
LLVM-based Software Model Checking

Petr Ročkai

Masaryk University
Czech Republic

DTEDI
March 16, 2011



Model Checking

Validation and Verification

Inevitable part of SW design process.

Testing is good, but incomplete.

Automated formal verification is an option.

Model Checking

Proves properties of discrete systems.

Push-button procedure, for formalised inputs.

requirements specification

program model

model checker

formalise

formalise

DTEDI, 2011 2/8



Obtaining Models

The Problem

The step to formalise the inputs (the model and
the specification) can still be expensive.

Solutions

Model extraction

Direct model checking of software

requirements specification

program model

model checker

formalise

formalise

DTEDI, 2011 3/8



Model Checking Software

The model checker directly interprets the source
code of the application:

as a consequence, the expensive modelling step
is either omitted or vastly reduced.

Problems

The resulting state space can be extremely large,

the model checker needs intimate knowledge of
the target programming language.

DTEDI, 2011 4/8



DiVinE

Problem 1
Extremely large state spaces

Solution

DiVinE, a distributed-memory model checker,

with good support for state space reductions.

Challenges

We still need LLVM-specific reductions...

some of these need to be invented first!

DTEDI, 2011 5/8



LLVM

Problem 2
Model checker needs knowledge of target language

Solution

LLVM, a language-agnostic compiler framework,

with a well-specified intermediate representation.

Challenges

Model checker needs to trap into the program.

Thread-level parallelism needs to be tackled.

DTEDI, 2011 6/8



Case study

Logical Volume Manager

a component in the storage subsystem

of general-purpose server operating systems
(RHEL, SLES &c.)

Hard to verify by testing:

concurrent operations & locking,

internal parallelism,

cluster coordination.

A good candidate for model checking.

DTEDI, 2011 7/8



Conclusions

We propose...

A new model-checking backend for DiVinE,

based on LLVM,

augmented with additional reduction techniques.

Goal Summary

Reduce costs of deploying a rigorous, formal
verification method (model checking) in the
context of software verification.

Ultimately, improve quality of new and existing
software.

DTEDI, 2011 8/8


