Network Security @ ICS MU

Jan Vykopal

vykopal@ics.muni.cz

May 10, 2012 FI MU, Brno

Part I

Introduction

Present Essentials and Best Practices

- host-based: firewall, antivirus, automated patching, NAC¹
- network-based: firewall, antispam filter, IDS², UTM³

Network Security Monitoring

- Necessary complement to host-based approach.
- NBA⁴ is a **key approach** in large and high-speed networks.
- Traffic acquisition and storage is almost done, security analysis is a challenging task.

¹Network Access Control, ²Intrusion Detection System ³Unified Threat Management, ⁴Network Behavior Analysis

Flow Based Monitoring

- Provides information about who communicates with whom, for how long, which protocol, how much data and so on.
- Based on CISCO NetFlow v5/v9 technology and IETF IPFIX.
- Enables you to watch your network traffic in real-time.
- GEANT2 Security Toolset = FlowMon probe + NfSen.

Detailed network view with NetFlow data.

Originally

Accounting

NetFlow Applications in Time

Then

Accounting

Incident handling Network forensics

NetFlow Applications in Time

Then

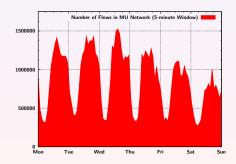
Now

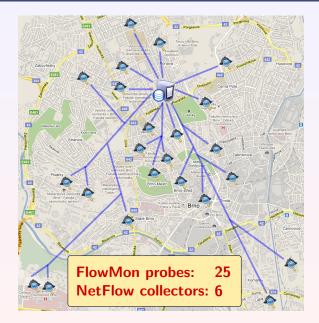
Accounting

Incident handling Network forensics Intrusion detection Network protection

Part II

NetFlow Monitoring at MU


Masaryk University, Brno, Czech Republic

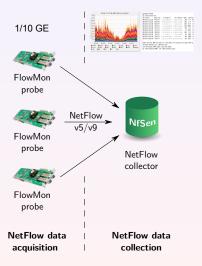

- 9 faculties: 200 departments and institutes
- 48,000 students and employees
- 15,000 networked hosts
- 2x 10 gigabit uplinks to CESNET (NREN)

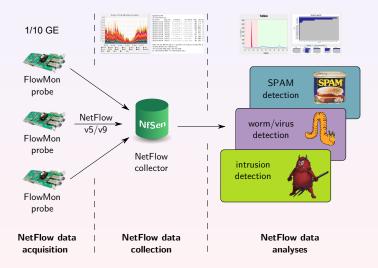
Interval	Flows	Packets	Bytes
Second	5 k	150 k	132 M
Minute	300 k	9 M	8 G
Hour	15 M	522 M	448 G
Day	285 M	9.4 G	8 T
Week	1.6 G	57 G	50 T

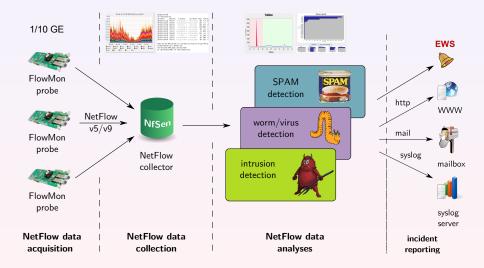
Average traffic volume at the edge links in peak hours.

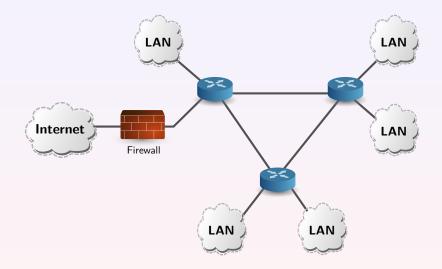
FlowMon Probes at Masaryk University Campus

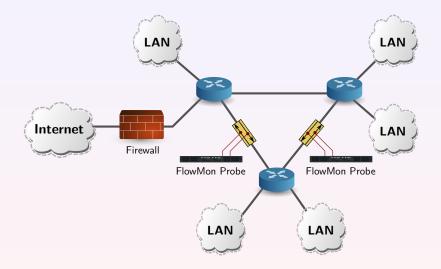
1/10 GE



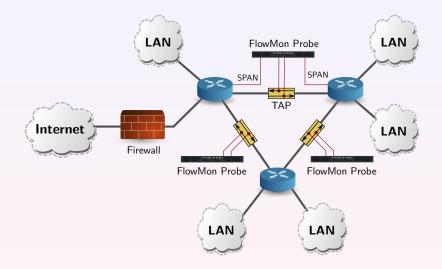



probe

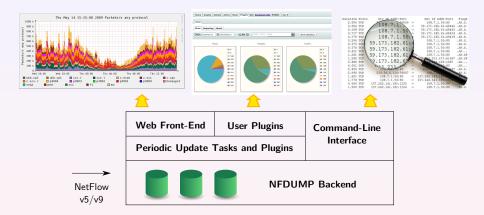

NetFlow data acquisition



Flow-based Traffic Monitoring System


Network without any flow monitoring system.

Flow-based Traffic Monitoring System


FlowMon probe connected to in-line TAP.

Flow-based Traffic Monitoring System

FlowMon observes data from TAP and SPAN ports.

NfSen/NFDUMP Collector Toolset Architecture

- NfSen NetFlow Sensor http://nfsen.sf.net/
- NFDUMP NetFlow display http://nfdump.sf.net/

TCP SYN scanning detection

- Very simple, but effective general method.
- Reveals compromised hosts in our network.
- Very low false positive rate.

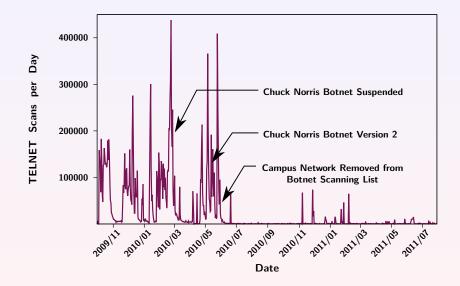
Honeypot monitoring

- Uses subnet allocated for high- and low-interaction honeypots.
- Eliminates false positives, mainly catches hosts from outside.
- Besides flow, passwords attempted by attackers are stored.

Brute force attack detection

- Online password guessing is ubiquituos, still a threat.
- Similar flows may be symptoms of this attack.
- Suitable even for encrypted services such as SSH.
- One attacker often aims to more targets \Rightarrow easier detection.

Round trip time anomaly detection


- (D)DOSes overwhlem servers and increase response time.
- Abrupt increase of RTT may point to attack/misconfiguration.
- Number of incoming flows/packets is often correlated to RTT.

Chuck Norris Botnet in Nutshell

- Linux malware IRC bots with central C&C servers.
- Attacks poorly-configured Linux MIPSEL devices.
- Vulnerable devices ADSL modems and routers.
- Uses **TELNET brute force** attack as infection vector.
- Users are not aware about the malicious activities.
- Missing anti-malware solution to detect it.

Discovered at Masaryk University on 2 December 2009. The malware got the Chuck Norris moniker from a comment in its source code [R]anger Killato : in nome di Chuck Norris !

TELNET Malware Activities – 2009/11 - 2011/7

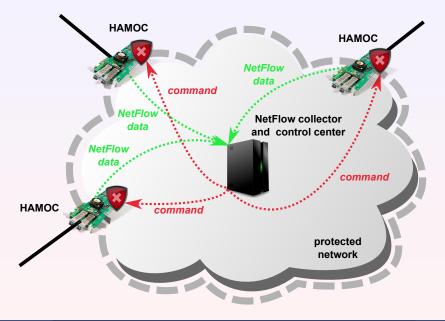
Chuck Norris Will Never Die or Cyber War ?

TELNET scans against single host -2011/10/20.

SURFmap - http://surfmap.sf.net

Part III

Flow-based Network Protection


Goals of Network Protection

- Using **NetFlow data** to protect network.
- Defending perimeter against attacks from outside.
- Automated attack detection.
- Suitable for high speed networks (10 Gbps+).

System Parts

- Sensors (\Rightarrow NetFlow data).
- Control center (\Rightarrow commands).
- Active network components (\Rightarrow blocking/filtering).
- HAMOC platform both sensor and active component.

Architecture of Network Protection

Part IV

Integration with Early Warning Systems

Client/server achitecture

- Security-related events are sent to the center.
- Clients (periodically) poll the center for new events.
- Events: port scanning, brute force attack, phishing, etc.
- Transport protocols: SOAP over HTTPS (+ SSL certificates)

Integration

- Control center also calls remote procedure to store a newly detected event.
- Events coming from center may trigger an action.
- Trustworthiness of participants is a key factor!

Part V

In Daily Operation

The **first university CSIRT** in the Visegrad Four listed and accredited in the **Trusted Introducer** public database.

Provided services:

- Incident handling and response (and its coordination).
- Intrusion detection based on NetFlow probes and honeypots.
- Network policy checks and network analysis (e. g., reverse DNS records, live IPs, accounting, ...).
- User education, alerts&warning: security advisories and bulletins.


Constituency: tens of thousands of university students and staff.

Part VI

Conclusion

- Flow-based network protection is suitable for large networks.
- Online network monitoring contributes to the overall security.
- Early warning systems may profit from flow-based detection.
- Automated network protection based solely on the EWS may be dangerous.

Network Security @ ICS MU

Jan Vykopal

vykopal@ics.muni.cz

Project CYBER http://www.muni.cz/ics/cyber CSIRT-MU

http://www.muni.cz/csirt