An application of Markov chains: Google - PageRank Algorithm Problem: list websites in order of rank. Rank of a page: proportion of time the page is visited. Assumption: a page with many links to and from pages of high rank should also be ranked high. Surfer: current page 3 new page: Choose a link from the current page randomly: 85%(= p) of the time Choose a page from the web randomly: 15%(= 1 p) of the time. Notation: The web consists of n pages. Markov chain: each page is a state. A = [aij] n n transition matrix. aij is the probability of moving from page j to page i. C = [cij] n n matrix: describes the page links. cij = 8 < : 1 if there is a link from page j to page i 0 otherwise sj = the number of pages to which page j links: sj = nX i=1 cij Find aij? Page j has no links: sj = 0. A surfer chooses a page from the web ran- domly. aij = 1 n Page j has links to other pages: sj T= 0. 2 ways to move from page j to page i: 1. surfer chooses link to page i on page j: probability is p cij sj 2. surfer chooses a page from the web randomly and the chosen page is page i: probability (1 p)1 n . So if sj T= 0, aij = p cij sj + 1 p n . Summarizing, aij = 8 < : 1 n if sj = 0 p cij sj + 1 p n if sj T= 0 A has a steady-state vector. The components of this vector are used to rank the webpages listed by Google. Example: suppose the Web consists of ten pages. The links between the pages are given by the matrix C: C = 2 666666666666666664 0 1 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 3 777777777777777775 Using the formula for aij, you nd that matrix A is given as follows: 2 666666664 0:015 0:440 0:185 0:2275 0:0150 0:1 0:015 0:2275 0:440 0:015 0:015 0:015 0:015 0:0150 0:2275 0:1 0:440 0:0150 0:015 0:015 0:015 0:015 0:015 0:2275 0:0150 0:1 0:015 0:2275 0:440 0:015 0:015 0:015 0:185 0:0150 0:0150 0:1 0:440 0:2275 0:015 0:015 0:440 0:015 0:185 0:2275 0:0150 0:1 0:015 0:0150 0:015 0:015 0:015 0:015 0:185 0:0150 0:0150 0:1 0:015 0:0150 0:015 0:015 0:015 0:015 0:185 0:0150 0:2275 0:1 0:015 0:2275 0:015 0:015 0:015 0:440 0:015 0:0150 0:2275 0:1 0:015 0:0150 0:015 0:015 0:015 0:015 0:015 0:0150 0:0150 0:1 0:015 0:0150 0:015 0:865 0:440 0:015 0:015 0:2275 0:2275 0:1 0:015 0:0150 0:015 0:015 3 777777775 Steady-state vector: 2 666666666666666664 0:1583 0:0774 0:1072 0:0860 0:1218 0:0363 0:0785 0:0769 0:1282 0:1295 3 777777777777777775 Reference: Spence L., Insel A., & Friedberg S. (2008). Elementary Linear Algebra: A matrix approach. Upper Saddle River, New Jersey: Pearson Prentice Hall.