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Co-Location Patterns

• Co-Location Pattern – group of spatial features/events that are 
frequently co-located in the same region.

• Co-Location Pattern – set of spatial features that are 
frequently located together in spatial proximity.

• Location based services, 
• Ecology mapping, 
• Road works, Closures, Accidents, 

• Spatial feature is rare if its instances are substantially less
than those of other features in a co-location.



Questions and tasks

• How to identify and measure spatial co-location patterns 
involving rare spatial features?

– Measure  called maximal participation ratio

• How to mine the patterns involving rare spatial feature 
effieciently?

– Extension of apriori-like solution to do post-procesing
• Very low participation index treshold to prune 
• Maximal participation ratio treshold to do a postprocessing

– Algorithm using weak monotonic property of the maximal 
participation ratio to push the maximal participation ratio 
treshold deep into the mining. 
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Neighbor-set

• S – spatial dataset

• F = {f1, … , fk}  - set of boolean spatial features

• i = {i1, … , i n}   - set of n instances in S, 
• Each instance is a vector (instance-id, location, spatial feature)

• i.f – spatial feature f of instance i

• R is neighborhood realation over pairwise instances in S.

• Neighbor-set L is a set of instances such that all pairwise
locations in L are neighbors.



Example

Co-location pattern
{A,B,C,D}

Neighbor sets

{3,6,17}
{6,17}
{3,6}

{4,5,13}
{4,7,10,16}
…



Row instance, Participation ratio

• Co-location pattern C is a set of spatial features, C ≤  F.

• A neighbor-set L is said to be a row instance of co-location
pattern C if every feature in C appears as a feature of an
instance in L and there exists no proper subset of L does so.

• rowset(C) – all row instances of co-location pattern C

• Participation ratio

|{r|(rєS) and (r.f=f) and (r is a row instance of C)}| 
|{r|(rєS) and (r.f=f)}|

• Wherever the feature f is observed, with probability pr(C,f), all 
other features in C are also observed in neighbor-set.   

pr(C,f) =



Example
Row instances for 

({A,B,C,D})  

{2,11,14,15}
{2,8,11,14,15}

rowset({A,B,C,D})
=
{{4,7,10,16}
{2,11,14,15}
{8,11,14,15}}

rowset({A,B})
=
{{7,10}
{2,14}
{5,13}
{8,14}}



Example

Participation ratios

pr({A,B,C,D},A)=2/5

pr({A,B,C,D},B)=3/5

pr({A,B,C,D},C)=1/3

pr({A,B,C,D},D)=1

PI ({A,B,C,D},A)=1/3



Participation index and monotonicity of 
participation ratio and index

• PI(C) = min fєC {pr(C,f)}

• Wherever any feature from C is observed, with probability of at 
least PI(C), all other features in C can be observed in neighbor-
set. 

• A high participation index value indicates that the spatial 
features in a co-location pattern likely occur together.

• Given a user-specified participation index treshold min_prev, a 
co-location pattern C is called prevalent if PI(C) >= min_prev. 

• Let C and C’ be two co-location patterns such that C is subset of 
C’. Then, for each feature fєC, pr(C,f) >= pr(C’,f). 

• Furthemore, PI(C) >= PI(C’)



Maximal participation ratio 

• Maximal participation ratio maxPR(C) = max fєC {pr(C,f)} 

• A high maximal participation ratio value indicates that there are 
some spatial features strongly imply the pattern.

• C = {f1, … , fk} co-location pattern,  
• Minimum maximal participation ratio treshold min_maxPR
• pr(C,f1 ) => … => pr(C,fl ) => …  => pr(C,fk ) , 
• fl  is the last spatial feature that has participation ration above 

min_maxPR

• If spatial feature fi (1 <= i <= l) is observed in some location, 
then the probability of observing all other spatial feature in 
C - {fi } in neighbor set is at least min_maxPR.



Example



Rundimentary Algorithm



Rundimentary Algorithm

• If min_prev = 0 then algorithm can find the complete set of 
patterns.

• If min_prev > 0 then some patterns with high maximal 
participation ratio but low prevalence may be missed.

• Major disadvantage – If user wants to find the complete answer, 
the algorithm has to generate a huge number of candidates and 
test them, even though the maximal participation ration treshold
min_maxPR is high.  



Weak monotonocity of maximal participation 
ratio

• Let P be a k-co-location pattern. 
Then, there exists at most one (k-1) – subpattern P’ such that 
P’ is subset of P and maxPR(P’) < maxPR(P) 

• If a k-pattern is above the maximal participation ratio treshold, 
then at least (k-1) out of its k subpatterns with (k-1) features 
are above the maximal participation ratio treshold.



Algorithm maxPrune



Algorithm maxPrune



Thank you for your attention.


