Neutron Spectrometry Jiří Cvachovec Motivation }Neutron spectral flux density – “neutron spectrum” – “what energies are present and what is their proportion” }Applications: }verification of functionality of nuclear reactors }estimation of pressure vessel damage }radiation protection }radiotherapy }estimation of biological effects }nuclear weapons (mainly in the past) } } Scintillation Detector Block Scheme block_di.EMF Neutron-Gamma Separation dspektr.PNG The Unfolding Problem } } } } } }j(En) neutron energetic spectrum (this is what we want to measure) }z(Ep, En) detector response function (obtained by Monte Carlo simulation) }Z(Ep) measured proton spectrum (detector output) Maximum Likelihood Estimation }Discrete form: }Assumption: neutron and proton spectra are random vectors with mutually independent, Poisson-distributed components }Likelihood function for f: where } } }Algorithm: Mathematica Code Detector Response Function }Obtained by Monte Carlo simulation }The interaction of the neutron with the detector is modeled. }What must be taken into account: }detector geometry (cylinder) }chemical composition (C, H, O, B, ...) }different kinds of interactions (elastic and inelastic scattering, capture) }library data (describe stochastic properties of interactions) }user settings (energetic step, desired output format, etc.) Sample Response Matrix matice_1.png Verification of Results Neutron line 13.9 MeV (stilbene F=1cm, H=1cm, coaxial impact) Measured and calculated response En=5 MeV, perpendicular impact Neutron spectrum from spontaneous fission of a 252Cf source Neutron spectrum from a 239Pu-Be source Further Work }In frame of TA ČR no. TA01011383 }replace analog part with digital equipment }develop software for controlling and processing }improve current methods }incorporate new detectors }My main responsibility: software part }neutron-gamma discrimination }lead software development (evaluation procedures and response functions) }increase level of automation }improve propagation of uncertainties Publications }Determination of AKR-2 beam and verification at iron and water arrangements Košťál, Michal - Cvachovec, František - Cvachovec, Jiří - Ošmera, Bohumil - Hansen, Wolfgang. Annals of Nuclear Energy, Volume 38, Issue 1, 8 s. ISSN 0306-4549. 2011. }Maximum Likelihood Estimation of a Neutron Spectrum and Associated Uncertainties Cvachovec, Jiří - Cvachovec, František. Advances in Military Technology, Brno : Univerzita obrany, Vol. 3, No. 2, 14 s. ISSN 1802-2308. 2008. }Neutron Response Function for BC-523A Scintillation Detector in the Energy Range 0.5 to 20 MeV Cvachovec, Jiří - Cvachovec, František - Pošta, Severin - Ošmera, Bohumil. Journal of ASTM International, Vol. 5, No. 5, 4 s. ISSN 1546-962X. 2008. }Výpočet funkce odezvy pro detektory s dopovanými scintilátory (II) Cvachovec, Jiří - Cvachovec, František - Pošta, Severin - Ošmera, Bohumil. ÚJV Řež, 2004. 12107-R,D. }Multiparameter multichannel analyser system for characterisation of mixed neutron-gamma field in the experimental reactor LR-0 Bureš, Zbyněk - Cvachovec, Jiří - Cvachovec, František - Čeleda, Pavel - Ošmera, Bohumil. In Reactor Dosimetry in the 21st Century: Proceedings of the 11th International Symposium on Reactor Dosimetry Brussels, Belgium 18 - 23 August 2002. Brussels : World Scientific Publishing Company, 2003. od s. 194-201, 8 s. ISBN 9812384480. }Anisotropy of light output in response function of stilbene detectors Cvachovec, F. - Cvachovec, J. - Tajovský, P. Nuclear Instruments & Methods in Physics Research A, Elsevier Science Publishers, 476, 1-2, od s. 200-202. ISSN 0168-9002. 2002. Q & A 2868372584_0e16bdd39e_z.jpg