
[10:28 28/8/2010 Bioinformatics-btq364.tex] Page: i414 i414–i419

BIOINFORMATICS Vol. 26 ECCB 2010, pages i414–i419
doi:10.1093/bioinformatics/btq364

A fast algorithm for exact sequence search in biological
sequences using polyphase decomposition
Abhilash Srikantha1,∗, Ajit S. Bopardikar1,∗, Kalyan Kumar Kaipa1,
Parthasarathy Venkataraman1, Kyusang Lee2, TaeJin Ahn2 and Rangavittal Narayanan1

1Samsung Advanced Institute of Technology India Lab, Bangalore, Karnataka, India and 2Genetic Analysis Group,
Emerging Center, Samsung Advanced Institute of Technology, Suwon, South Korea

ABSTRACT

Motivation: Exact sequence search allows a user to search for a
specific DNA subsequence in a larger DNA sequence or database.
It serves as a vital block in many areas such as Pharmacogenetics,
Phylogenetics and Personal Genomics. As sequencing of genomic
data becomes increasingly affordable, the amount of sequence data
that must be processed will also increase exponentially. In this
context, fast sequence search algorithms will play an important role
in exploiting the information contained in the newly sequenced data.
Many existing algorithms do not scale up well for large sequences or
databases because of their high-computational costs. This article
describes an efficient algorithm for performing fast searches on
large DNA sequences. It makes use of hash tables of Q-grams
that are constructed after downsampling the database, to enable
efficient search and memory use. Time complexity for pattern search
is reduced using beam pruning techniques. Theoretical complexity
calculations and performance figures are presented to indicate the
potential of the proposed algorithm.
Contact: s.abhilash@samsung.com; ajit.b@samsung.com

1 INTRODUCTION
Decreasing costs of sequencing personal genome have opened
up many avenues of research. Several efforts related to Personal
Healthcare and Pharmacogenetics are attempting to use the
information in an individual’s genomic data towards personalization
of healthcare. An important component of these solutions is the
search for specific subsequences in a given genome. For example,
Cetuximab (Eric et al., 2009)—an Epidermal Growth Factor
Receptor (EFGR) inhibitor used to treat various types of cancer is
ineffective if certain mutations in the KRAS gene (which lies in Exon
2 of Chromosome 12) exist. Thus, a search for appropriate mutations
conducted on genetic data would be vital in prescribing the most
effective treatment. Exact sequence search also finds application in
fields such as Evolutionary Biology and Phylogenetics where certain
subsequences of DNA are mined from genomic data of various
species of organisms to understand their origin, relatedness and
descent.

In the above context, the challenge is to be able to perform fast
pattern searches in whole genomes (a complete human genome
contains 3 billion base pairs) and databases spanning Giga to Tera
Bytes or more. Prevalent search methods (Altschul et al., 1990;
Charras and Lecroq, 2004; Gusfield 1997; Kurtz et al., 2004; Li and
Durbin, 2010; Lipman and Pearson, 1985; Ma et al., 2002; Ning
et al., 2001) use techniques that have proven to be efficient for

∗To whom correspondence should be addressed.

existing genomic sequences and databases, but do not scale up well
for large datasets such as those of whole human genomes. Fast and
efficient search methods that scale up well for large databases are
therefore of great value.

In this article, we address the problem of searching for all
occurrences of pattern P in a text T, where T is the reference sequence
whose length can vary from several million (in case of individual
chromosomes) to several billion (in case of complete genomes)
bases. P is the pattern which is a few tens to a few hundred bases in
length.

2 RELATED WORK
Many methods have been developed for the task of pattern search.
These include FASTA (Lipman and Pearson, 1985; Pearson and
Lipman, 1988), BLAST (Altschul et al., 1990), PatternHunter (Ma
et al., 2002), MUMMER (Kurtz et al., 2004), SSAHA (Sequence
Search and Alignment using Hashing Algorithm) (Ning et al., 2001),
Fast String Matching Algorithms (Lecroq, 2007) and BWA-SW
(Burrows Wheeler Alignment—Smith Waterman) (Li and Durbin,
2010).

Though Smith Waterman-based methods such as FASTA
mines approximate matches by employing dynamic programming
techniques, they are computationally very intensive. BLAST and its
variants are an improvement over FASTA in that they use certain
seeds for basic anchoring, which are then extended to exact or
approximate matches. However, apart from being probabilistic in
nature, BLAST type algorithms require large amounts of memory
and computing time for pattern search in large sequences such as
whole genomes. PatternHunter (Ma et al., 2002) is a similar seed-
based technique but is still inefficient for applications that involve
whole genomes or large databases.

Recent suffix tree-based methods (Gusfield, 1997) such as
Mummer (Kurtz et al., 2004) that yield exact matches have a very
low-search time complexity. They represent all suffixes of the text as
a plurality of inter-mingled linked lists.At times when the knowledge
about genomes gets updated frequently, updating the suffix tree in
place becomes tedious as the inter-mingling of linked lists is very
sensitive to changes in the text data. Also, as every node in the
tree is required to hold tree-related information such as pointers to
their parents and children apart from text-based information, even
the best implementation of suffix trees require ∼15.4 bytes per base
(Kurtz et al., 2004), which scales up to 46 GB of memory to store
the preprocessed Human Genome.

Deterministic Finite Automaton (DFA)-based methods (Charras
and Lecroq, 2004; Gusfield 1997) such as BWA-SW (Li and
Durbin, 2010) combine DFA and dynamic-programming-based

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

[10:28 28/8/2010 Bioinformatics-btq364.tex] Page: i415 i414–i419

A fast algorithm for exact sequence search in biological sequences using polyphase decomposition

alignment methods. As this method involves Finite Automaton, the
method does not scale well for large sequences, even for the best case
of exact matches. Also, because they use dynamic programming, the
memory requirements of the method are huge.

Hashing-based methods such as SSAHA (Ning et al., 2001) and
those proposed by Lecroq (2007) propose substring matching and
Q-gram hashing method to greatly improve the time complexity.

To summarize, efficient biological pattern-search algorithms must
mitigate two problems. First, that of random access into text,
without which the time complexity of the algorithm shoots up to an
unacceptable O(LT) (Charras and Lecroq, 2004; Knuth et al., 1977;
Melichar, 1995), where T is of the order of several billion bases.
This can be mitigated by employing mechanisms such as suffix trees
and hash tables. Hashing methods are considered because changing
data locally is an easy task when information in the corresponding
sequence gets updated. The second problem is that of memory
constraints. Random access algorithms (Kurtz et al., 2004; Lecroq,
2007; Ning et al., 2001) come with an undesirable space complexity
of O(LT), where LT is the length of the text T is of the order of several
billion bases.

In our work, we propose an efficient methodology that employs
down-sampled version of T and polyphase decomposition of P to
determine potential areas of exact match. These, in conjunction with
hash tables and the use of Q grams to successively refine potential-
search regions results in superior space and time complexity. Note
that the present method differs from the existing methods (Lecroq,
2007; Ning et al., 2001) in that, firstly, we consider down-sampled
substrings of both text and the pattern that result in large memory
savings. Secondly, the Q-grams have traditionally been used only
for the purposes of string matching, but in the proposed method,
their locations have been used to progressively localize the potential
locations of exact match. We now describe the proposed algorithm.

3 PROPOSED METHOD
We first explain various terminologies we use in the exposition that
follows. For this purpose, we use an example sequence, given by:

S = ‘actgcttctact’. (1)

Let the length of the sequence S be denoted by LS . Also, S[n] is used
to represent the n-th base of the sequence S. For example, S[0] = ‘a’
and S[1] = ‘c’.

Downsampling (Vaidyanathan, 1993) a sequence by a factor of
M means that we pick every M-th base from sequence S to form a
new sequence SM given by:

SM[n]=S[Mn],0≤n≤
⌊

LS

M

⌋
(2)

where, � � indicates the largest integer less than the argument. For
example, for the sequence S and M =3, S3 = ‘agta’

M-channel polyphase decomposition (Vaidyanathan, 1993) gives
M possible down-sampled sequences for different integer-phase
shifts. The generalized form of polyphase decomposition is given by:

SMi[n]=S[Mn+i],0≤n≤
⌊

LS

M

⌋
,0≤ i≤M −1. (3)

Note that SM = SM0. The polyphase decomposition of the sequence
S in Equation (1) for M =3 yields:

S30 = ‘agta’, S31 = ‘cccc’ and S32 = ‘tttt’

A Q-gram of a sequence S is denoted by QS(n) and is made up of
Q consecutive bases starting from position n. Thus for sequence S
as in Equation (1) example Q-grams are:

QS(0) = ‘actg’ QS(1) = ‘ctgc’

QS(2) = ‘tgct’ QS(8) = ‘tact’

Contiguous Q-grams of a sequence S is the set:

CQS ={
QS

(
0
)
QS

(
1
)···QS

(
LS −Q

)}
(4)

where the cardinality of the set CQS is |CQS|=LS −Q+1. Note that
there are Q – 1 common bases between any two consecutive Q-grams
in CQS. For example, given S as in Equation (1) and Q=4,

CQS = {‘actg’, ‘ctgc’, ‘tgct’, ‘gctt’, ‘cttc’, ‘ttct’, ‘tcta’, ‘ctac’, ‘tact’}.
NQS is the set of non-overlapping Q-grams of sequence S given by:

NQS =
{

QS
(
0
)
QS

(
Q

)
...QS

(⌊
LS

Q

⌋)}
. (5)

Note that:
∀ QS

(
i
)
and QS

(
j
)∈NQS,

QS
(
i
)∩QS

(
j
)=φ if i 	= j

where φ denotes the null set. That is the Q-grams in NQS are pair-
wise and non-overlapping.

For S as in Equation (1) and Q=4, NQS = {‘actg’, ‘cttc’, ‘tact’}.
We now describe the proposed method which is composed of two

stages, namely:

(1) Preprocessing stage.

(2) Pattern-search stage.

The detailed description of each stage is presented in the following
subsections.

3.1 Preprocessing stage
A block diagram for the preprocessing stage is shown in Figure 1. In
this step, text T is downsampled and processed into a hash table to
support random access into the text. A hash table is a data structure
that efficiently links keys to corresponding values called buckets
(Cormen et al., 1990). In our case, the key refers to each distinct
Q-gram while bucket refers to the list of locations of that Q-gram
in the text. Here, T is first downsampled by a factor of M to give
TM and a hash table HTMQ is then constructed using contiguous
Q-grams of TM. The bucket of a given Q-gram q is denoted by
HTMQ[q].

The details of the preprocessing algorithm are given below. This
is followed by an example on sample text.

Algorithm–A

(1) Downsampled the text T by a factor of M to yield TM.

(2) Generate the set of contiguous Q-grams for TM, namely,
CQTM.

(3) For each Q-Gram in CQTM, consult the key field of the hash
table HTMQ.

i415

[10:28 28/8/2010 Bioinformatics-btq364.tex] Page: i416 i414–i419

A.Srikantha et al.

Fig. 1. Block diagram of the preprocessing stage.

Table 1. A sample Q-gram hash table

Key: Q(=3) gram Bucket: Locations’ list

agt 0, 3, 6
gta 1, 4, 7
tag 2, 5
taa 8
aac 9
aca 10

(4) If the Q-Gram exists in the key field, append the new position
in the bucket HTMQ[Q-gram].

(5) Else, add a new Q-gram key and its position in the
corresponding bucket in HTMQ.

Example:
Consider the sequence T = ‘acc gat tag aag ggt tta aga gtc tca acc aga
cta agc’. For M =3 and Q=3, the result of the algorithm is given
below.

(1) T3 = agtagtagtaaca.

(2) CQT3:{agt(0), gta(1), tag(2), agt(3), gta(4), tag(5), agt(6),
gta(7), taa(8), aac(9), aca(10)}. Note that we have also
mentioned the indices for each Q-gram in CQT3 in
parentheses.

(3) Finally the HTMQ is as given in Table 1.

3.2 Pattern-search stage
The idea behind the pattern-search algorithm is that given T and P,
if P occurs in T at unknown locations, it is necessary that at least
one downsampled polyphase PMi of P occurs in TM. Note that the
reverse need not be true, that is, a certain PMi occurring in TM does
not guarantee that P occurs in T. Therefore, we first mine for all
occurrences of PMi in TM and search around the resulting indices
for an exact match in T. Figure 2 presents the block diagram of the
procedure.

The definitions of crucial variables are given below:

(1) PPAll: this is the array that holds the locations of exact
matches for all polyphases of P. The elements of PPAll
denoted by PPAll(n).

(2) PP: this is the array that holds the locations of exact matches
of a particular polyphase of P. The elements of PP are denoted
by PP(n).

The algorithm breaks each polyphase into non-overlapping
Q-grams and bases its search on a successive refinement principle
by employing beam pruning technique. That is, matches to the first
non-overlapping Q-gram are first found. If these matches extend
to the next Q-gram, then these locations are retained. This process
is carried out for all the Q-grams in the given polyphase. At the
end of this process, those locations where all the Q-grams match
represent the locations where the polyphase PMi matches TM. These
locations are then mapped to the original text T where the final search
takes place. In this manner, the algorithm successively refines the
search regions and thus speeds the search process. The algorithm is
presented below followed by an example on a sample pattern.

Algorithm—B

(1) Generate PMi 0≤ i≤M −1 from P using Polyphase
Decomposition.

(2) Initialize PPAll = {φ} (an empty array).

(3) For each polyphase PMi, do (4) and (8).

(4) Generate NQPMi (set of non-overlapping Q-grams of
polyphase PMi).

(5) PP = HTMQ[NQPMi(0)] (this represents all positions in
TM where an exact match is found for the first non
overlapping Q-gram of PMi).

(6) For all NQPMi(j)∈NQPMi, j>0 (the rest of the entries
in NQPMi) do (7).

(7) Delete from PP, PP(k) such that

PP(k) + jQ /∈HTMQ[NQPMi(j)] NQPMi(j) should have
occurred at location PP(k) + jQ if there was an exact
match. But, if that is not the case, there is no chance
of an exact match of polyphase PMi in TM at location
PP(k). Hence, it must be pruned from the array PP.

(8) Append all PP (k)∈ PP into PPAll. That is, make note of
all locations of exact match of PMi in TM in the array
PPAll that holds the locations of exact match for all PMis
in TM.

(9) Translate PPAll(n) to corresponding location in original text
T and verify exact match of P in T in that location.

Note that Steps (4) and (8) deal with extracting exact locations
of PMi in TM. Step (7) is a beam-pruning method to prune out
non-exact-match locations of PMi from the PP.

Example:
Consider P = ‘aag ggt tta aga gtc tca’. Also M, Q and T as are the

same as those used in the previous illustration. We show the steps
of the algorithm for one of the polyphases: PM0. The results of the
other two polyphases are presented in Step (8).

i416

[10:28 28/8/2010 Bioinformatics-btq364.tex] Page: i417 i414–i419

A fast algorithm for exact sequence search in biological sequences using polyphase decomposition

Fig. 2. Block diagram of the pattern-search stage.

(1) PM0 = ‘agtagt’ PM1 = ‘agtgtc’ PM2 = ‘gtaaca’.

(2) PPAll = {φ} (an empty array)

(3) Iterating for PM0 for Steps (4) and (8).

(4) NQPM0 = {agt(0), agt(1)} (note that we have mentioned the
indices of the Q-gram in NQPM0 in parenthesis).

(5) PP = HTNQ[NQPM0(0)] = [0,3,6].

(6) Iterating over {agt(1)} for Step (7).

(7) Prune only PP(2).

Because PP(2)+1×Q=6+3=9 /∈ HTNQ[NQPM0(1)].

(8) PPAll = {0,3},

(a) result of PM1: PP = {φ};
(b) result of PM2: PP = {7}.

Therefore, PPAll = {0,3,7}.

(9) Translating the locations of PPAll to those in T gives {0,9,19}.
Note that we have considered the actual polyphase the exact
match has come from. For example, as PPAll[2] = 7 come
from the second polyphase, the mapping of this location to a
location in T would be PPAll[2] ×M −2=19.
Exact matches are now verified starting from these locations
in T. In this example, the exact match occurs at index 9 in T.

Note that if the length of PMi is not an integral multiple of Q,
then certain trailing nucleotides will be missed by the NQPMi. One
of the solutions in order to avoid this loss is to verify exact match
of PMi in TM for all PP(n) just before Step (8).

4 ALGORITHM ANALYSIS
We now present the space and time complexity analysis of the
proposed method.

4.1 Space complexity of hash table
From Algorithm A, because every overlapping Q-gram in TM
contributes to an entry in the hash table, the algorithm’s space
complexity is O(LTM) where the length of TM, LTM =LT /M due
to downsampling. Also, because constructing the hash table is a
sequential process, its time complexity is O(LTM).

Note that there are two types of memory in a computer—main
memory, which is fast, costly and scarce and the secondary memory,
which is slow, cheap and abundant. An efficient design of an
algorithm is an optimal balance between its speed and its main
memory requirements. In our design, we have retained a smaller,
down-sampled version of the text T in the main memory, which we
consider for space complexity calculations. For the purposes of exact
match verification in Step (9) of Algorithm B, the original text T can
reside in the cheaper secondary memory, and relevant sections (with
length <<LT) can be paged into the main memory when required.
Also note that if we set M =1, the HTMQ reduces to its naïve version
and its main memory requirements are then O(LT).

4.2 Time complexity of pattern search
We will now discuss the time complexity for pattern search
(Algorithm B). In our analysis, we model the base distribution as an
iid process and following uniform distribution. This is reasonable
over large databases because it has been shown that DNA sequences
at best have weak long-range correlations (Bernaola et al., 2002).
The complexity of processing a particular polyphase as described in
Steps (4) and (8) is as given below.

Step 4 is the generation of the NQPMi list. This step which
generates non overlapping Q-grams is computationally simple and
its effect on the search complexity can be neglected.

Step 5 is a look up from the hash table. Because this step is only
a main memory lookup (Cormen et al., 1990), it contributes O(1)
to the search complexity. Also, It follows from our assumption that
the distribution of bases is uniform and iid, the probability of the
existence of any given Q-gram = 1/4Q. Thus, the expected number
of any Q-grams in TM = LTM ×(1/4Q). That is, the expected number
of matches for the first Q-gram in any given polyphase is LTM/4Q.

Step 7 is the beam pruning procedure, where entries from
the array PP are removed based on the entries in the bucket
HTMQ[NQPMi(j)]. This translates to traversal of both arrays,
namely, PP and HTMQ[NQPMi(j)]. The complexity of this step then
depends on the lengths of each array.

• The bucket: following the above explanation, the bucket has
an average of LTM /4Q entries.

• The PP Array: note that for any j, the PP Array holds the
locations of a string of length j×Q. Therefore, the expected
length of the PP Array for any j is LTM/4jQ.

As a result, employing binary search, the complexity
of the beam pruning procedure for a single polyphase is
O((LTM/4Q)log(LTM/4Q)).

Also, note that Steps (1), (2) and (8) are computationally simple
and their contribution to the search complexity can be neglected.

Now, the complexity of the algorithm until Step (9) is
the complexity of beam pruning procedure for all M polyp-
hases = O(M(LTM/4Q)log(LTM/4Q))) = O((LT /4Q)log(LTM/4Q)).
The complexity of Step (9) is negligible as its of order O(LP),
LP <<LT . Thus the overall time complexity for the search
procedure:

O((LT /4Q)log(LT /M4Q)).

A comparison of complexities of various search algorithms are
given in Table 2.

As can be seen from the table, the proposed method has superior
complexity as compared to most existing methods. Also, while

i417

[10:28 28/8/2010 Bioinformatics-btq364.tex] Page: i418 i414–i419

A.Srikantha et al.

Table 2. Comparison of theoretical complexities of various
pattern/homology search algorithms

Search algorithm Space complexity Time complexity

BLASTa O(LPLT ′)b O(LPLT ′)
FASTAa O(LPLT ′) O(LPLT ′)
Finite automaton O(LP) O(LT)
Knuth Morris Pratt O(LP) O(LT)
Suffix tree based O(LT) O(LP)
BWA-SW O(LP) O(L0.628

P LT)
SSAHA O(LT) O((LT /4Q)log(LT /4Q))
Proposed O(LT/M) O((LT/4Q)log(LT/M4Q))

aMethods also yield approximate matches.
bLP <<LT ′ <<LT .
The bold line corresponds to the complexity of the proposed algorithm.

Table 3. Hash table size for M −Q combinations (MB)

Q=8 Q=9 Q=10 Q=11

M =7 117.0 118.3 120.3 129.1
M =15 55.0 55.3 57.6 65.0
M =23 35.9 36.4 38.4 45.3
M =31 26.7 27.2 29.2 35.2
M =39 21.3 21.7 23.7 28.9

the suffix-tree approach would possibly have the advantage of a
slightly better time complexity when compared to the proposed
method, this advantage could be offset by its huge memory
requirements. The space savings would be particularly useful in
processing huge sequences such as whole genomes. Also, note that
because the algorithm works on polyphase decomposition with little
inter-dependency between each polyphase, it lends itself to easy
parallelization thereby speeding up its operation.

4.3 Experimental analysis
The algorithm was implemented using Python. The text T considered
is the Human Chromosome 1 (LT = 250 M bases) (Genome
Reference Consortium, UCSC) the pattern P is randomly chosen
segment of 300 bases (LP = 300) from T . All experiments were
conducted on a PC with a 2 GB RAM and Intel 2.4 GHz Quad core
processor.

The variation of the size of the hash table with varying M and Q
is presented in Table 3. It can be seen that the size of the hash table
decreases with increasing M as expected. Also, it can be seen that
the size of the hash table increases slightly with increasing Q.

The variations in time taken to process the pattern and generate a
list of locations for post processing are presented in Table 4. Note that
the combination of parameters M and Q must satisfy the condition
MQ < LP . Otherwise, at least one of the polyphases will contain
<Q bases, and thus cannot be looked up through the hash table.
The blocks whose M −Q combination is infeasible for LP =300 are
marked with ‘–’. It can be seen that as M and Q increases, the search
time decreases as expected.

Also, as M increases, the number of potential exact matches that
must be post-processed also increases. Table 5 provides this data.

Table 4. Search times for various M −Q combinations (in micro seconds)

Q=8 Q=9 Q=10 Q=11

M =7 1830 277 27 30
M =15 288 33 7 3
M =23 105 9 1.4 0.5
M =31 108 8 – –
M =39 – – – –

Table 5. Number of matches to be post processed versus M

M =7 M =15 M =23 M =31

Number of matches 1 1 2 330

Thus, it can be seen from the data presented that a large M results
in a smaller hash table, but also generates larger number of potential
matches that must be post processed. Also, a larger Q speeds up
the polyphase search, but demands larger hash table size. Therefore,
values M and Q must be carefully chosen.

For example, for setting parameters M and Q for a pattern of
length ∼300, Table 3 inspires us to use a highest value of M =39
(because this gives the smallest hash table). However, the numbers in
table Table 4 suggest that it would be reasonable to select the higher
values of Q and set M ∼23 (because higher M −Q combinations
are either slow or infeasible) and further consultation with Table 5
indicates that a combination of M =23 and Q=11 is practical
(because the number of matches that must be post processed are
near minimal). Thus an optimal choice of parameters would be
M =23 and Q=11, which requires 45.3 MB for the hash table
(Text size = 250 M bases). Also, with respect to the pattern (Pattern
size = 300 bases) related searching time, 0.5 ms are required to
generate the list of exact matches of polyphases in the downsampled
text. Another 1 ms is required to verify if the exact polyphase match
translates to exact match in text. Thus a total of 1.5 ms were required
for mining exact matches.

5 CONCLUSION
In this article, we presented a method for fast exact sequence
search that relies on downsampling and polyphase representations
to expedite the search process. We also computed the complexity
of the algorithm and showed it to be better than existing methods.
Because the proposed method uses polyphase representations, and
because searching for exact matches in multiple polyphases does
not have any data or functional inter-dependency, the algorithm
can be parallelized. This would further reduce time complexity.
Implementation of a parallel version of the algorithm will be a topic
of further work.

The proposed algorithm addresses the problem of finding exact
matches to a substring. Our future research will extend the utility of
this algorithm to finding approximate matches.

Conflict of Interest: none declared.

i418

[10:28 28/8/2010 Bioinformatics-btq364.tex] Page: i419 i414–i419

A fast algorithm for exact sequence search in biological sequences using polyphase decomposition

REFERENCES
Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.
Bernaola-Galvan,P. et al. (2002) Study of statistical correlations in DNA Sequences.

Gene, 300, 105–115.
Charras,C. and Lecroq,T. (2004) Handbook of Exact String Matching Algorithms. Kings

College, London Publications, London.
Cormen,T. et al. (1990) Hash tables. In Introduction to Algorithms, 2nd edn. McGraw

Hill, MIT Press, Cambridge, MA, pp. 221–245.
Eric,V.C. et al. (2009) Cetuximab and chemotherapy as initial treatment for metastatic

colorectal cancer. N. Engl. J. Med., 360, 567–578.
Genome Reference Consortium, UCSC. (2009) http://hgdownload.cse.ucsc.edu/

goldenPath/hg19/chromosomes/.
Gusfield,D. (1997) Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. Cambridge University Press, Cambridge, MA.
Knuth,D. et al. (1977) Fast pattern matching in strings. SIAM J. Comput., 6, 323–350.
Kurtz,S. et al. (2004) Versatile and open software for comparing large genomes. Genome

Biol., 5, R12.

Lecroq,T. (2007) Fast exact string matching algorithms. Inf. Process. Lett., 102,
229–235.

Li,H. and Durbin,R. (2010) Fast and accurate long-read alignment with Burrows–
Wheeler transform. Bioinformatics, 26, 589–595.

Lipman,D.J. and Pearson,W.R. (1985) Rapid and sensitive protein similarity searches.
Science, 227, 1435–1441.

Ma,B. et al. (2002) PatternHunter: faster and more sensitive homology search.
Bioinformatics, 18, 440–445.

Melichar,B. (1995) Approximate string matching by finite automata. Computer analysis
of images and patterns. LNCS, 970, 342–349.

Ning,Z. et al. (2001) SSAHA: a fast search method for large DNA databases. Genome
Res., 11, 1725–1729.

Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological sequence
comparison. Proc. Natl Acad. Sci., 85, 2444–2448.

Vaidyanathan,P.P. (1993) Multirate Systems and Filter Banks. Prentice-Hall, Englewood
Cliffs, NJ.

i419

