Gaussian quantum marginal problem Jan Vlach June 7, 2011 Quantum marginal problem quantum ellectromagnetic oscillator with N modes ith mode is characterised by ˆxi (position) and ˆpi (momentum) reduction we measure only subset of all modes 2 reduced systems S1 and S2 solution: Characterize possible states of reduced systems if global state is given. Quantum marginal problem Simplifications Gaussian states characterise possible states of only one of the reduced subsystems Mathematical formulation vector space V of dimension 2n V = span(ˆx1, ˆp1, ˆx2, ˆp2, . . . , ˆxn, ˆpn) symplectic form ω . . . matrix Ω symmetric positive definite form γ . . . covariance matrix K F = K−1Ω . . . operator on V eigenvalues of iF . . . symplectic eigenvalues symplectic eigenvalues determine state of the system State of the art Eisert, J., Tyc, T., Rudolph, T., Sanders, B.C.: Gaussian Quantum Marginal Problem. Commun. Math. Phys. 280, 263-280 (2008) global system reduced to N 1-mode systems cj . . . symplectic eigenvalues of the ith mode dk . . . kth global symplectic eigenvalue State of the art necessary and sufficient condition . . . n + 1 inequalities k j=1 cj ≥ k j=1 dj , k = 1, . . . , N and cn − N−1 j=1 cj ≤ dn − N−1 j=1 dj Williamson theorem there exists a basis such that K = diag( 1 µ1 , 1 µ2 , . . . , 1 µn , 1 µ1 , 1 µ2 , . . . 1 µn ) and Ω = N j=1 0 1 −1 0 where µ1, µ2, . . . , µn are symplectic eigenvalues Restrictions on subsystems of M = N − 1 modes M = N − 1: µ1 ≥ µ2 ≥ · · · ≥ µN . . . global symplectic eigenvalues ν1 ≥ ν2 ≥ · · · ≥ νN−1 . . . local symplectic eigenvalues solution: µ1 ≥ ν1 ≥ µ2 ≥ · · · ≥ νN−1 ≥ µN Restrictions on subsystems of M < N modes M < N: µ1 ≥ µ2 ≥ · · · ≥ µN . . . global symplectic eigenvalues ν1 ≥ ν2 ≥ · · · ≥ νM . . . local symplectic eigenvalues solution: µj ≥ νj ≥ µN−M+j , j < M + 1 Future work find restrictions for reduced and complementary subsystem together consider arbitrary number of subsystems of arbitrary size consider non-Gaussian states