.filter(’director =’, ’Stephen Spielberg’)

query.order (’-title’)

#do the same shorter (even on one line)

query.filter(’length <’, 200)
.filter(’director =’, ’Stephen Spielberg’)
.order(’-title’)

The GqlQuery interface lets you use the GQL — an SQL-like query language. GqlQuery
is a class located in google.appengine.ext.db. The constructor takes a string repre-
sentation of query and optional parameters for binding.

Examples:

query = Movie.all()

\begin{verbatim}

#do the same as in the previous example

#use positional parameter binding

query = db.GqlQuery("SELECT * FROM Movie"
"WHERE director = :1 AND length < :2"
"ORDER BY title DESC",
’Steven Spielberg’, 200)

#do the same, but use keyword parameter binding

query = db.GqlQuery("SELECT * FROM Movie"
"WHERE director = :director AND length < :length"
"ORDER BY title DESC",
’Steven Spielberg’, 200)

You can also use string, boolean and number values as literals in the query string.
There is one more way of creating a query. The equivalent to the above example would
be:

query = Movie.gql("WHERE director = :director AND length < :length"
"ORDER BY title DESC",
>Steven Spielberg’, 200)

The queries (both Query and GqlQuery) do not execute automatically. You either

have to try to use the entities retrieved (use the query as an iterator) or use the fetch()
method of a query object. The fetch method has two parameters: the 1limit (maximum

16

number of entities to fetch) and optional parameter offset (number of entities to skip
— these entites are not returned by fetch(), but are loaded into the memory!). This
method returns a list of entities.

Examples:

#fetch 10 entities, but skip 5
#we get 5 entites as the result of fetch(),
#but all 10 entities are loaded into memory
results = query.fetch(10, 5)
for result in results:

print "Title: " + result.title

#use query as an iterator
#all entities are fetched
for result in query:
print "Title: " + result.title

Currently, the Datastore allows you to retrive only 1000 entities in one query.
One more way to retrive an entity by using its Key:

#construct a hyperref somewhere else

movie = Movie(title=’Holy Grail’)
self.response.write(’}s’
% (str(movie.key()), movie.name()))

#get the movie key from the parameter

key = self.request.get(’key’)

#you have to convert the string to the key object
entity = db.get(db.Key(key))

The get () method used without any parameters returns the first entity of the result.
If an entity has a db.ReferenceProperty, you can use the parent entity for result
filtering and you can retrive the referenced entity using this db.ReferenceProperty.

class Viking(db.Model):
name = db.StringProperty(required = True)

class BowlOfSpam(db.Model):
owner = db.ReferenceProperty(Viking, required = True)

#lets presume that Viking Harry has a bowl of spam

#stored in the Datastore
harry = Viking(name = ’Harry’)

17

#query for his bowl of spam
query = BowlOfSpam.all()
query.filter(’owner = ’, harry)

#equivalent:
query = BowlOfSpam.all()
query.filter(’owner = ’, harry.key())

#this statement returns Harry
query.get () .owner

Filters can only contain comparison operators (<, >, <=, >=, = =) and the IN operator.

The “!'=" operator in fact runs two sub-queries — one with the “!=" operator replaced
by “<” and one with the “!=" operator replaced by “>”. The results are then merged
and returned. A query can only have one “!=" operator

The “IN” operator performs multiple sub-queries — one for each value in the provided
list (the “IN” operator is replaced by “=”). Again, the results are merged and returned.
A query can contain more “IN” operators, but in this case, the query is run for each
combination of the values of provided list (which can result in many sub-queries).

Moreover, the inequality operators (<, >, <=, >=, =) can only be used on one property
and if the results are to be sorted, they must be sorted by the properties used for
inequality comparisons first.

A query can currently have a maximum of 30 sub-queries.

4.2.4 Deleting Entities

Entities can be deleted by calling the delete () method of db.Model subclass instance
or by using the db.delete() function - it requires a single Key or entity (or list of Keys
or entities):

query = db.GqlQuery ("SELECT * FROM Movie"
"WHERE director = :1 AND length < :2"
"ORDER BY title DESC",
’Steven Spielberg’, 200)
results = query.fetch(10)
for result in results:
result.delete()

#do the same faster

query = db.GqlQuery("SELECT * FROM Movie"
"WHERE director = :1 AND length < :2"
"ORDER BY title DESC",

18

’Steven Spielberg’, 200)
results = query.fetch(10)
db.delete(results)

For a complete reference for creating queries, see http://code.google.com/intl/
cs/appengine/docs/python/datastore/queryclass.html and http://code.google.
com/intl/cs/appengine/docs/python/datastore/gqlqueryclass.html.

4.3 Entity Groups and Relationships

In this chapter, we will take a closer look at entities and entity relationships — a feature
that is pretty much necessary in any kind of application.

4.3.1 Entity Groups

Every entity stored in the Datastore belongs to an entity group. Each entity group has
one root (an entity without a parent). Other entities may have the root entity set as a
parent (which can be done in entity constructor), some other entities may set these as
their parents and so on, forming a tree. A path is a chain of entities from an entity to
the root. All entities in the path of a single entity are called ancestors.

What are the entity groups good for?

e All entities belonging to the same group are stored in the same datastore node.
e Only entities in the same entity group can be modified in transactions (see [4.4)).

e Although it would seem, that putting entities in one entity group makes operations
with them faster, http://code.google.com/intl/cs/appengine/docs/python/
datastore/keysandentitygroups.html claims, that doing so has no significant
impact on the speed.

e The entity groups should only be used when you need to change entities in transac-
tion. You should use db.ReferenceProperty otherwise.

Note, that entites are not deleted when you delete one of their ancestors.

4.3.2 Filtering Entities By Ancestors

You can also use the ancestors similarly as filters in queries:

class A:
pass

q = A.all()
q.ancestor (ancestor_key)

19

http://code.google.com/intl/cs/appengine/docs/python/datastore/queryclass.html
http://code.google.com/intl/cs/appengine/docs/python/datastore/queryclass.html
http://code.google.com/intl/cs/appengine/docs/python/datastore/gqlqueryclass.html
http://code.google.com/intl/cs/appengine/docs/python/datastore/gqlqueryclass.html
http://code.google.com/intl/cs/appengine/docs/python/datastore/keysandentitygroups.html
http://code.google.com/intl/cs/appengine/docs/python/datastore/keysandentitygroups.html

4.4 Transactions

A natural requirement when using various DBMSs is the ability to change data in
transactions. A transaction has to be ACID — (atomic, consistent, isolated, durable).

4.4.1 Using Transactions

Let’s see a simple use of transactions:

class Counter(db.Model):
count = db.IntegerProperty()

#the function to run in transaction
def increment(key):
counter = db.get (key)
counter.count += 1
counter.put

counter_key = Counter.all().get() .key()

#run the transaction
db.run_in_transaction(increment, counter_key)

As you can see, the only thing you need is to write an ordinary Python function and
than call db.run_in transaction() function, which takes the function object and its
parameters to pass to the it.

If the function throws an exception, the transaction is rolled back (has no effects on
Datastore) and the exception is re-thrown, unless it is a Rollback exception, which is
caught and None value is returned.

If the function returns successfully, the transaction is committed and the function
return value is returned.

The db.run_in transaction() tries to run the function few times if it doesn’t
succeed on the first run, which means, that functions used in transactions
should not have any side effects. To adjust the number of function runs,
use the db.run_in transaction_custom retries() function (which is the same as
db.run_in transaction(), but it has an extra parameter which determines the number
of runs).

4.4.2 Transaction Limitations

There are several transactions limitations that one needs to be aware of:

e Each transaction can only use entities from one entity group.

o If a query is performed during a transaction, it has to include the ancestor filter.

20

e A transaction can contain any Python code, but it should be as fast as possible to
minimize the chance of being interrupted by any other Datastore operations.

4.5 Indexes

An index is a table that contains potentional results of a query in a desired order
(that means, that indez is basically a table containing all entities of given kind). The
indexes are defined in index.yaml file. The development server configures the indexes
automatically as it executes queries, that do not have index yet. You can also configure
inderes manually.

As we have seen in the queries are used to retrieve data from the Datastore.
Each query has to specify the entity kind and may also specify filters and sort orders.

4.5.1 Explaining Indexes

Each query run from the application has to have a proper index configured in the
index.yaml. When the application changes an entity, all indexes containing this entity are
updated accordingly. When the application executes a query, all matching entities are
retrieved from the proper indez. Indexes are stored for all combinations of kind, filters
and sort orders used in queries throughout the application.

Let’s look at an example query:

SELECT * FROM Movie WHERE director = ’John Smith’
AND title = ’Custom Title’
ORDER BY title ASC

Indez for this query contains columns with Keys, directors and titles, the rows are
sorted by titles ascending. Now, all queries filtering movies by director and title, asking
to sort results by title ascending use this index. For example:

SELECT * FROM Movie WHERE director = ’Someone Else’
AND title = ’Document About Spam’
ORDER BY title ASC

The index.yaml file for application using these queries would look like this:

indexes:

- kind: Movie
properties:
- name: director
- name: title
direction: asc

21

In[4.7] it has been pointed out, that it is not the same, when an entity has a property
with None value and when the entity simply doesn’t have the property. The reason is,
that an entity without a property is not included in an index for a query using that
propert (while the entity with this property of value None is included).

We have also seen, that some properties aren’t indexed — namely db.TextProperty
and db.BlobProperty. This means, that these properties cannot be used in filters. A
property can also be marked as non-indexed by passing the indexed = False parameter
to its constructor.

4.5.2 Exploding Indexes

The Datastore lets you store the db.ListProperty, which could be useful, but it can
have one negative effect called exploding index.

When you store a db.ListProperty, an index entry is made for each value of the
list in each index using this value. And what is worse — when an entity has two or more
list properties, all permutations of values are stored in each index. And because each
entity has a limited number of index entries, this can couse an application not to work
properly (not speaking of significant performance drop).

22

5 Conclusion

GAE seems to be a big step to making web development easier. The webapp framework
and Datastore API are simple to learn, yet powerful tools. A simple application can be
made fast and efficiently without a big effort.

On the other hand, there are many downsides. The webapp framework (lacking some
important features like redirecting between Request Handlers) can be substituted by any
other Python framework, but the Datastore queries seem to have to many limitations to
be used in large and complex applications.

Still, GAE is certainly worth trying when you want to see where the modern web
development is going, or you just want to write a simple web application to be run on
Google infrastucture.

23

References

[1] Google Code. Google app engine. http://code.google.com/intl/cs/appengine/,
2009.

[2] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
distributed storage system for structured data. In OSDI’06: Seventh Symposium on
Operating System Design and Implementation, November 2006.

[3] The Free Encyclopedia Wikipedia. Paxos algorithm. http://en.wikipedia.org/
wiki/Paxos_algorithm, 2009.

24

http://code.google.com/intl/cs/appengine/
http://en.wikipedia.org/wiki/Paxos_algorithm
http://en.wikipedia.org/wiki/Paxos_algorithm

	What Is Google App Engine?
	Java Runtime Environment
	Python Runtime Environment

	Datastore
	A Closer Look Inside -- BigTable
	BigTable Data Model
	BigTable Technologies

	Datastore API

	Python Applications on Google App Engine
	Setting Up the Working Environment
	Hello, World!
	Examining the Project
	Running the Application

	The webapp Framework
	Creating a Sophisticated Application
	What Does This Do?
	Conclusion of This Basic Example

	Limitations

	Using Datastore With Python
	Data Modelling
	Models and Properties
	Special Properties

	Storing and Retrieving Data
	Keys
	Creating and Updating Entities
	Retrieving Entities -- Queries
	Deleting Entities

	Entity Groups and Relationships
	Entity Groups
	Filtering Entities By Ancestors

	Transactions
	Using Transactions
	Transaction Limitations

	Indexes
	Explaining Indexes
	Exploding Indexes

	Conclusion

