
Reverse code engineering
Powerfull knowledge, lot of fun and legal for several purposes!
Basic information available in Wikipedia article on reverse engineering (IS copy
REWiki.pdf)

• RE in general, example with B-29, synthetic chemistry/biology
• Legality

o Own binary without documentation
o Interoperability
o Anti-virus research
o Fair use, education
o Problem with recent copyright laws (attempt to circumvent is illegal,

not only selling circumvented content)
o Forensics

• Disassembler vs. debugger
o Static vs. dynamic code analysis
o Debugger vs. Debugger with advanced modification tools (Visual

Studio vs. OllyDbg)
• Assembler vs. bytecode

o Instruction set (downloadable)
o Register-based vs. stack-based execution

• Structured code vs. sequence of executed instructions
o Structured code contains code for all branches (runable binary)
o Sequence of executed instructions only from branches taken (power

analysis of smart card)
• Example: Java Card bytecode

o sspush, sspush, add, ifeq
• Example: Win32 binary

o Lena tutorials 1 and 2
o Name of the registers (EAX 32bit, AX 16bit, AH/AL 8bit)
o Flags (Zero/Sign/Carry)

Java(Card) bytecode
Intermediate code interpreted by virtual machine (see JavaCard222_ops.pdf).

• Usually easier to understand then assembler code.
• Stack-based oriented execution, no registers are used (all operands at the top

of the stack).
• Operation takes its operands from stack and return result there.
• JavaCard example selected because of lower number of opcodes.
• Same principle works for Java, .NET CLI ...

 // ENCRYPT INCOMING BUFFER
 void Encrypt(APDU apdu) {
 byte[] apdubuf = apdu.getBuffer();
 short dataLen = apdu.setIncomingAndReceive();
 short i;

 // CHECK EXPECTED LENGTH (MULTIPLY OF 64 bites)
 if ((dataLen % 8) != 0)
 ISOException.throwIt(SW_CIPHER_DATA_LENGTH_BAD);

 // ENCRYPT INCOMING BUFFER
 m_encryptCipher.doFinal(apdubuf, ISO7816.OFFSET_CDATA, dataLen,
 m_ramArray, (short) 0);

 // COPY ENCRYPTED DATA INTO OUTGOING BUFFER
 Util.arrayCopyNonAtomic(m_ramArray, (short) 0, apdubuf,
 ISO7816.OFFSET_CDATA, dataLen);

 // SEND OUTGOING BUFFER
 apdu.setOutgoingAndSend(ISO7816.OFFSET_CDATA, dataLen);

 }
Original JavaCard source code

.method Encrypt(Ljavacard/framework/APDU;)V 129 {

 .stack 6;

 .locals 3;

 .descriptor Ljavacard/framework/APDU; 0.10;

 L0: aload_1;

 invokevirtual 30;

 astore_2;

 aload_1;

 invokevirtual 42;

 sstore_3;

 sload_3;

 bspush 8;

 srem;

 ifeq L2;

 L1: sspush 26384;

 invokestatic 41;

 goto L2;

 L2: getfield_a_this 1;

 aload_2;

 sconst_5;

 sload_3;

 getfield_a_this 10;

 sconst_0;

 invokevirtual 43;

 pop;

 getfield_a_this 10;

 sconst_0;

 aload_2;

 sconst_5;

 sload_3;

 invokestatic 44;

 pop;

 aload_1;

 sconst_5;

 sload_3;

 invokevirtual 45;

 return;

}
Resulting JavaCard bytecode

Native binary code (assembler)

How to start quickly with assembler (mixed mode)
Most current IDE supports mixed source code/assembler instructions mode (Visual
Studio, QT Creator...). Mode is usually available during a debugging.

1. Write simple code (e.g., if then else condition), insert breakpoint and start
debugging

2. Switch to mixed mode
a. Visual Studio→RClick →Go to disassembly
b. QTCreator→Debug→Operate by Instruction

3. Learn how particular source code is translated into assembler code

#include <stdio.h>
int main() {
 FILE* file = NULL;
 file = fopen("values.txt", "r");

 if (file) {
 int value1 = 0;
 int value2 = 0;
 fscanf(file, "%d", &value1);
 fscanf(file, "%d", &value2);

 value1 = value1 + value2;

 printf("Result: %d", value1);
 }
 fclose(file);
}

Original C source code

Relevant snapshot from executable binary

 Dump of assembler code for function main:
 2 int main() {
0x00401344 <+0>: push %ebp
0x00401345 <+1>: mov %esp,%ebp
0x00401347 <+3>: and $0xfffffff0,%esp
0x0040134a <+6>: sub $0x20,%esp
0x0040134d <+9>: call 0x401a20 <__main>

 3 FILE* file = NULL;
0x00401352 <+14>: movl $0x0,0x1c(%esp)

 4 file = fopen("values.txt", "r");
0x0040135a <+22>: movl $0x402030,0x4(%esp)
0x00401362 <+30>: movl $0x402032,(%esp)
0x00401369 <+37>: call 0x401c90 <fopen>
0x0040136e <+42>: mov %eax,0x1c(%esp)

 5
 6 if (file) {
0x00401372 <+46>: cmpl $0x0,0x1c(%esp)
0x00401377 <+51>: je 0x4013e4 <main+160>

 7 int value1 = 0;
0x00401379 <+53>: movl $0x0,0x18(%esp)

 8 int value2 = 0;
0x00401381 <+61>: movl $0x0,0x14(%esp)

 9 fscanf(file, "%d", &value1);
0x00401389 <+69>: lea 0x18(%esp),%eax
0x0040138d <+73>: mov %eax,0x8(%esp)
0x00401391 <+77>: movl $0x40203d,0x4(%esp)
0x00401399 <+85>: mov 0x1c(%esp),%eax
0x0040139d <+89>: mov %eax,(%esp)
0x004013a0 <+92>: call 0x401c98 <fscanf>

 10 fscanf(file, "%d", &value2);
0x004013a5 <+97>: lea 0x14(%esp),%eax
0x004013a9 <+101>: mov %eax,0x8(%esp)
0x004013ad <+105>: movl $0x40203d,0x4(%esp)
0x004013b5 <+113>: mov 0x1c(%esp),%eax
0x004013b9 <+117>: mov %eax,(%esp)
0x004013bc <+120>: call 0x401c98 <fscanf>

 11
 12 value1 = value1 + value2;
0x004013c1 <+125>: mov 0x18(%esp),%edx
0x004013c5 <+129>: mov 0x14(%esp),%eax
0x004013c9 <+133>: lea (%edx,%eax,1),%eax
0x004013cc <+136>: mov %eax,0x18(%esp)

 13
 14 printf("Result: %d", value1);
0x004013d0 <+140>: mov 0x18(%esp),%eax
0x004013d4 <+144>: mov %eax,0x4(%esp)
0x004013d8 <+148>: movl $0x402040,(%esp)
0x004013df <+155>: call 0x401ca0 <printf>

 15 }
 16 fclose(file);
0x004013e4 <+160>: mov 0x1c(%esp),%eax
0x004013e8 <+164>: mov %eax,(%esp)
0x004013eb <+167>: call 0x401ca8 <fclose>
0x004013f0 <+172>: mov $0x0,%eax

 17 }
0x004013f5 <+177>: leave
0x004013f6 <+178>: ret

 End of assembler dump.
Display of mixed mode of source code and resulting assembler instructions

Disassembling binary code (OllyDbg)
In case when only binary code is available (no source code), other approach is
required. We will work with OllyDbg (www.ollydbg.de) program that is easy-to-use
disassembler and debugger.

• Download OllyDbg 1.10 (freeware) either from http://www.ollydbg.de/ or
(better) from IS (OllyDbg.zip).

• Download tutorials I and II. by Lena from IS (tut1.rar and tut2.rar). Additional
tutorials can be obtained from http://www.tuts4you.com.

• Download Assembler basics from IS (BasicsOfAssembler.pdf)

Disassembled information provided by OllyDbg

OllyDbg shortcuts & most important commands
F3 ... Open binary file
F2 ... Toggle breakpoint (on opcodes, or double click)
F9 ... Run debugged program
Ctrl+F2 ... Restart program, all temporary changes are lost!
F8 ... Step over
F7 ... Step into
Spacebar or double click ... allows to set new opcode. Use when you like to change
program behaviour, e.g., replacing conditional jump (JGE) by unconditional jump
(JMP) or to discard instruction (NOP).
Alt+BkSp ... Undo change
Rightclick->Search for->All referenced text strings ... Constant text strings
referenced in code. Use to find strings like hardcoded passwords, important messages
(“Wrong license”). Double click on string will takes you to referencing instruction.
Helps you to build mind model quickly.

Rightclick->Find references to->Address constant ... will find references to
particular memory elsewhere in the code – use when you like to know where in code
the memory is set, changed or otherwise used.
Ctrl+F1 ... Help on Win32 API (WIN32 API help file already prepared in OllyDbg
directory (WIN32.HLP)). Use to get meaning of the parameters pushed to stack just
before the API function is called.
; ... add or edit your comment for specific code line. Use to write down things you
already understand. Use classic paper as well (program mind model)
Rightclick->Copy to executable->All modifications (or Selection) … make changes
permanent. New window with modified code is opened. Rightclick->Save file to
write patched binary to disk.

Registers (FPU):
Z – zero flag, C – carry flag, S – sign flag. Invert bit flag by double click.
EIP ... next address to execute (instruction pointer)
EBX ... usually loop counter

Some hints
• Assembler is not as difficult as it may seem at first sight. You are not required

to write your own program in assembler – you are usually only required to
understand existing code, where only very limited set of assembler operations
is used.

• Using mixed mode in IDE debugger will quickly provide you an insight, how
common programming constructions (assignments, conditional branching,
cycles...) are transformed from source code into editor. Usually, you will get
only 5-15 instructions per line of the source code, with MOV instruction
beeing the most common.

• Conditional branching is usually realized by two consecutive operations:
o Comparison operation setting Flags register
o Conditional jumping operation to address based on Flags (Branch 1)
o If not jumped then Branch 2 code is directly present on the next

instruction, or unconditional jump JMP to Branch 2 is present.
• Comparison operation

o CMP EAX, -1 - will set flag(s) in Registers, Zero and Sign flags are
usually of interest. If two values are same (EAX == -1), Zero flag is set
to 1.

o TEST A, B (usually TEST EAX, EAX) – logical AND operation,
results not saved, Flags are set. TEST EAX, EAX will test if value in
EAX is equal to 0. If EAX == 0 then Zero flag == 1, 0 otherwise.

• Jump operation
o Unconditional JMP – jump every time
o Conditional - based on the current value of flag(s)

JA* Jump if (unsigned) above - CF=0 and ZF=0

JB* Jump if (unsigned) below - CF=1

JE** Jump if equal - ZF=1

JG* Jump if (signed) greater - ZF=0 and SF=OF (SF = Sign Flag)

JGE* Jump if (signed) greater or equal - SF=OF

JL* Jump if (signed) less - SF != OF (!= is not)

JLE* Jump if (signed) less or equal - ZF=1 and OF != OF

JMP** Jump - Jumps always

JNE** Jump if not equal - ZF=0

Disassembling binary code (IDAPro freeware)
Interactive Disassembler is legendary fullfledged disassembler with ability to
disassemble many different platforms.

• Free version available for non-comercial uses
• http://www.hex-rays.com/idapro/idadownfreeware.htm
• Free version disassemble only Windows binaries
• Very nice visualization and debuger feature (similar as OllyDbg)
• Try it!

Decompiling binary code
Decompiler is able to produce source code from binary code. Decompiler needs to do
diassembling first and then try to create code that will in turn produce binary code you
have at the begining.
• Resulting code will NOT contain information removed during compilation

(comments, function names, formating...)
• Read http://www.debugmode.com/dcompile/ for more info
• Still can be of great help!
• Problem to find well working free disassembler :(
• http://en.wikibooks.org/wiki/X86_Disassembly/Disassemblers_and_Decompilers

Other resources
RE on Wikipedia: http://en.wikipedia.org/wiki/Reverse_engineering
The Reverse Code Engineering Community: http://www.reverse-engineering.net/
Tutorials for You: http://www.tuts4you.com
Disassembling tutorial http://www.codeproject.com/KB/cpp/reversedisasm.aspx

Homework
The goal of this assignment is to reverse engineer supplied crack me file
(LabakCrackMe.exe), obtain information about its behavior and make program to
continue successfully without error message by a) patching, b) creating valid license
info. More principally different solutions for the same problem will be awarded by
extra points.

Hints:
- You may use OllyDbg or any other disassembler.
- Function fread fail by null exception if invalid file handle is supplied.

Submit:
- Short description of program behavior in text form or as annotated C source code
(not only output of some disassembler) (source code version will be awarded by 1
extra point).
- Patched crack me binary that let the program run every time successfully with no
error without valid license info.
- Valid license info that let program run successfully without binary modification.

