146

Chapter 6 Priority-Driven Scheduling of Periodic Tasks

In summary, Lemmas 6.7—6.10 tell us that the busy interval we examine according to
the general time-demand analysis method contains the most number of jobs in T; that can
possibly execute in any level-rr; busy interval. Moreover, the response time of each job in the
examined busy interval is larger than the response time of the corresponding job executed in
any level-rr; busy interval. This is why if we find that none of the examined jobs completes
late, we know that no job in 7; will.

6.7 SUFFICIENT SCHEDULABILITY CONDITIONS FOR THE RM AND DM ALGORITHMS

When we know the periods and execution times of all'the tasks in an application system, we
can use the schedulability test described in the last section to determine whether the system
is schedulable according to the given fixed-priority algorithm. However, before we have com-
pleted the design of the application system, some of these parameters may not be known. In
fact, the design process invariably involves the trading of these parameters against each other.
We may want to vary the periods and execution times of some tasks within some range of
values for which the system remains feasible in order to improve some aspecis of the system.
For this purpose, it is desirable to have a schedulability condition similar to the ones given by
Theorems 6.1 and 6.2 for the EDF and the LST algorithms. These schedulability conditions
give us a flexible design guideline for the choices of the periods and execution times of tasks.
The schedulable utilizations presented in this section give us similar schedulability conditions
for systems scheduled according to the RM or DM algorithms. An acceptance test based on
such a schedulable utilization can decide whether to accept or reject a new periodic task in
constant time. In contrast, the more accurate time-demand analysis test takes O (ng, ;) time;
moreover, the accurate test is less robust because its result is sensitive to the values of periods
and execution times.

6.7.1 Schedulable Utilization of the RM Algorithm for Tasks with D; = p;

Specifically, the following theorem from [Lila] gives us a schedulable utilization of the RM
algorithm. We again focus on the case when the relative deadline of every task is equal to its
period. For such systems, the RM and DM algorithms are identical.

THEOREM 6.11. A system of n independent, preemptable periodic tasks with rela-
tive deadlines equal to their respective periods can be feasibly scheduled on a processor
according to the RM algorithm if its total utilization U is less than or equal to

Ury(n) =n2"" = 1) (6.10)

Upu (1) is the schedulable utilization of the RM algorithm when D; = p; forall1 <k < n.
Figure 6-14 shows its value as a function of the number n of tasks in the set. When 7 is
equal 10 2, Ugp (1) is equal to 0.828. It approaches In 2 (0.693), shown by the dashed line, for
large n.

Specifically, U (n) < Uz (n) is a sufficient schedulability condition for any system of
independent, preemptable tasks that have relative deadlines equal to their respective periods to
be schedulable rate-monotonically. (We use the notation U (1) in place of U in our subsequent
discussion whenever we want to bring the number of tasks n to our attention.) As long as

Section 6.7 Sufficient Schedulability Conditions for the RM and DM Algorithms 147

100
0.9}

Uridn) os| .
07k i__i_;i,,i__:__:-,z__:__f-_f__f__f,,f_ﬁf__:__f
06, 1 6 g 10 12 7] 16 13 20

FIGURE 6-14 Uy, (1) as a function a1.

the total utilization of such a system satisfies this condition, it will never miss any deadline.
In particular, we can reach this ‘conclusion without considering the individual values of the
phases, periods, and execution times.

As an example, we consider the system T of 5 tasks: (1.0, 0.25), (1.25, 0.1), (1.5, 0.3),
(1.75,0.07), and (2.0, 0.1). Their utilizations are 0.25, 0.08, 0.2, 0.04, and 0.05. The total uti-
lization is 0.62, which is less than 0.743, the value of Uz (5). Consequently, we can conclude
that we can feasibly schedule T rate-monotonically. Suppose that the system is later enhanced.
As a result, the tasks are modified, and the resultant tasks are (0.3, 1.3, 0.1), (1.0, 1.5, 0.3),
(1.75,0.1), (2.0, 0.1), and (7.0, 2.45). Since their total utilization is 0.737, which is still less
than 0.743, we know for sure that the system remains schedulable. There is no need for us
to do the more complex time-demand analysis to verify this fact. On the other hand, suppose
that to make the above five-task system more modular, we divide the task with period 7.0 into
three smaller tasks with periods 5, 6, and 7, while keeping the total utilization of the system at
0.737. We can no longer use this condition to assure ourselves that the system is schedulable
because Ugy (7) is 0.724 and the total utilization of the system exceeds this bound.

Since U (1) < Ugpy (n) is not a necessary condition, a system of tasks may nevertheless
be schedulable even when its total utilization exceeds the schedulable bound. For example,
the total utilization of the system with the four tasks (3, 1), (5, 1.5), (7, 1.25), and (9, 0.5)
is 0.85, which is larger than Uz (4) = 0.757. Earlier in Figure 6-9, we have shown by the
time-demand analysis method that this system is schedulable according to the RM algorithm.

*6.7.2 Proof of Theorem 6.11

While the schedulable utilization of the EDF algorithm given by Theorem 6.1 is intuitively
obvious, the schedulable utilization Uy, (n) given by Theorem 6.11 is not. We now present
an informal proof of this theorem in order to gain some insight into why it is so.

The proof first shows that the theorem is true for the special case where the longest
period p, is less than or equal to two times the shortest period p,. After the truth of the
theorem is established for this special case, we then show that the theorem remains true when

148

Chapter 6 Priority-Driven Scheduling of Periodic Tasks

this restriction is removed. As before, we assume that the priorities of all tasks are distinct.
Here, this means that p; < po < -+ < .

Proof for the Case of p, < 2py. The proof for the case where p, < 2p; consists
of the four steps that are described below. Their goal is to find the most difficult-to-schedule
system of n tasks among all possible combinations of n tasks that are difficult-to-schedule
rate-monotonically. We say that a system is difficult to schedule if it is schedulable according
to the RM algorithm, but it fully utilizes the processor for some interval of time so that any
increase in the execution time or decrease in the period of some task will make the system
unschedulable. The system sought here is the most difficult in the sense that its total utilization
is the smallest among all difficult-to-schedule n-task systems. The total utilization of this sys-
tem is the schedulable utilization of the RM algorithm, and any system with a total utilization
smaller than this value is surely schedulable. Each of the following steps leads us closer to
this system and the value of its total utilization.

Step 1: In the first step, we identify the phases of the tasks in the most difficult-to-
schedule system. For this we rely on Theorem 6.5. You recall that according to that theorem, a
job has its maximum possible response time if it is released at the same time as a job in every
higher-priority task. The most difficult-to-schedule system must have one or more in-phase
busy intervals. Therefore, in the search for this system, we only need to look for it among
in-phase systems.

Step 2: In the second step, we choose a relationship among the periods and execution
times and hypothesize that the parameters of the most difficult-to-schedule system of n tasks
are thus related. In the next step, we will verify that this hypothesis is true. Again from Theo-
rem 6.5, we know that in making this choice, we can confine our attention to the first period of
every task. To ensure that the system is schedulable, we only need to make sure that the first
job of every task completes by the end of the first period of the task. Moreover, the parameters
are such that the tasks keep the processor busy once some task begins execution, say at time
0, until at least p,, the end of the first period of the lowest priority task 7,,.

The combination of n periods and execution times given by the pattern in Figure 6-15
meets these criteria. By construction, any system of n tasks whose execution times are related
to their periods in this way is schedulable. It is easy to see that any increase in execution time
of any task makes this system unschedulable. Hence systems whose parameters satisfy this
relationship are difficult to schedule. Expressing analytically the dependencies of execution
times on the periods of tasks that are given by Figure 615, we have

e = Pr+1 — Dk fork=1,2,....,n—1 (6.11a)
Since each of the other tasks execute twice from 0 to p, the execution time of the lowest
priority task 7, is

-1

€y = Pn — 2Z€k (611]))
k=1

Step 3: We now show that the total utilization of any difficult-to-schedule n-task sys-
tem whose execution times are not related to their periods according to Eq. (6.11) is larger
than or equal to the total utilization of any system whose periods and execution times are thus

Section 6.7 Sufficient Schedulability Conditions for the RM and DM Algorithms 149

2p]

Pn-1

Pi Pn

FIGURE 6-15 Relationship among parameters of difficult-to-schedule tasks.

related. Since we are looking for the difficult-to-schedule system with the least total utiliza-
tion, we need not consider any system whose parameters are not thus related.

To do so, we construct new systems, whose parameters do not satisfy Eq. (6.11), from an
original system whose parameters satisfy Eq. (6.11). There are two ways to do this. One way
is by increasing the execution time of a higher-priority task from the value given by Eq. (6.11)
by a small amount & > 0. Without loss of generality, let this task be 7. In other words, in the
new system, the execution time ¢} of 77 is equal to

i=pr—pite=e +¢

For the new system to be schedulable, some other task must have a smaller execution
time. From Figure 6-15, we see that the first job in every task can complete in time if we
let the execution time of any other task be & units less than the value given by Eq. (6.11a).

Suppose that we choose 7}, for some k # 1, to be this task and make its new execution time
equal to

ey =e,—¢

The execution times of the tasks other than 7} and T} are still given by Eq. (6.11). The new
system still keeps the processor busy in the interval (0, p,]. The difference between the total
utilization U’ of the new system and the total utilization U of the original system is

ey e e e e g
P Dk Pi Pk P1 P

Chapter 6 Priority-Driven Scheduling of Pericdic Tasks

Since p; < py, this difference is positive, and the total utilization of the new system is larger.
(You may want o convince yourself that we would reach the same conclusion if in the con-
struction of the new system, we make the-€xecution time of some task other than T larger by
¢ units and make the execution times of one or more tasks with priorities lower than this task
smaller by a total of ¢ units.)

Another way to construct a new difficult-to-schedule system from the original one is
to let the execution time of a higher-priority task be ¢ units smaller than the value given by
Eq. (6.11). Again, suppose that we choose 7} to be this task, that is, its new execution time is

"
€ =py—pP1— €&

From Figure 6-15, we see that if we do not increase the execution time of some other task,
the processor will be idle for a total of 2& units of time in (0, p,]. To keep the processor busy
throughout this interval and the system schedulable, we can increase the execution time of
any of the other tasks by 2¢ units, that is,

"
e, = e, +2¢

for some k # 1. It is easy to see that with this increase accompanying the decrease in the
execution time of 77, the first job of every task in the new system can still complete by its
deadline and the processor never idles from 0 to p,,. Comparing the total utilization U” of this
new system with that of the original system, we find that

U U_2e €
Pk Pi

Since pp < 2p for all k # 1, this difference is never negative. (Again, we could also divide

the 2¢ units of time arbitrarily among the 2 — 1 lower-priority tasks and get a new system with
a total utilization larger than or equal to U.)

Step 4: As a result of step 3, we know that the parameters of the most difficuli-to-
schedule system of tasks must be related according to Eq. (6.11). To express the total utiliza-
tion of a system whose parameters are given by Eq. (6.11) in terms of periods of the tasks in
it, we substitute Eq. (6.11) into the sum Y _,_, ex/pi and thus obtain

2
Un) =g +q32+ -+ quo-1)+ —n (6.12)
21932 - -Gn.(n—1)

where g, ;, for k > i, is the ratio of the larger period p; to the smaller period p;, that is,
qri = pr/pi- In particular, the total utilization of any n-task system whose parameters are
related according to Eq. (6.11) is a function of the n — 1 adjacent period ratios gy, ;. for
k=1,2,...,n—1.

This equation shows that U () is a symmetrical convex function of the adjacent period
ratios. It has a unique minimum, and this minimum is the schedulable utilization Ugy (n) of
the RM algorithm. To find the minimum, we take the partial derivative of U (n) with respect to
each adjacent period ratio g1 ; and set the derivative to 0. This gives us the followingn — 1
equation:

Section 6.7 Sufficient Schedulability Conditions for the RM and DM Algorithms 151

2
1 — . =0
G2.14932 - GUk+1)k - - Gu(n—1)

forallk=1,2,...,n— 1.

Solving these equations for g,.1x, we find that U(n) is at its minimum when all the
n — 1 adjacent period ratios gy, are equal to 2!/". Their product g> 13 - . . ¢u.(u—1) is the
ratio ¢, of the largest period p, to the smallest period p,. This ratio, being equal to 20=b/n,
satisfies the constraint that p, < 2p,. Substituting gx1x = 2'/" into the right-hand side of
Eq. (6.12), we get the expression of Uy, (1) given by Theorem 6.11.

For more insight, let us look at the special case where n is equal to 3. The total utilization
of any difficult-to-schedule system whose parameters are related according to Eq. (6.11) is
given by

UB) =g +qa2++ -3

g3292.1

U(3) is a convex function of g, | and ¢;3,;. Its minimum value occurs at the point g, | = g3 >
273, which is equal to 1.26. In other words, the periods of the tasks in the most difficult-to-
schedule three-task system are such that p3 = 1.26p, = 1.59p;.

Generalization to Arbitrary Period Ratios. The ratio g, = p,/p: is the period
ratio of the system. To complete the proof of Theorem 6.11, we must show that any n-task
system whose total utilization is no greater than Ugy, (1) is schedulable rate-monotonically,
not just systems whose period ratios are less than or equal to 2. We do so by showing that the
following two facts are true.

1. Corresponding to every difficult-to-schedule n-task system whose period ratio is larger
than 2 there is a difficult-to-schedule n-task system whose period ratio is less than or
equal to 2.

2. The total utilization of the system with period ratio larger than 2 is larger than the total
utilization of the corresponding system whose period ratio is less than or equal to 2.

Therefore, the restriction of period ratio being equal to or less than 2, which we imposed
earlier in steps 1-4, leads to no loss of generality.

We show that fact 1 is true by construction. The construction starts with any difficult-
to-schedule n-task system {7; = (p;, e;)} whose period ratio is larger than 2 and step-by-step
transforms it into a system with a period ratio less than or equal to 2. Specifically, in each step,
we find a task T whose period is such that/p; < p, < (I+1)p; where [is an integer equal to
or larger than 2; the transformation completes when no such task can be found. In this step, we
modify only this task and the task 7,, with the largest period p,. T} is transformed into a new
task whose period is equal to /p; and whose execution time is equal to ¢;. The period of the
task with period p, is unchanged, but its execution time is increased by (I — 1)e;. Figure 6-16
shows the original tasks and the transformed tasks. Clearly, the ratio of p, and the period
of the task transformed from 7T} is less than or equal to 2, and the system thus obtained is
also a difficult-to-schedule system. By repeating this step until p, < 2p, for all k # n, we
systematically transform the given system into one in which the ratio of p, and the period of
every other task is less than or equal to 2.

Chapter 6 Priority-Driven Scheduling of Periodic Tasks
€k

<

(I-1)py,

P

<
>

vy Pr = Ipg

eizr =€+ (l'])ek

<«
P2

0 Pn'=Dn
FIGURE 6-16 Transformation of two tasks.

To show fact 2 is true, we compute the difference between the total utilization of the
system before the transformation of each task and the total utilization of the system after the
transformation. This difference is

e ey I — ey 1 1

fm/ﬁ_ﬁ_)_/_(___w_l)ek

Pr pi Dn Ipk pa
which is larger than 0 because Ipr < p,. This allows us to conclude that the system with
a period ratio less than 2 obtained when the transformation completes has a smaller total
utilization than the given system.

'6.7.3 Schedulable Utilization of RM Algorithm as Functions of Task Parameters

When some of the task parameters are known, this information allows us to improve the
schedulable utilization of the RM algorithm. We now give several schedulable utilizations that
are larger than Upy,(n) for independent, preemptive periodic tasks whose relative deadlines
are equal to their respective periods. These schedulable utilizations are expressed in terms of
known parameters of the tasks, for example, the utilizations of individual tasks, the number 1 I
of disjoint subsets each containing simply periodic tasks, and some functions of the periods
of the tasks. The general schedulable utilization U/ ru (1) of the RM algorithm is the minimum
value of these specific schedulable utilizations. Because they are larger than Ugy, (1), when
applicable, these schedulable utilizations are more accurate criteria of schedulability. They
are particularly suited for on-line acceptance tests. When checking whether a new periodic
task can be scheduled with existing tasks, many of the task parameters are already known,

Section 6.7 Sufficient Schedulability Conditions for the RM and DM Algorithms 153

and computing one of these schedulable utilizations takes a constant amount of time, much
less than the time required to do a time-demand analysis.

Schedulable Utilization I/ rg(#1, 82, ... 1,) a5 2 Function of Task Utilizations,
Rather than replacing the individual periods in Eq. (6.11a) by adjacent period ratios as we did
earlier, we rewrite the equation as follows:

Piert = pr(l +uy) fork=1,2,...,n—1
Moreover, from Eq. (6.11b) and the fact that Pn < 2py, we can conclude that
pull+u,) <2p

Combining these two expressions, we have the following corollary.

COROLLARY 6.12. 1 independent, preemptable periodic tasks with relative dead-
lines equal to their respective periods are schedulable rate-monotonically if their uti-
lizations uy, u,, .. ., u, satisfy the inequality

T+u)T) (1+u,) <2 (6.13)

We denote the total utilization of the tasks whose utilizations satisfy the constraint Eq. (6.13)
by Upgps (g, 1, . . ., i,).

As an example, we consider a system of two tasks 7 and 75. The schedulable utilization
Urpm (i), s) of the system is equal to 0.957, 0.899, 0.861, and 0.828, respectively, when the
ratio uy /U of the utilization of T | to the total utilization of both tasks is equal to 0.05, 0.1,
0.25, and 0.5. The minimum of U(uy, uz) is at the point 11, = 0.5U (i.e., when ity = 1) and
is 0.828, the Liu and Layland bound for 71 equal to 2.

For arbitrary n, the inequality Eq. (6.13) becomes (I+U@)/n)" < 2 when the utiliza-
tions of all the tasks are equal. For this combination of utilizations, the inequality Eq. (6.13)
becomes the same as the Liu and Layland bound U(n) < n(2"" — 1).

Schedulable Utilization of Subsets of Simply Periodic Tasks. We now consider a
system of periodic tasks that are not simply periodic but can be partitioned into 7 ;» subsets of
simply periodic tasks. For example, we can partition the system T of tasks with periods 4, 7,
8, 14, 16, 28, 32, 56, and 64 into two subsets Z; and Z,. 7, contains the tasks with period 4,
8, 16, 32, and 64; and Z contains tasks with periods 7, 14, 28, and 56. Let U(Zy) and U(Z,)
denote the total utilization of the tasks in Z; and Z,, respectiyely. Kuo, ef al. [KuMo91] have
shown that if U(Z,) + U (Z>) < 0.828 [ie., Ury(2)], all these tasks are schedulable rate-
monotonically. In contrast, if we were to treat the tasks separately, we would have to use the
bound Ugy, (9), which is only 0.712.

The following theorem by Kuo, ef al. [KuMo91] states this fact in general.

THEOREM 6.13. If a system T of independent, preemptable periodic tasks, whose
relative deadlines are equal to their respective periods, can be partitioned into 7, disjoint

