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Chapter 1

Introduction

Complex computer systems have become fundamental part of our daily lives and we rely on
them in many fields. Validation of their correctness is therefore a necessary part of hardware
and software design and implementation process. Probably the best known and the most
widespread technique that helps us to reveal errors is simulation and testing. Although this
conventional technique is in many cases undoubtedly the most suitable one, it does not
guarantee that all bugs in a given system have been found. Formal verification, on the other
hand, is a technique that can prove or disprove correctness of a system.This is particularly
useful when it comes to safety critical systems, where subtle faults may cause loss of a huge
amount of money or even human lives. Higher level of confidence in their correctness is thus
desired. In such cases, formal verification methods are applied instead of, or in addition to,
simulation and testing.

One of the popular fully-automatic approaches in the field of formal verification tech-
niques is model checking [3], involving three basic steps. The first one is building an abstrac-
tion of a system – a model. Then, a desired property is transformed into formal specification.
Finally, the third step is verification, whether the model satisfies the property by exhaustive
examination of all its possible behaviours. If the model does not satisfy the property, model
checking procedure moreover provides a counterexample, i.e. a behaviour of the model that
violates the property.

There is a number of modeling formalisms and the choice of the appropriate one depends
on the structure of a system under examination and to some extent also on the verified
property. Usually, it is some kind of a labeled state transition model representing systems
states and their changes. In this work we aim at finite, discrete models only, which can be
viewed as graphs and easily handled in algorithms and especially their implementations. A
desired property of a system is often expressed as a formula of a temporal logic. However,
there are also different specification formalisms such as automata. We distinguish two ma-
jor categories of temporal logics: branching-time and linear-time. The former one expresses
properties that depend on a branching structure of a model. Its typical representative is CTL
(Computational Tree Logic), whose formulas reason about the whole computational trees of
a model. On contrary, formulas of linear-time logics such as LTL (Linear Temporal Logic)
capture properties of single runs of a model. CTL and LTL are incomparable (some proper-
ties can be captured by CTL and not by LTL and vice versa). Model checking algorithms are
based on different principles for both of them. Linear-time logics are usually more conve-
nient for users, who tend to think easier about single runs rather than whole computational
trees. Logics, such as CTL*, combine both branching-time and linear-time operators.

In this work we aim at quantitative model checking, where a specific quantitative at-
tribute is incorporated in the model. Verified properties are quantitative properties express-
ing requirements on quantity of this attribute. There are several specialized areas in quan-
titative model checking and a number of dedicated tools have been developed. For in-
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1. INTRODUCTION

stance, real-time systems can be modelled with the use of timed automata and tools such
as UPPAAL [9] or KRONOS [28] can be used to verify properties with timing constraints.
MRMC [20] tool analyzes Markov reward models, etc.

A remarkable branch of quantitative model checking is quantitative probabilistic model
checking. Probabilistic models, namely Markov Chains (MCs) and Markov Decision Pro-
cesses (MDPs) allow us to capture uncertainities or randomization in systems, e.g. random-
ized protocols or systems with failure rates such as communication systems with lossy chan-
nels, etc. Informally, they are discrete state transition models, whose transitions are enhanced
with probabilities under which the transitions may happen. The advantage of MDPs is that
they combine probability and nondeterminism. They can be used for example for model-
ing asynchronous parallel composition of probabilistic systems. Widely used formalisms for
specifying desired behaviour of probabilistic models include probabilistic temporal logics
PLTL, PCTL and PCTL* derived from their nonprobabilistic versions LTL, CTL and CTL*,
respectively. Quantitative model checking of MDPs has a long tradition and there exist a
number of specialized model checking tools. PRISM [18] is the most widespread proba-
bilistic verification tool today enabling PCTL and PLTL model checking of continuous and
discrete MCs and MDPs. The tools dedicated to PLTL model checking include LiQuor [10]
and our tool ProbDiVinE-MC [5] taking advantage of multi-core computation.

The probabilistic logic PCTL introduces a new probabilistic quantification operator P./p
to the syntax of CTL. This operator can be nested and more complex quantitative properties
can thus be expressed. On contrary, PLTL has the same syntax as LTL and does not adopt
any quantification operator. Quantitative PLTL model checking only provides probability
that an MC or an MDP satisfies an LTL (PLTL) formula. A natural task arising is to overlay
this gap: to find a similar quantitative extension to LTL as in case of CTL that would further-
more capture a new and practically interesting class of properties. Although probabilistic
model checking is a deeply studied topic, to our best knowledge, this problem has not been
solved yet.

Recent, quite unexplored, but well motivated direction in quantitative verification is
model checking of systems with degradation, i.e. with an inherent quality that degrades in
time. This might be for instance electric charge in some electronic devices, power or quality
of a transmitted signal in broadcasting network, memory consistency that degrades during
allocation and deallocation of a memory block in computers etc.

We could model such systems as standard finite discrete transition systems with floating
point variables keeping the exact amount of degradation and model check them with the use
of tools such as SPIN [19], or DiVinE [4]. However, this approach does not allow for verifica-
tion of some properties that system designers might be interested in. For instance, a property
”every time A holds true, B happens before the amount of degradation measured since that
moment drops below certain level“, requires possibly infinite number of unbounded vari-
ables to keep the amount of degradation since the every moment when A holds true. This
is beyond the possibilities of current model checkers. The same problem arises when we
decide to use Markov decision processes and express degradation by means of probability.
Furthermore, in MDPs, a successor function is a probabilistic distribution, which is rather re-
strictive and unrealistic. In [14] the authors suggest a discounted branching-time logic with
possibility of giving more weight to the near future than to the far away future. However,
the semantics of the logic is defined over standard transition systems, Markov chains and
Markov decision processes and the degradation constant is system-wide fixed. For the same
reasons as explained above, this approach is also inappropriate.
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1. INTRODUCTION

The task is not only to introduce a suitable modeling formalism for systems with degra-
dation, but also to develop a logic rich enough to express their distinguished properties,
and corresponding model checking algorithms. Pure LTL is not appropriate due to the rea-
sons mentioned above, however, a linear-time logic with a quantification operator might be
useful here. Another motivation for development of such logic is the fact that degradation
and probability are not completely unrelated. In fact, probability can be somehow viewed
as a degrading quality. Progress in quantitative linear-time model checking of systems with
degradation could therefore potentially help us to understand the same open problem for
probabilistic systems.

The goal of formal verification is to answer, whether a system meets a specification or not.
Another, strongly motivated task in system design is to synthetize a controller (also called
control strategy) that affects behaviour of a system to meet given requirements. Controller
synthesis is a broad and widely studied topic for various types of systems and specifications.
In this work, we will consider a subproblem of controller synthesis formulated as a dual to
our primary research subject – model checking. Given a model and a specification (a tempo-
ral logic formula), find a control strategy such that if the model is executed according to the
strategy, it meets the specification.

In case the model is a standard labeled transition system, the task of a controller is, simply
put, to decide which control input (action) to choose in each state so that a desired property
is satisfied regardless on which transition labeled with the chosen input is actually executed.
In probabilistic settings, the specification for control of Markov decision processes can be
given by means of a probabilistic temporal logic, namely PCTL or LTL. In case of PCTL, the
task is to find controller, such that a given MDP satisfies a formula. In case of LTL it is to find
a controller, such that a MDP meets a specification with a given lower or upper probability
bound. LTL control algorithms for both nonprobabilistic and probabilistic systems are in
many cases based on, or at least inspired by model checking algorithms.

Control strategy synthesis for systems with degradation is of course an open question
due to the fact, that appropriate modeling and specification formalisms have not been yet
designed. However, once those are developed, solution to controller synthesis problem in
this settings would nicely complement model checking techniques in simplifying software
and hardware system design process.
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Chapter 2

State of the Art

As we indicated in the introduction, the primary aim of the thesis will be development of
new techniques for quantitative linear-time verification of systems with degradation includ-
ing suitable modeling and specification formalisms, and model checking algorithms. Degra-
dation and probability are closely related topics and as we will see later, our work in progress
is inspired by modeling and verification of probabilistic systems. That is why we will first in-
troduce quantitative probabilistic model checking. In the first two sections, we will provide
necessary definitions of models of probabilistic systems, logics used to express their proper-
ties, and describe model checking algorithms. Although the thesis itself will focus on linear-
time verification only, we will introduce also branching-time logic PCTL to understand the
concept of quantification operator. This concept might be useful in linear-time model check-
ing of systems with degradation. The second reason for covering probabilistic system is that
it is expected that we will design a linear-time logic with quantification operator to capture
properties of systems with degradation. Such logic does not exist in probabilistic settings and
it might be interesting to investigate its expressive power for probabilistic systems, namely
Markov decision processes.

The third section in this chapter will be dedicated to our current results in verification of
systems with degradation. In particular, we show a motivation example, and define model-
ing and specification formalisms. Then, we focus on model checking techniques and the use
of the specification formalism in probabilistic settings.

Finally, the fourth section will discuss work related to the second goal of the thesis, to
the development of control strategy synthesis methods for systems with degradation and
linear-time properties. Here, we will focus on both discrete and probabilistic state transition
systems. Controller synthesis algorithms in these areas are strongly inspired by correspond-
ing model checking procedures. We assume that we will reach a solution to control strategy
synthesis problem for systems with degradation similarly.

2.1 Preliminaries

Labeled Transition Systems

Let us first shortly introduce labeled transition systems as a basic modeling formalism for
nonprobabilistic systems. The variant that we define here is sometimes called Kripke tran-
sition system as it adapts state labeling concept from Kripke structures. In general, labeled
transition system are also not required to have an initial state.

A finite (nondeterministic) transition system is a tuple T = (S,Act, T, sinit, AP, L), where
S and Act are finite sets of states and actions, T : S × Act → 2S is a (nondeterministic)
transition function, sinit ∈ S is an initial state, AP is a set of atomic propositions, and L :
S → 2AP is a labeling function; L(s) is the set of atomic propositions that hold true in the
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2. STATE OF THE ART

state s. A transition system is deterministic, if |T (s, a)| ≤ 1 for all s ∈ S and a ∈ Act.
A run of T = (S,Act, δ, sinit, AP, L) is an is an infinite sequence of states τ = s0s1s2 . . .,

where for all i ≥ 0 it holds that si ∈ S, and si+1 ∈ T (si, a) for some a ∈ Act. A run τ =
s0s1s2 . . . defines a trajectory L(s0)L(s1)L(s2) . . .. The set of all trajectories generated by the
set of all starting at state sinit is called the language of T .

Markov Decision Processes

Widespread modeling formalisms for probabilistic systems include discrete Markov chains
and Markov decision processes, both of them labeled transition systems enhaced with prob-
abilities. In Markov chains, the successor relation is, simply put, given by a probability dis-
tribution. However, with the use of MCs we cannot describe behaviour of systems with
nondeterministic choices, such as randomized distributed algorithms. Markov decision pro-
cesses combine both nondeterminism and probability. In each state of an MDP, an action
is chosen nondeterministically and then the successor state is determined according to the
probability distribution associated with the action.

A finite Markov Decision Process (MDP, see [3]) is a tupleM = (S,Act, P, sinit, AP, L),
where S is a finite, nonempty set of states, Act is a finite, nonempty set of actions, P : S ×
Act × S → [0, 1] is a transition probability function, sinit ∈ S is an initial state, AP is a set
of atomic propositions, and L : S → 2AP is a labelling function; L(s) is the set of atomic
propositions that are true in the state s. Act(s) denotes the set of actions that are enabled in
the state s, i.e. the set of actions a ∈ Act such that P (s, a, t) > 0 for some state t ∈ S. For any
state s ∈ S, we require that Act(s) 6= ∅ and ∀a ∈ Act(s) it holds

∑
s′∈S P (s, a, s′) = 1.

An infinite path in an MDP is a sequence π = s0a0s1a1 . . . such that P (si, ai, si+1) > 0 for
each i ≥ 0. We say π originates at s0. A finite path is a finite prefix of an infinite path. A trajec-
tory of π is the word L(s0)L(s1) . . . over the alphabet 2AP obtained by the projection of π to
the state labels. A trace of π inM is a sequence (L(s0), P (s0, a1, s1)) (L(s1), P (s1, a2, s2)) . . .
over the alphabeth 2AP × [0, 1] given by the projection of π to the state labels and the proba-
bilities of the transitions under the actions.

The intuitive operational semantics of an MDP is as follows. If s is the current state then
an action a ∈ Act(s) is chosen nondeterministically and is executed leading to a state t with
probability P (s, a, t). We refer to t as an a-successor of s if P (s, a, t) > 0. State s is called
deterministic if exactly one action is enabled in s. If all states of an MDP are deterministic,
the MDP is called Markov chain. To resolve the nondeterminism of an MDP a scheduler
function is used. We consider deterministic history dependent schedulers which are given
by a function η assigning an action η(π) ∈ Act(sn) to every finite path π = s0a0 . . . an−1sn.
Given a scheduler η, the behavior of M under η can be formalized as a Markov chain.

Let M be a Markov chain, s ∈ S be a state of M , and X be a set of paths of M origi-
nating at s. We define the probability of the set X as a measure of the set X in the set of all
paths of M originating at s. A set X of paths of a Markov Chain M is called basic cylinder
set if there is a prefix s0a0 . . . an−1sn such that X contains exactly all paths of M with that
prefix. The probability meassure of a basic cylinder set with prefix s0a0 . . . an−1sn is then∏n−1
i=0 P (si, ai, si+1). If the set X of paths of M is not a basic cylinder set, its measure is deter-

mined as a sum of measures of maximal (w.r.t. inclusion) basic cylinder sets fully contained
in X [12].
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2. STATE OF THE ART

Linear Temporal Logic

Formal specification of linear properties is provided by Linear Temporal Logic (LTL) pro-
posed in [23]. The syntax and semantics of LTL that we introduce here is based on the
definitions in [16]. (Propositional) LTL formulae over a set of atomic propositions AP are
inductivelly defined as follows:

ϕ ::= true | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2

where a ∈ AP and true is a predicate that holds true in each state of the system. Further, we
define Boolean connectives disjunction ∨ and implication⇒ and derived operators F (even-

tually) and G (globally): ϕ1 ∨ ϕ2
def
= ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 ⇒ ϕ2

def
= ¬ϕ1 ∨ ϕ2, Fϕ def

= true U ϕ,

and Gϕ def
= ¬F¬ϕ.

Semantics of LTL is defined over paths of an MDPM = (S,Act, P, sinit, AP, L). Let π =
s0a0s1a1s2a2 . . . be a path inM. πi denotes a sufix siaisi+1ai+1 . . . starting at si and π(i) = si.
The satisfaction relation |= is defined as follows:

π |= true always

π |= a ⇐⇒ a ∈ L(π(0))

π |= ¬ϕ ⇐⇒ π 6|= ϕ

π |= ϕ1 ∧ ϕ2 ⇐⇒ π |= ϕ1 ∧ π |= ϕ2

π |= Xϕ ⇐⇒ π1 |= ϕ

π |= ϕ1Uϕ2 ⇐⇒ ∃k : πk |= ϕ2 ∧ ∀0 ≤ j < k : πj |= ϕ1

Intuitivelly, π satisfies a formula Xϕ, if ϕ holds in the next state on the path, i.e. in s1. ϕ1Uϕ2

means that ϕ1 holds on the path until ϕ2 will become true. Fϕ describes that ϕ will hold
true sometimes in future (eventually) and Gϕ that ϕ is true globally, in every state on the
path π. We denote by Lϕ the language of infinite words that satisfy the formula ϕ.

Given an MDPM and an LTL formula ϕ, the task of quantitative model checking is to
compute the minimal (or maximal) probability of the set of paths satisfying ϕ with respect
to all schedulers forM. We simply call the probability the minimal (or maximal) probability
thatM satisfies ϕ.

Remark. Given an MDP and an LTL formula, the problem of qualitative model checking
is to answer whether the minimal (or maximal) probability of the set of paths satisfying the
formula is 1 (or 0, respectivelly) with respect to all schedulers forM.

Remark. LTL can be interpreted both over nonprobabilistic and probabilistic models.
The syntax and the semantics for the nonprobabilistic ones is defined over runs in analogous
way as stated above. The question to be answered is whether each run originating at the
initial state of a model satisfies a given LTL formula.

Büchi and Rabin Automata

An ω-automaton is a tuple A = (Q,Σ, δ, Qinit, F ), where Q is a finite set of states, Σ is the
input alphabet, δ : Q × Σ → 2Q is a nondeterministic transition function, Qinit ⊆ Q is the
set of initial states, and F is the acceptance condition. A is deterministic iff |δ(q, a)| ≤ 1 for
all q ∈ Q and a ∈ Σ. The semantics of an ω-automaton is defined over infinite input words.
A run of A over a word σ = a1a2a3 . . . ∈ Σω is a sequence ρ = q0q1q2 . . . , where q0 ∈ Qinit
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2. STATE OF THE ART

and (qi−1, ai, qi) ∈ δ for all i ≥ 1. Let inf(ρ) denote the set of states that appear in the run ρ
infinitely often. An input word is accepted by an automaton if some run over σ is accepting.
The definition of an accepting run depends on the type of the acceptance condition F of the
automaton. If A is a Büchi automaton, then F ⊆ Q and a run ρ of A is accepting if and
only if inf(ρ) ∩ F 6= ∅. If A is a Rabin automaton, then F = {(G1, B1), . . . , (Gn, Bn)}, where
Gi, Bi ⊆ Q for all i ∈ {1, . . . , n}. A run ρ is accepting if inf(ρ) ∩Gi 6= ∅ ∧ inf(ρ) ∩Bi = ∅ for
some i ∈ {1, . . . , n}. We denote by LA the language accepted by A, i.e. the set of all words
accepted byA. An LTL formula ϕ can be translated into a nondeterministic Büchi automaton
A accepting the language LA = Lϕ or a deterministic Rabin automaton B accepting the
language LB = Lϕ.

Probabilistic Computation Tree Logic

LTL formulae themselves do not contain any constraints on probabilities. In Probabilistic
Computation Tree Logic (PCTL, first introduced in [17]), the probabilistic requirements are
built directly in its formulae. Whereas LTL captures properties of individual paths originat-
ing at a certain state, PCTL is a branching-time logic. Similarly, as in nonprobabilistic setting,
LTL and PCTL are incomparable (see [3]).

PCTL state formulae over the set of atomic propositions AP are defined inductivelly:

φ ::= true | a | ¬φ | φ1 ∧ φ2 | P./p(ϕ)

where a ∈ AP , true is a predicate true in each state of the system, ϕ is a PCTL path formula,
./∈ {<,≤, >,≥} and p ∈ [0, 1] is a rational bound. PCTL path formulae are formed according
to the grammar:

ϕ ::= Xφ | φ1Uφ2 | φ1U≤nφ2

where φ, φ1 and φ2 are PCTL state formulae and n ∈ N .
Intuitivelly, state formulae express properties of states and path formulae specify prop-

erties of paths. For both of them, we define satisfaction relation |=. Let us consider an MDP
M = (S,Act, P, sinit, AP, L), a state s ∈ S, a path π = s0a0s1a1s2a2 . . . inM, state formulae
φ, φ1, φ2 and a path formula ϕ.

s |= true always

s |= a ⇐⇒ a ∈ L(s)

s |= ¬φ ⇐⇒ s 6|= φ

s |= φ1 ∧ φ2 ⇐⇒ s |= φ1 ∧ s |= φ2

s |= P./p(ϕ) ⇐⇒ for all schedulers η for M : Prη(s |= ϕ) ./ p

where Prη(s |= ϕ) denotes probability of the set of paths originating at s and satisfying a
path formula ϕ under the scheduler η.

π |= ϕ ⇐⇒ π(0) |= ϕ

π |= ¬φ ⇐⇒ π 6|= φ

π |= φ1 ∧ φ2 ⇐⇒ π |= φ1 ∧ π |= φ2

π |= Xφ ⇐⇒ π(1) |= φ

π |= φ1Uφ2 ⇐⇒ ∃k : πk |= φ2 ∧ ∀0 ≤ j < k : πj |= φ1

π |= φ1U≤nφ2 ⇐⇒ ∃0 ≤ k ≤ n : πk |= φ2 ∧ ∀0 ≤ j < k : πj |= φ1
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2. STATE OF THE ART

Similarly as in LTL, we can define derived PCTL path operators F and G. We can observe
that in a formula with nested operators, the state operator P./p must alternate with the path
operators. Thus, for example FGφ is not a correctly defined PCTL formula. On the other
hand P≤0.5 F(P≥0.1 Gφ) is.

Remark. A notable extension to PCTL is PCTL*. In PCTL* a path formula does not need
to be immediatelly preceded by the state operator P./p. This causes that any LTL formula ϕ
is a PCTL* formula as well.

2.2 Quantitative Probabilistic Model Checking

The principles of the automata-theoretic approach [26] to quantitative LTL model checking
of MDPs are similar to the nondeterministic case (as implemented in the tool SPIN [19]). The
maximal probability that an MDPM satisfies a formula ϕ is computed as follows. First, ϕ
is transformed into a language equivalent deterministic Rabin automatonA. Then, we build
a productM×A of the MDPMand the automaton A. The result is an MDP with a Rabin
condition. We identify all the so-called accepting end components [12, 13] in its underlying
graph. An End Component (EC) is a strongly connected component such that for each state q
in an ECE there exists an enabled action a such that all a-successors of q belong toE. An Ac-
cepting End Component (AEC) is an end component satisfying the accepting condition ofA.
States in an AEC satisfy the examined property with the probability one. After computation
of AECs, the graph is transformed into a linear programming problem (a set of inequalities
over states of the probabilistic system and an objective function to be minimized) [1]. The
solution of the linear programming problem gives us maximal probability of reaching an
AEC from each state of the product. By projecting the initial states of the product into the
states ofM, we obtain the desired result.

The minimal probability thatM satisfies ϕ can be computed via computation of the max-
imal probability, thatM satisfies negation of ϕ.

To our best knowledge, the above explained scheme is the only approach to quantitative
probabilistic LTL model checking that has been implemented, namely in the tools LiQuor,
PROBDIVINE-MC, and PRISM.

Model checking for probabilistic computation tree logic gives a yes/no answer to the
question whether a state s in a given MDP satisfies a state formula. We do not describe the
verification techniques in more details, as they are not relevant to the thesis topic.

2.3 Quantitative Model Checking of Systems with Degradation

In this section we present our recent results in quantitative model checking of systems with
degradation published in [7]. The author of this thesis proposal provided major contribu-
tions both to the theoretical research and the text of the paper. So far, we designed a model-
ing formalism for systems with degradation, which we call a Transition System with Degra-
dation (TSD). Further, we developed an automata-like specification formalism called Büchi
automata with Degradation Constants (BADCs). These formalisms are described here in de-
tail as a result closely related to our future research. The next, currently investigated goal is
development of a logic with a quantification operator and its translation to BADCs. In [7] we
also suggested a model checking method allowing for model checking of transition systems
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2. STATE OF THE ART

with degradation against properties expressed with the use of BADCs. Finally, we aimed at
the use of BADCs in probabilistic settings.

Modeling Systems with Degradation

Let us start with a motivation example (taken from [7]), which demonstrate the need of
quantitative verification of systems with degradation and also a natural way how to model
them.

Motivation Example: Signal Coverage Problem

Let us suppose, we want to get some signal from a start point S to an end point E. Unfor-
tunately, the points are too far from each other, so the signal cannot reach the destination
without unrepairable signal degradation. A possible solution to the problem is to build re-
lays in between S and E that restore the quality of the signal while the signal is still fully
reconstructible. Furthermore, let us assume we have a map of possible places where a relay
may be built including pairwise signal degradation values as illustrated in Figure 2.1. For the
sake of simplicity, let us assume the signal goes through these places. Using a system with
degradation, we can easily check, whether the signal reaches the target point in proper shape
if the relays are built at the A-points. Another example of a degradation property might be
to check whether some of the A-points are redundant.

S

.85

.89

.86

.8

.72

.88

.75

.87

.8

.9 .95

.8

A
A

E

.7
s1

t0
t1

t2

Figure 2.1: Signal coverage map.

Transition Systems with Degradation

Informally, systems with degradation are systems that involve an attribute whose quality
degrades (e.g. the signal in the example). We formalize such systems as Transition Systems
with Degradation (TSDs). Unlike the standard transition systems, every transition is asso-
ciated with a degradation constant in a TSD. A degradation constant is a rational number
from interval (0, 1]. The constants may differ for individual transitions in the system. Note
that the formal definition of a TSD contains no specification of the attribute that degrades, it
only captures how much it degrades along each transition.

A transition system with degradation is a tupleM = (S,Act,→, Sinit ,AP , L), where S is
a finite, nonempty set of states,Act is a finite, nonempty set of actions,→⊆ S×Act×(0, 1]×S
is a transition relation, Sinit ⊆ S is a set of initial states, AP is a set of atomic propositions, and
L : S → 2AP is a labeling function; L(s) denotes the set of atomic propositions that are true

in state s. Instead of (s1, a, d, s2) ∈→ we write s1
a,d−−→ s2. A transition s1

a,d−−→ s2 represents
that the model can move from state s1 to the state s2 by a (nondeterministic) choice of action
a. The degradation constant d associated with the transition gives the fraction to which the
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quality is degraded if the transition is executed. If the level of degradation at state s1 is let
us say l and the action is executed, the level of degradation at state s2 will be l · d.

A path in a TSD M = (S,Act, T, Sinit ,AP , L) is an infinite sequence π = s0t0s1t1 . . .

where si ∈ S and ti = (si, ai, di, si+1) ∈ T for all i ≥ 0. A trajectory corresponding to
the path π = s0t0s1t1 . . . is given by the projection of π to the state labels, trajectory(π) =
L(s0)L(s1) . . .. A trace corresponding to the path π = s0t0s1t1 . . . is given by the projection
of π to the state labels and degradation rates, trace(π) = (L(s0), d0) (L(s1), d1) . . ..

For instance, let us consider the example in Figure 2.1 and its path St0s1t1At2 . . .with the
trace (S, 0.87), (s1, 0.7), (A, 0.72), . . .. The signal degradation between S and A is 0.87 · 0.7 =
0.609. This means the quality of the signal in A will be 60.9% of the quality in S.

Specification

To express the quantitative linear properties of systems with degradation we introduce a
modification of Büchi automata, the so called Büchi Automata with Degradation Constraints
(BADC). The standard automata are enriched with a set of bounded variables allowing us to
express the amount of degradation.

Let D be a finite set of degradation variables ranging over the rational numbers in be-
tween (0, 1]. A degradation constraint over D is of form ϕ ::= x ./ d | ϕ ∧ ϕ, where
./∈ {<,≤, >,≥}, x ∈ D, and d is a rational number in (0, 1]. Note that degradation con-
straints exclude disjunction as it can be expressed using two different transitions of a BADC.
DC (D) denotes the set of degradation constraints overD. A degradation valuation is a func-
tion ν : D → (0, 1]. The set of all possible degradation valuations is Eval(D).

A Büchi Automaton with Degradation Constraints (BADC) is a tuple
A = (Q,Σ, D, T, qinit , F ), where Q is a finite nonempty set of states, Σ is a finite alphabet,D
is a finite set of degradation variables, T ⊆ Q× Σ×DC(D)× 2D ×Q is a set of transitions,
qinit ∈ Q is an initial state, and F ⊆ Q is a finite set of states (Büchi accepting condition).

A 5-tuple t = (q, α, ϕ,R, q′) ∈ T represents the transition from state q to q′ labeled with α
that is enabled if constraint ϕ is satisfied.R is a set of degradation variables which are reset to
1 when executing the transition. For the transition t = (q, α, ϕ,R, q′) we denote label(t) = α,
constraint(t) = ϕ and reset(t) = R.

The semantics of a BADC A = (Q,Σ, D, T, qinit , F ) is given by an infinite labeled transi-
tion systemMA = (S,Σ′,→, Sinit), where S = Q×Eval(D),Σ′ = Σ× (0, 1],→⊆ S×Σ′×S,

Sinit = {(qinit , νinit) | νinit(x) = 1 for all x ∈ D}, and (q1, ν1)
α,d−−→ (q2, ν2) whenever there is a

transition (q1, α, ϕ,R, q2) ∈ T such that

• ν1 |= ϕ

• ν2(x) =
{
d, if x ∈ R
ν1(x) · d otherwise

A run for a word σ = (α0, d0)(α1, d1) . . . ∈ (Σ × (0, 1])ω is an infinite sequence ρ =

(q0, ν0)(q1, ν1) . . . such that (q0, ν0) ∈ Sinit and (qi, νi)
αi,di−−−→ (qi+1, νi+1) for all i ≥ 0. A run

ρ = (q0, ν0)(q1, ν1) . . . is accepting if qi ∈ F for infinitely many indices i. Lω(A) = {σ ∈
(Σ× (0, 1])ω | there exists an accepting run for σ in A}.

Figure 2.2 the “redundant A-point” quantitative linear property for the signal coverage
example.
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S ∨ A
R = {x} A

A
x ≥ d

E
x ≥ d

E

Figure 2.2: Quantitative propertiey of Sender/Receiver example.

Model Checking Algorithm

In standard model checking, a given formula is first negated and instead of verifying, whether
all behaviours of a model satisfy the formula, the model checking algorithms try to reveal
runs, that violates the formula. Here, we approach the model checking problem similarly.
We are given a TSD model of a system with degradation and a BADC automaton specifying
prohibited quantitative linear behaviors. In [7] we developed an algorithm deciding whether
a given TSD model exhibits the forbidden behavior. Our model checking algorithm follows
the automata-based approach to LTL model checking. First, we defined a product automaton
and proved that this automaton accepts exactly the the language of the TSD traces accepted
by the BADC. Next, we demonstrated that checking language nonemptiness of the prod-
uct automaton is equivalent to finding an accepting cycle in the product automaton graph.
This can be tested effectively by a number of known techniques like the Nested Depth First
Search [11] or OWCTY [15].

The main obstacle in the verification process is that the mentioned product automaton
graph may be infinite. The key observation allowing for model checking of BADC properties
of systems with degradation is that for a special type of BADC automata, the so called nor-
malized BADC, it is guaranteed that the product graph is finite. Intuitivelly, in normalized
BADCs each cycle contains either an upper bound or a reset for each degradation variable.
We defined normalized BADCs and proved that the product automaton of a TSD and a nor-
malized BADC is finite. We also provided an algorithm which transforms any BADC to an
equivalent normalized BADC. The author proved correctness of the transformation in [8].

Quantitative Linear Properties of Markov Decision Processes

Part of our work raises the question about the parallel between the systems with degradation
and the Markov decision processes as well as about the relationship between probabilistic
logic PLTL, PCTL, PCTL∗ and the quantitative linear properties formalized via BADCs. It is
easy to see that an MDP is just a special case of a system with degradation. Probability can
be viewed as degradation and paths and traces of an MDP as paths and traces of a Büchi
automaton with degradation. With the use of BADCs, we can specify properties of traces of
MDPs. We demonstrated, that BADC constraints can distinguish otherwise indistinguish-
able MDPs.

Using BADCs for expressing properties of MDPs brings us a new possibility to check for
the presence of a specific path with a certain probability contribution. For further details and
an illustrative example see [7].
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2.4 Control Strategy Synthesis for Discrete and Probabilistic Systems

In this section we overview solutions to controller synthesis problem for finite, discrete and
probabilistic systems and the requirement specification expressed as an LTL formula.

Discrete systems

Given a labeled transition system T = (S,Act, T, sinit, AP, L) and an LTL formula ϕ, the
control problem is to find a (history dependent) function η : S+ → Act, such that each run
s0s1s2 . . ., where si+1 ∈ T (si, η(s0 . . . si)) satisfies the formula ϕ.

Remark. A function η might be also history independent, i.e. the problem is then to find
η : S → Σ, such that each path s0s1s2 . . ., where si+1 ∈ T (si, η(si)) satisfies the formula
ϕ. Obviously, each history independent function can be easily transformed into a history
dependent one.

The problem for deterministic labeled transition systems is relatively easy and can be
solved by adapting standard algorithms and tools from LTL model checking. A solution is
proposed in [22]. The authors first translate the examined formula ϕ into a language equiv-
alent (nondeterministic) Büchi automaton A. Then, they build a product of the given deter-
ministic transition system T and A. The accepting runs of the product correspond exactly
the trajectories of T that satisfy formula ϕ. The product is then analyzed and the shortest
paths to strongly connected components containing an accepting state are found. Finally,
these paths are projected into trajectories of T and an action that need to be chosen in each
state of T is determined.

Nondeterministic systems, on the other hand, cannot be handled the same way. In [21]
the problem is solved only for a fragment of LTL accepted by deterministic Büchi automata.
The suggested solution is inspired from infinite LTL games, which are played by two players
on a graph [24]. The authors treat nondeterminism as an adversary. A given LTL formula ϕ is
first translated into a language equivalent deterministic Büchi automatonA. Then, a product
of transition system T and A is built, viewed as a 2 player game and a winning strategy is
synthetized. Finally, the strategy is projected into T and the controller is presented in the
form of a feedback automaton that reads a current state of T and generates an a control
symbol (i.e. action of T ) to be applied. The same problem for full LTL has been addressed in
[25] and has not yet been published.

Probabilistic systems

The problem for Markov decision processes is defined as above, except for that the satis-
faction of an LTL formula is required to meet a lower or upper probability bound. Given
an MDP M = (S,Act, P, sinit, AP, L) and an LTL formula ϕ, the control problem is to
find a (history dependent) function η : S+ → Σ, such that each path s0a0s1a1 . . ., where
ai = η(s0 . . . si)) satisfies ϕ with at least (or at most) given probability under all schedulers.

This problem is solved in [2]. The authors are again inspired by automata-theoretic ap-
proach to model checking. First, a product automaton ofM and a deterministic Rabin au-
tomatonA for a given formula ϕ is built. Then, a variant of accepting end components, called
winning components, are identified. The solution is provided by maximizing the probability
of reaching a winning component. Then the strategy found for the product is projected into
MDPM.
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Chapter 3

Aim of the Work

3.1 Objectives and Expected Results

The aim of the PhD thesis is to contribute to the design process of correctly working systems
that incorporate a quality degrading in time by development of appropriate quantitative
linear-time model checking and contoller synthesis techniques. Part of the work is also study
on usability of the newly designed methods in probabilistic settings. The particular goals are
as follows.

• Design of a suitable modeling formalism for systems with degradation and design
of a new linear-time logic with quantification operator allowing for specification of
practically interesting properties of such systems.

• Development of effective procedures for quantitative linear-time model checking of
systems with degradation.

• Prototype implementation and preliminary experimental evaluation and case studies
showing practical application of the whole technique. The implementation will build
on DIVINE framework.

• Investigation on usability of the proposed logic for probabilistic systems and study of
its relation to probabilistic logics LTL and PCTL.

• Development of control strategy synthesis methods for systems with degradation and
a specification given as a formula of the newly designed logic. The goal of this item is to
complement the developed model checking techniques and to provide more complete
framework to improve faultlessness of design of systems with degradation.

• Prototype implementation and preliminary experimental evaluation of the controller
synthesis algorithms. The implementation will build on DIVINE framework.

3.2 Expected Outputs

• The text of the thesis presenting especially theoretical results.

• Publicly available prototype tool implementing model checking and control synthesis
algorithms.

• Web page containing the tool, the results of its evaluation and a set of examples.

• Reviewed publications on relevant international forums.
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3.3 Progression Schedule

The plan of my future study and research activities, besides attending courses and teaching,
is as follows.

• Internship at Boston University now – Feb 2010

• Doctoral exam and defence of this thesis proposal May 2010

• Development of quantitative linear-time logic for expressing properties of systems
with degradation and research on its translation to automata-like formalism, usabil-
ity in probabilistic settings and relation to probabilistic logics now – Feb 2011

• Implementing the designed techniques Sep 2010 – Feb 2011

• A prototype version of the model checking tool Feb 2011

• Development of controller synthesis methods Feb 2011 – Feb 2012

• Implementing the controller synthesis tool Sep 2011 – Feb 2012

• A prototype version of the model checking and controller synthesis tool Feb 2012

• Work on the text of the PhD thesis Feb 2012 – Sep 2012

• Final version of the thesis Sep 2012
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Appendix A

Summary of the Study

Courses

List of courses and seminars:

• Informatics Seminar (Spring 2009)

• Informatics Colloquium (Spring 2009)

• Laboratory of Parallel and Distributed Systems (Spring 2009)

• Supercomputer Architecture and Intensive Computations (Spring 2009)

• Formal Methods in Systems Biology (Spring 2009)

Internships

• Boston University (September 2009 - February 2010)

Research and Publications

As a member of Laboratory of Parallel and Distributed Systems, I have participated in the
project aimed at research and development of automatic verification techniques supported
by grants no. GA 201/09/1389 and no. AV 1ET408050503. I have cooperated on design of ef-
fective parallel algorithms for LTL model checking of probabilistic systems [6] and their im-
plementation in the tool PROBDIVINE-MC [5], which builds on the model checking frame-
work DIVINE. We also achieved first results in verification of systems with degradation [7].
We developed a suitable model, automata-like specification formalism, and the correspond-
ing model checking algorithm. In this paper, we also showed, that the developed specifica-
tion formalism can capture properties of probabilistic systems that cannot be expressed by
any PLTL, PCTL or PCTL* formula. The full version of the paper including detailed proofs
of correctness is also available as technical report [8].

In addition to my research activities at the ParaDiSe Laboratory, I have also visited Hy-
NeSs laboratory at Boston University since September 2009 till February 2010. During my
stay we have aimed at controller synthesis problem for discrete and probabilistic transition
systems. At the time of this proposal’s writing, our results have been submitted as two con-
ference papers.

My publications and presentations achieved during my PhD studies and related to the
topic of my PhD thesis are listed below, numbered according to bibliography.
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Technical Reports

[8] J. Barnat, I. Černá, and j. Tůmová. Quantitative Model Checking of Systems with Degra-
dation (Full Paper). Technical Report FIMU-RS-2009-04, Faculty of Informatics, Masaryk
University, June 2009.

Presentations

• Presentation at HyNeSs seminar, Boston University, Fall 2009.

• Presentation at Seminar of Laboratory of Parallel and Distributed Systems, Spring
2009.

Other Activities

In addition to my research activities, I have assisted in teaching of the following courses.

• IB005 Formal Languages and Automata (Spring 2009)

• IB108 Algorithm Design II (Spring 2009)
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Appendix B

Summary/Souhrn

Model checking is an advanced technique that help us to guarantee that a system meets
given requirements. In general, it includes three steps: building a model of the system, for-
malizing the requirements, and finally examining all possible behaviors of the model to ver-
ify whether the model satisfies the requirements. In many cases, quantitative properties are
an inseparable part of the system specification. The proposed PhD thesis will aim at quantita-
tive model checking of systems with degradation, i.e. with an inherent quality that degrades
in time. Currently, to our best knowledge, no appropriate formalisms to model such sys-
tems and specify their properties have been developed. Our goal is to design those, develop
model checking algorithms and implement the whole solution in a publicly available proto-
type tool. A part of the work is also to investigate on usability of the designed techniques in
probabilistic settings. To extend the usability of the techniques and the tool in system design
process, we will study also problem of synthesis of a control strategy. Such strategy affects a
given model of a system with degradation to satisfy a desired quantitative property.

Ověřovánı́ modelu je pokročilá technika, která nám pomáhá zaručit, že systém splňuje
dané požadavky. Obecně jsou jejı́m základem tři kroky: vytvořenı́ modelu systému, formalnı́
vyjádřenı́ požadavků a ověřenı́, zda model splňuje dané požadavky prozkoumánı́m všech
možných chovánı́ modelu. V mnoha přı́padech jsou nedı́lnou součastı́ specifikace systému i
kvantitativnı́ vlastnosti. Disertačnı́ práce bude zaměřena na kvantitativnı́ ověřovanı́ modelu
systémů s degradacı́, tj. s vnitřnı́ vlastnostı́ systému, která v čase degraduje. Pokud je nám
známo, doposud nebyl vyvinut vhodný formalismus k modelovánı́ takových systémů ani
ke specifikaci jejich vlastnostı́. Našı́m cı́lem je navrhnout tyto formalismy, vyvinout algo-
ritmy ověřovanı́ modelu a implementovat celé řešenı́ ve veřejně dostupném prototypovém
nástroji. Součástı́ práce bude i studium použitı́ navržených technik v pravděpodobnostnı́m
kontextu. Abychom rozšı́řili použitelnost výše zmı́ňených technik a nástroje v oblasti návrhu
systémů, budeme studovat také problém syntézy řidı́cı́ strategie. Taková strategie ovlivňuje
daný model systému s degradacı́ tak, aby splňoval požadovanou kvantitativnı́ vlastnost.
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Appendix C

Publications

Quantitative Model Checking of Systems with Degradation
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