LLVM-based Software Model Checking

Petr Rockai

NERSY,
s,

SIMI 'z Masaryk University S ParaDiSe

13 g C h R bl A0 Parallel & Distributed

\ﬁ} 5 zec epU IC 10 Systems Laboratory
Tana s

DTEDI
March 16, 2011

Model Checking

Validation and Verification
o Inevitable part of SW design process.
o Testing is good, but incomplete.
o Automated formal verification is an option.

Model Checking
o Proves properties of discrete systems.
o Push-button procedure, for formalised inputs.

. formalise e .-
requirements specification
] model checker

DTEDI, 2011 2/8

Obtaining Models

The Problem

o The step to formalise the inputs (the model and
the specification) can still be expensive.

Solutions
o Model extraction
o Direct model checking of software

formallse
requwements speC|f|cat|on
model checker
=

DTEDI, 2011 3/8

Model Checking Software

o The model checker directly interprets the source
code of the application:

e as a consequence, the expensive modelling step
is either omitted or vastly reduced.

Problems
o The resulting state space can be extremely large,

o the model checker needs intimate knowledge of
the target programming language.

DTEDI, 2011 4/8

Problem 1
Extremely large state spaces

Solution
o DiVinE, a distributed-memory model checker,
o with good support for state space reductions.
Challenges
o We still need LLVM-specific reductions...
o some of these need to be invented first!

DTEDI, 2011 5/8

ALY

Problem 2
Model checker needs knowledge of target language

Solution
o LLVM, a language-agnostic compiler framework,
o with a well-specified intermediate representation.

Challenges
o Model checker needs to trap into the program.
o Thread-level parallelism needs to be tackled.

DTEDI, 2011 6/8

Logical Volume Manager
e a component in the storage subsystem

o of general-purpose server operating systems
(RHEL, SLES &c.)

Hard to verify by testing:
e concurrent operations & locking,
e internal parallelism,
e cluster coordination.

A good candidate for model checking.

DTEDI, 2011 7/8

Conclusions

We propose...
o A new model-checking backend for DiVinE,

e based on LLVM,
o augmented with additional reduction techniques.

Goal Summary

o Reduce costs of deploying a rigorous, formal
verification method (model checking) in the
context of software verification.

o Ultimately, improve quality of new and existing
software.

DTEDI, 2011 8/8

