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Abstract

In the general framework of semi-supervised
learning from labeled and unlabeled data, we
consider the specific problem of learning from
a pool of positive data, without any nega-
tive data but with the help of unlabeled data.
We study a naive Bayes algorithm PNB from
positive and unlabeled examples. Then, we
consider the case where the number of pos-
itive examples is quite small, assuming that
the co-training setting is relevant, i.e. assum-
ing that the datasets have a natural separa-
tion of their features into two sets. We de-
sign a co-training algorithm PNCT from posi-
tive and unlabeled examples. We give exper-
imental results for the two algorithms PNB
and PNCT. They show that text classifica-
tion with naive Bayes is feasible with pos-
itive examples and unlabeled examples and
that co-training algorithms can significantly
improve learning accuracy when the available
set of positive data is small.

1. Introduction

It is often tedious and expensive to hand-label large
amount of training data. Thus recently, semi-
supervised learning algorithms from a small set of la-
beled data with the help of unlabeled data have been
defined. Such approaches include using Expectation
Maximization to estimate maximum a posteriori pa-
rameters (Nigam et al., 2000; M.-R & P., 2003), us-
ing transductive inference for support vector machines

(Joachims, 1999), using the unlabeled data to define
a metric or a kernel function (Hofmann, 1999), using
a partition of the set of features into two disjoint sets
of features (Blum & Mitchell, 1998; Nigam & Ghani,
2000; Muslea et al., 2002).

Here, we consider the problem of learning from positive
data with the help of unlabeled data. For instance, in
many text learning tasks, such as document retrieval
and classification, one goal is the efficient classification
and retrieval of interests of some user. Positive in-
formation is readily available and unlabeled data can
easily be collected. One example is learning to classify
web pages as “interesting” for a specific user. Docu-
ments pointed by the user’s bookmarks define a set of
positive examples because they correspond to interest-
ing web pages for him and negative examples are not
available at all. Nonetheless, unlabeled examples are
easily available on the World Wide Web.

Theoretical results show that in order to learn from
positive and unlabeled data, it is sometimes sufficient
to consider unlabeled data as negative ones (Denis,
1998; Liu et al., 2002). The starting point of (Liu
et al.) is a constrained approximation approach. The
idea is to select a function that correctly classifies all
positive documents and minimizes the number of unla-
beled documents classified as positive. Following this
idea, they define a new learning algorithm S-EM built
on the naive Bayes classifier in conjunction with the
EM (Expectation Maximization) algorithm.

Another approach in the statistical query learning
model is to estimate statistical queries over positive
and unlabeled examples (Denis et al., 2003). We fol-



low this idea and define a naive Bayes Classifier PNB.
PNB takes as input positive and unlabeled data, to-
gether with an estimate — possibly rough — of the pos-
itive class probability. In practical situations, the pos-
itive class probability can be empirically estimated or
provided by using some domain knowledge. We com-
pare the performance of S-EM, NB and PNB on three
public domain document datasets: the WebKB course
dataset, the Reuters collection and the 20 newsgroups
dataset.

Next, we consider situations where only a small set
of positive data is available together with unlabeled
data. In these situations, building accurate classi-
fiers may fail because of the poverty of the input
data. However, learning is still possible when the
existence of two different views over the data is as-
sumed, as in the co-training framework introduced by
Blum and Mitchell (1998). For instance, consider the
retrieval of bibliographic references. Positive exam-
ples are stored in the user database. A first view
consists of the bibliographic fields — title, author,
abstract, editor. A second view is the full content
of the paper. Unlabeled examples are easily avail-
able in the bibliographic databases accessible via the
World Wide Web. Co-training algorithms incremen-
tally build basic classifiers over each of the two fea-
ture sets. Co-training methods have been used previ-
ously to train classifiers in applications like text clas-
sification (Blum & Mitchell, 1998), word-sense disam-
biguation (Yarowski, 1995) and named-entity classi-
fication (Collins & Singer, 1999). Co-training learn-
ing is a special case of multi-view learning for which
semi-supervised learning algorithms have been de-
fined (Muslea et al., 2002).

We define a co-training algorithm PNCT for which the
seed information is a small pool of positive documents.
At first, PNCT incrementally builds naive Bayes classi-
fiers from positive and unlabeled documents over each
of the two views by using PNB. Along the co-training
steps, self-labeled positive examples and self-labeled
negative examples are added to the training sets. We
propose a base algorithm PNNB, which is a variant of
PNB, able to use these self-labeled examples. Exper-
iments on the WebKB Course dataset are performed;
they show that co-training algorithms lead to signifi-
cant improvement of classifiers, even when the initial
seed is only composed of positive documents.

In Section 2, we present the naive Bayes algorithm
from positive and unlabeled data PNB. In Section 3, we
define our co-training algorithm PNCT. Experimental
results are given in Section 4.

2. Naive Bayes from Positive and
Unlabeled Documents

2.1. PNB algorithm

Naive Bayes algorithm from positive and unlabeled ex-
amples (PNB) is introduced in (Denis et al., 2002). We
briefly present the main ideas of PNB in this section.
We only consider binary text classification problems:
the set of classes is {0, 1} where 1 corresponds to the
positive class. We consider bag-of-words representa-
tions for documents. Let D be a set of documents and
let w be a word. We denote by N (D) the total number
of word occurrences in D and by N(w, D) the number
of occurrences of w in all the documents of D.

PNB assumes an underlying generative model. In this
model, first a class c is selected according to class prior
probabilities P(c). Second, a document length [ is cho-
sen according to length prior probability P(l). Then,
each word w in the document is generated by drawing
from a multinomial distribution over words specific to
the class Pr(w|c).

The algorithm PNB takes as input: an estimate P(1) of
the positive class probability P(1), a set PD of positive
documents together with a set UD of unlabeled docu-
ments. The Positive Naive Bayes classifier PNB clas-
sifies a document d consisting of n words (wy, ..., w,)
— with possibly multiple occurrences of a word w — as
a member of the class:

PNB(d) = argmax P(c) H Pr(w;lc) . (1)
ce{0,1} )

We must now explain how the class probability es-

timates P(c) and the word probability estimates

Pr(w;|c) are calculated.

Class probability estimates. An estimate P(1) of
the positive class probability P(1) is given as input to
the learner. An estimate P(0) of the negative class
probability is set to 1 — P(1).

Positive word probability estimates. We are
given as input a set PD of positive documents. We
consider the Laplace smoothing. The positive word
probability estimates are calculated using the follow-
ing equation:

14 N(w;, PD) )
~ Card(V)+ N(PD) 2)

Pr(w;|1)

where V' is the vocabulary and Card(V') its cardinality.

Negative word probability estimates. When a
set ND of negative documents is available, the neg-



ative word probability estimates are calculated using
the following equation:

. 1+ N(w;, ND)
Pr(w;|0) = Card(V) + N(ND) (3)

But, in our framework negative word probabili-
ties must be estimated without negative examples.
Nonetheless, for word probabilities we have:

Pr(w;) = Pr(w;|0)Pr(0) + Pr(w;|1)Pr(1) (4)

where Pr(w;) is the probability that the generator cre-
ates w; and Pr(1) is the probability that the generator
creates a word in a positive document. Equation 4 can
be rewritten as:

Pr(w;) — Pr(w;|1) x Pr(1)
1—Pr(1) (5)

Pr(w;|0) =

This equation is used to estimate negative word prob-
abilities. Assuming that the set of unlabeled docu-
ments is generated according to the underlying gener-
ative model, probability Pr(w;) is estimated on the set
of unlabeled documents by N(w;,UD)/N(UD). Esti-
mates for negative word probabilities can be rewritten:

Pr(w;|0) = N(w;, UD) — Pr(w;|1) x Pr(1) x N(UD)
A (1 - Pr(1)) x N(UD)

(6)

In this equation, the positive word probabilities
Pr(w;|1) are calculated according to Equation 2 with
the input set PD of the positive documents. Pr(1)
is an estimate of the probability that the generator
creates a word in a positive document. As it is as-
sumed that the lengths of documents are independent
of the class, Pr(1) could be either set to P(1) or di-
rectly computed using the inputs of PNB (see (Denis
et al., 2002) for the calculation and the smoothing of
negative word probability estimates).

3. Co-training from Positive and
Unlabeled Examples

3.1. Co-training from positive and negative
examples

The co-training setting was introduced in (Blum &
Mitchell, 1998) in the general framework of learning
from labeled data and unlabeled data. The co-training
setting applies when a dataset has a natural division
of its features. Blum and Mitchell show that under the
assumptions that each set of features is sufficient for

classification, and the two feature sets of each instance
are conditionally independent given the class, PAC-
like guarantees on learning from labeled and unlabeled
data hold.

They also present a co-training algorithm (see Table 3)
which incrementally build naive Bayes classifiers over
each of the two views. We denote by D a set of docu-
ments described by two views and Dy (resp. Ds) is the
projection of D on the first (resp. second) view. When
the documents are labeled, projections are considered
together with their labels. The co-training algorithm
first creates a pool of u unlabeled documents. It then
iterates the following procedure. First, the algorithm
trains two classifiers NB; and NBy based on each of the
two views. Second, the classifiers are applied to unla-
beled examples. The examples on which the classifiers
make the more confident predictions are removed from
the set of unlabeled data and are added together with
their label to the set of labeled data. At the end, a final
hypothesis Combine(NB1, NB3) is created by a voting
scheme that combines the prediction of the classifiers
learned in each view.

Following the co-training scheme, we define in Sec-
tion 3.3 a co-training algorithm from positive and un-
labeled examples. A first idea is to replace NB by PNB.
Thus along the boosting rounds, only positive and un-
labeled examples are used. But, PNB outputs a classi-
fier which can label examples as negative. These self-
labeled negative examples should be used along the
boosting rounds of the co-training algorithm. With
this aim, we first define a variant of PNB which is able
to use self-labeled negative examples.

3.2. PNNB algorithm

PNNB takes as input an estimate P(l) of the positive
class probability and three training sets, a set PD of
positive documents, a set ND of negative documents
and a set UD of unlabeled documents. The situation
differs from classical naive Bayes from labeled exam-
ples (the input is a set D=PD U N D of labeled exam-
ples) in two ways:

e the ratio Card(PD)/(Card(PD) + Card(ND)) is
not an estimate of P(1)

e we are not confident in the labels of the negative
documents.

As for PNB, the key point is estimating negative word
probabilities in Equation 1. The negative word proba-
bilities can be estimated either from the set of negative
examples or from the sets of positive and unlabeled ex-
amples. We mix these two estimates.



Let us denote by Pr(w;|0, ND) the estimate obtained
from the set of negative examples using Equation 3.
Let us denote by Pr(w;|0, PD,UD) the estimate ob-
tained from P(1) together with the sets PD and UD
according to Section 2 by Pr(w;|0, PD,UD). We de-
fine estimates for negative word probabilities combin-
ing these two estimates using the following equation:

Pr(w;|0) = (1—a) Pr(w;|0, PD,UD)+aPr(w;|0, ND)

We set the parameter a to:

When there is no negative document, « is set to 0 and
negative word probabilities are estimated from P(1)
and the two sets PD and U D according to Equations 7
and 6. When the sets PD and ND are such that
the ratio of positive documents in the union set PD U
ND is equal to the estimate P(1) of the positive class
probability P(1), a has value 1/2, that is we suppose
that we are equally confident on both estimates.

The naive Bayes algorithm PNNB takes as input an es-
timate ]5(1) of the positive class probability, a set PD
of positive documents, a set UD of unlabeled docu-
ments and a set ND of negative documents. Class
probabilities and positive word probabilities are cal-
culated as for PNB. Negative word probabilities are
estimated according to Equations 7 and 8.

3.3. Co-training from only Positive and
Unlabeled Examples

We extend the co-training setting to the case where
only positive documents and unlabeled documents are
given to the learner. The co-training learning al-
gorithm PNCT is given in Table 4. It incremen-
tally builds classifiers over each of the two views with
the PNNB algorithm. The co-training process re-
peats for k iterations. At each co-training step, it
picks Card(PD)/P(1) documents from the set, of unla-
beled documents to form the unlabeled dataset given
as input to PNNB classifiers. Indeed, large unla-
beled datasets can degrade performance of PNB clas-
sifiers (Denis et al., 2002). The outcome of the co-
training process consists in a final hypothesis whose
prediction is obtained by multiplying the prediction of
the classifiers learned in each view.

4. Empirical Evaluation

Datasets The WebKB Course dataset is a collec-
tion of 1051 web pages collected from computer sci-
ence departments at four universities. Web pages are
divided into several categories. We use the student,
project, course and faculty categories. No stop-list is
used, html tags are removed and no stemming is per-
formed. The Reuters collection is the most commonly-
used collection for text classification. We use a format-
ted version of Reuters version 2 (also called Reuters-
21450) prepared by Y. Yang and colleagues. Docu-
ments are labeled to belong to at least one of the 135
possible categories. Here we consider two binary clas-
sification problems defined by the categories acq and
grain. The 20-newsgroups dataset contains 20 different
UseNet discussion groups. We remove UseNet headers,
no stop-list is used and no stemming is performed.

4.1. Experiments with PNB

Preliminary experimental results were given in Denis
et al. (2002). They show that PNB is robust against
the input value of P(1) and compare learning accu-
racy when varying the number of unlabeled examples.
Here, we apply PNB to real world data sets. We also
compare PNB and NB considering experimental results
for NB as lower and upper bounds for PNB. We also
compare PNB and S-EM defined in Liu et al. (2002).

Comparison between PNB and NB Experiments
were conducted to compare PNB and NB while varying
the number of labeled documents. Results are given
in Table 1. For a given row in Table 1, we repeat 200
times the following procedure. We select at random
a set of p of labeled data for NB,, a set of NV labeled
data for NBy, and a set of p positive and N unlabeled
data for PNB, ;. The Reuters dataset comes with
a test set (3662 items) and a train set (9610 items)
and we keep this separation in our experiences. In
the case of the WebKB dataset, we use as test set
the remaining data after drawing the train sets (we
obtain therefore 200 different test sets). The estimated
error is averaged over the 200 the runs. The standard
deviation is estimated as the standard deviation of the
accuracy estimations from each holdout run. F score
is defined as F' = 2pr/(p + r) where p is the precision
and r is the recall.

Naive Bayes from positive and unlabeled examples
with p positive examples outperforms standard Naive
Bayes with p labeled examples. Obviously, if unlabeled
documents are given with their correct label, standard
Naive Bayes outperforms Naive Bayes from positive
and unlabeled examples. Also, it should be noted that



we obtain good results when the weight of the positive
class is quite small (Category Grain).

Comparison between PNB and S-EM In Table 2,
we report error rates and F-measure of PNB and S-
EM. Learning algorithms take two sets as input: a
set P of positive documents and a set M built with
negative documents and positive ones. As indicated by
(Liu et al.), the objective is to recover those positive
documents put in the mixed M, thus M can be seen
as a test set.

The S-EM algorithm takes as input a set P of positive
documents, a set M of unlabeled documents and do
not need any estimation of P(1). The PNB algorithm
takes M as a set of unlabeled documents and P as a set
of positive documents. We let P(1) = 0.5, considering
we have no knowledge about it. Results indicated in
Table 2 give the average error rates and F-measure
for 100 draws of M and P for PNB. Our algorithm
PNB outperforms S-EM in eight of the nine sets of
experiments. Results of PNB have also lower variance.

Table 1. A comparison between NB and PNB on three real
world datasets.

D N NB, PNB, ~ NBn

Error | F Error | F Error | F

Reuters Category acq; P(1) is set to 0.172
40 232 123.3) | 66 | 11@1.8) | 67 | 7.2(1.4) | 81
120 | 698 | 8.9(2.3) | 76 | 6.9(0.8) | 82 | 4.8(0.5) | 88
200 | 1164 | 7.41.5) | 80 | 5.5¢(0.5) | 86 | 4.2¢0.3) | 90
280 | 1630 | 6.6(1.1) | 83 | 4.8(0.4) | 88 | 4.0¢0.2) | 91
360 | 2096 | 6.0(0.8) | 85 | 4.5(0.3) | 89 | 3.9(0.3) | 91
440 | 2562 | 5.7(0.6) | 86 | 4.400.3) | 90 | 3.9(0.2) | 91
520 | 3028 | 5.3(0.5) | 87 | 4.2¢0.3) | 90 | 3.9(0.2) | 91
Reuters Category grain; P(1) is set to 0.045

40 888 | 5.2(1.2) | 36 | 3.4(0.6) | 61 | 3.0¢0.4) | 70
60 1333 | 4.91.1) | 40 | 3.3¢0.4) | 66 | 3.0¢0.4) | 71
80 1777 | 4.6¢0.7) | 45 | 3.3(0.4) | 68 | 3.1(0.a) | T2
100 | 2222 | 4.3c0.7) | 48 | 3.4(0.4) | 69 | 3.2(0.4) | 72
120 | 2666 | 4.2(0.6) | 51 | 3.5(0.4) | 70 | 3.3(0.3) | 72
140 | 3111 | 4.0¢0.6) | 52 | 3.6(0.4) | 70 | 3.4(0.3) | 71
160 | 3555 | 3.9¢0.6) | 54 | 3.6(0.3) | 70 | 3.5¢0.3) | 71

WebKB; P(1) is set to 0.22
10 45 18(7.9) | 51 | 13(4a8) | 64 | 83@3.2) | 80
20 90 13(5.6) | 64 | 10@3.6) | 74 | 6.3(2.0) | 86
30 136 10(4.4) | 74 | 8.9@.0) | 78 | 5.6(1.7) | 87
40 181 | 8.8(3.5) | 79 | 7.8(2.6) | 81 | 5.0(15) | 89
50 227 | 7.8(2.6) | 81 | T.422) | 82 | 4.91.5) | 89
60 272 | T.1(23) | 84 | 6.91.8) | 84 | 4.71.4) | 89
70 318 | 7.12.8) | 83 | 6.6(1.7) | 85 | 4.5¢1.3) | 90

Discussion On real world datasets, our algorithm
PNB builds accurate classifiers. S-EM and PNB give
similar results but PNB needs a rough estimation of

P(1). It is worth noting that (Liu et al.) use spy doc-
uments in M to optimize the performance of S-EM.
Usefulness of spy documents (ten percents of the pos-
itive ones in M) is twofold: they are used to avoid
strong bias toward positive documents in the EM ini-
tialization; they are also used to estimate errors and
then select a good classifier in the sequence produced
by EM.

4.2. Co-training Experimental Results

We run the PNCT co-training algorithm on the We-
bKB Course dataset. The binary classification prob-
lem is to identify web pages that are course home
pages. Each example consists of the words that oc-
cur on the web page (full-text view), as well as words
occurring in the anchor text of hyperlinks pointing to
that page (Hyperlink view). The class course is de-
signed as the positive class in our setting and 22% of
the web pages are positive. Given a fixed seed size
Card(PD), for each experiment we first pick at ran-
dom a test set of 263 documents. From the 819 re-
maining documents, we draw a set of labeled docu-
ments containing Card(PD) positive documents and
these positive documents define the seed PD. The re-
maining documents are left unlabeled and define the
set UD. The estimate P(1) is set to 0.22. The pa-
rameter k is set to the maximal number of co-training
steps depending on the number of available unlabeled
documents. Parameters p and n are respectively set
to 1 and 3.

In a first set of experiments, we study the evolution
of error rates along the co-training steps. The seed
size Card(PD) is set to 20. Error rates of the out-
put classifiers are averaged over 100 experiments. Fig-
ure 1 gives a plot of error versus number of iterations
for the PNCT co-training algorithm. Along the first
co-training steps, error rates first increase. This may
be due to the fact that a sufficient number of self-
labeled documents is needed for statistics to become
sufficiently accurate. But after some co-training steps,
error rates for the full-text classifier and the combined
classifier decrease continuously. Finally, the output
full-text and combined classifiers outperform classifiers
built over the seed dataset. The hyperlink classifier is
helped less by co-training but hyperlinks documents
contain fewer words. For individual experiments when
the seed size is set to 20, we obtain similar plots. When
the seed size is lower, for instance consider a seed of 10
positive documents, for some rare experiments, error
rates of initial classifiers are quite poor and co-training
does not improve the accuracy of the initial classifiers.

We also reproduce experiments of Blum and Mitchell



Table 2. Experimental results from the 20-Newsgroup dataset. Columns PNB and S-EM give accuracy and F' measure
evaluated on M and averaged over 100 draws (standard deviation is indicated in parenthesis)

Positive | Negative | P M | posin M PNB S-EM
Error F Error F

atheism rel 200 | 1400 400 21.01.9) | 58.2@35) | 27.1@28) | 61.2(7.9)
graphic mac 200 | 1400 400 10.73.0) | 77.9(s.2) 13.6(a.4) | 71.9a7.1)
guns pol 200 | 1400 400 14.2(1.4) | 71.84.0) | 16.23.3) | 73.7(5.9)
med elec 200 | 1400 400 6.9(1.5) 86.5(3.4) 8.6(4.8) | 81.7@15.8)
oswin winx 200 | 1400 400 22.4(3.9) | 35.6(18.4) | 20.95.6) | 43.0(27.5)
rel pol 200 | 1400 400 13.4¢1.0) | 73.9¢2.0) | 17.02.9) | 71.6¢6.5)
student course 328 | 1586 656 4.1(0.8) 94.8(1.0) 5.41.2) 93.2(1.7)
project course 100 | 1132 202 3.6(0.7) 90.1(1.9) 6.0(2.8) 79.9(13.4)
faculty course 224 | 1378 450 4.9(2.2) 92.6(3.2) 7.6(43) | 86.6(12.8)

(1998) with our implementation of their algorithm
(here called CT) of co-training from positive and neg-
ative data. As in the PNCT case, along the first
co-training steps, error rates first increase and then
decreases continuously. We observe that the phe-
nomenon is even accentuated in the CT case. More-
over, it seems to us that the CT algorithm is not robust
in the choice of the initial seed. For instance, given 3
positive documents and 9 negative documents, CT ul-
timately outputs a classifier whose error rate is greater
than 12% in 20 percents of our trials. With 10 pos-
itive documents in input PNCT ultimately outputs a
classifiers whose error rate is greater than 12% in only
4 percents of our trials.

T T T T T T
conbined ——
full-text
in-links ——

16 4

L L
) 10 28 38 48 58 68 7a
Cotrsining steps

Figure 1. Error versus number of co-training steps for the
co-training algorithm PNCT. The seed size is set to 20 and
error rates are averaged over 100 experiments

In a second set of experiments, we study error rates of
the two co-training algorithms for different seed sizes.
For a given seed size, we run 100 experiments. Table 5
gives error rates for the output classifiers. For the co-
training algorithm CT defined in (Blum & Mitchell,
1998), we choose an initial seed whose cardinality is

Figure 2. Error versus number of co-training steps for the
co-training algorithm CT. The seed size is set to 11+33
documents and error rates are averaged over 100 experi-
ments

close to the number of positive documents in the seed
of PNCT in the corresponding row (e.g. for the first
row of the two tables, 3 positive plus 9 negative docu-
ments in the CT seed and 10 positive documents in the
PNCT seed). These experimental results on the We-
bKB dataset are promising. Given a seed of only 10
positive documents and 40 unlabeled documents, the
ultimately classifiers produced by PNCT outperform
naive Bayes classifiers trained over 90 labeled docu-
ments (see Table 1). We should also note that our
algorithm seems more robust. For a seed of 20 pos-
itive documents, PNCT classifiers always outperform
classifiers trained over the seed while for a seed of 12
labeled documents, CT classifiers may be quite poor
for some draws of the seed.



Table 3. The co-training algorithm CT (Blum & Mitchell, 1998)

Co-training algorithm CT
parameters: u, p, n, k
input: a set D of labeled documents; a set UD of unlabeled documents
Create a pool UDP choosing u documents at random from U D
Loop for k iterations
for each i in {1,2}
Use D; to train a naive Bayes classifier NB;
Remove from UDP the p examples that NB; most confidently labels as positive and add them to D
Remove from UDP the n examples that NB; most confidently labels as negative and add them to D
Randomly choose 2n + 2p examples from UD to replenish U DP
output: Combine(NB;, NBy2)

Table 4. The co-training algorithm from positive and unlabeled documents where self-labeled positive and negative doc-
uments are added along the co-training steps.

Co-training algorithm PNCT

parameters: p, n, k

input: a set PD of positive documents; a set UD of unlabeled documents; an estimate P(l)
Set UDP to UD; set ND to ()

Loop for k iterations
Card(PD)

B documents at random from UD

Create a pool UD'"%"™ choosing
for each i in {1,2}
Train PNNB; with input PD;, UD!%™ N D, and ]5(1)
Remove from UDP the p examples that PNNB; most confidently labels as positive and add them to PD
Remove from U DP the p examples that PNNB; most confidently labels as negative and add them to ND
output: Combine(PNNB;, PNNB,)

Table 5. Co-training with CT (upper table) and PNCT (below). The column start gives error rate and F-measure of PNB
with Card(PD) positive examples and the column stop gives error rate and F-measure for the combined classifiers after
k co-training steps.

seed steps Start Stop
size Error | F Error | F
[POS| | INEG] CT
3 9 74 12.4(4.0) | 66.8(14.7) | 11.4(10.6) | 73.6(25.7)
4 12 73 10.43.9) | 72.9(13.3) 8.7(7.4) | 80.3(17.1)
6 18 72 8.4(3.4) | 78.1(11.3) 7.87(7) | 82.6(16.7)
8 24 71 7.7(2.5) 80.7(8.4) 7.3(4.5) | 83.7(11.4)
11 33 69 6.6(2.3) 84.1(6.6) 6.0(1.7) 87.0(3.6)
[POS| | [UNL] PNCT
10 40 70 12.8(4.5) | 58.4(20.1) 6.3(2.3) 84.9(6.6)
20 80 65 9.6(3.6) | 72.0(14.2) 5.1(1.9) 88.2(3.3)
30 120 56 8.2(2.9) | 77.8(10.1) 5.0(1.2) 88.5(3.0)
40 160 46 7.12.5) 81.3(8.2) 5.1(1.4) 88.4(3.3)
50 200 36 6.5(2.4) 82.9(7.2) 5.0(1.2) 88.4(3.1)




5. Conclusion

We study an adaptation of Naive Bayes that allow
to build classifiers from positive and unlabeled data
(PNB). The main idea is to approximate word prob-
abilities given the negative class using positive, un-
labeled data and an estimation of the weight of the
positive class. In the presence of a small set of ex-
amples from the target class, we reuse the co-training
scheme introduced by Blum and Mitchell (1998) with
PNB as a base classifier. We apply these algorithms
to a binary text classification problem. Experiments
show that starting from a small number of documents
from the target class, an estimate of probability of this
class and unlabeled documents, our co-training meth-
ods build competitive classifiers. Outcomes of the co-
training algorithm also seem to be more robust in the
choice of the initial seed. Nonetheless, there are still
a lot of open questions. How can the positive class
probability be estimated from the data? Does an hy-
pothesis testing algorithm apply in our setting ?
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