|IA159 Formal Verification Methods

Partial Order Reduction

Jan Obdrzéalek
Jan Strejcek

Department of Computer Science
Faculty of Informatics
Masaryk University

Focus and sources

Focus
m stuttering principle
m theory of partial order reduction
m heuristics for efficient implementation

Source

m Chapter 10 of E. M. Clarke, O. Grumberg, and D. A. Peled:
Model Checking, MIT, 1999.

I1A159 Formal Verification Methods: Partial Order Reduction 2/53

Basic facts on partial order reduction

m compatible with model checking of finite systems against
LTL formulae without X operator

m size of the reduced system is 3-99% of the original size

m model checking process for reduced systems is faster and
consumes less memory

m best suited for asynchronous systems
m also known as model checking using representatives

I1A159 Formal Verification Methods: Partial Order Reduction 3/53

Modified definition of Kripke structure

We consider only deterministic systems.

A Kripke structure is atuple M = (S, T, Sy, L), where
m Sis afinite set of states

m T is a set of fransitions, each a € T is a partial function
a:S— S.

m Sy C Sis asetof initial states

m L: S — 24P s alabelling function associating to each state
s € S the set of atomic propositions that are true in s.

m a transition « is enabled in s if a(s) is defined
m «is disabled in s otherwise

m cnabled(s) denotes the set of transitions enabled in s

I1A159 Formal Verification Methods: Partial Order Reduction 4/53

More definitions

Let ¢ be an LTL formula and K = (S, T, S, L) be a Kripke
structure.

m AP(p) is the set of atomic propositions occurring in ¢

m a path in K starting from a state s € S is an infinite
sequence T = Sy, Sy, . .. of states such that sy = s and for
each i there is a transition «; € T such that «;(s;) = sj11

m a path starting in a fixed state can be identified with a
sequence of transitions

m a path 7 satisfies ¢, written 7 |= ¢, if w |= ¢, where the
word w = w(0)w(1)...is defined as w(i) = L(s;) N AP(y)
foralli>0

m K salisfies ¢, written K = ¢, if all paths starting from initial
states of K satisfy ¢

I1A159 Formal Verification Methods: Partial Order Reduction 5/53

Goal of partial order reduction

LTI,y denotes LTL formulae without X operator.

Goal

Given a finite Kripke structure K and an LTL_y formula ¢, we
want to find a smaller Kripke structure K’ such that

Ky = KkEeo.

1A159 Formal Verification Methods: Partial Order Reduction 6/53

Reduction method

m K’ arises from K by disabling some transitions in some
states

m as a result, some states may become unreachable in K’

m for each state s, ample(s) denotes the set of transitions
that are enabled in s in K’, ample(s) C enabled(s)
m calculation of ample sets needs to satisfy three goals
K’ given by ample sets has to satisfy

Ky = KEg

K’ should be substantially smaller than K
the overhead in calculating ample sets must be small

I1A159 Formal Verification Methods: Partial Order Reduction 7/53

A base of partial order reduction

Stuttering principle

1A159 Formal Verification Methods: Partial Order Reduction 8/53

Stuttering on words

m let w=w(0)w(1)w(2) ... be an infinite word
m a letter w(/i) is called redundant iff w(i) = w(i + 1) and
there is j > i such that w(i) # w(j)

m canonical form of w is the word obtained by deleting all
redundant letters from w

m infinite words wy, ws are stutter equivalent, written
wy ~ ws, iff they have the same canonical form

Example
m canonical form of kk k ooooomk k.n® is komk.n”
m canonical form of k oo o mmmmm m kkk k.n® is komk.n”
m hence kkkooooomkk.n” ~ kooommmmmmkKkkkk.n”

I1A159 Formal Verification Methods: Partial Order Reduction 9/53

Stuttering principle

Theorem (Lamport 1983)

Let o be an LTL_yx formula and wy, wo be two stutter equivalent
words. Then

Wi Ep <= W

1A159 Formal Verification Methods: Partial Order Reduction 10/53

Stuttering on paths

Paths m = sps1 ... and 7’ = ;8] ... are stutier equivalent with
respect to a set AP’ C AP, written = ~ ,» «/, iff w ~ w/, where
w, w’ are defined as w(i) = L(s;) N AP" and w'(i) = L(s}) N AP’
for each i.

Kripke structures K, K’ are stutter equivalent with respect to
AP’ written K ~ 5 K/, iff
m K and K’ have the same set of initial states and

m for each path 7 of K starting in an initial state s there exists
a path ©’ of K’ starting in the same initial state such that
7 ~ap 7 and vice versa.

I1A159 Formal Verification Methods: Partial Order Reduction 11/53

Stuttering principle for Kripke structures

Corollary

Let ¢ be an LTL_x formula and K, K’ be Kripke structures such
that K ~AP(¢) K'. Then

Ky << K Eoe.

1A159 Formal Verification Methods: Partial Order Reduction 12/53

Stuttering principle for Kripke structures

Corollary

Let ¢ be an LTL_x formula and K, K’ be Kripke structures such
that K ~AP(¢) K’'. Then

Ky << K Eoe.

Hence, for every set of stutter equivalent paths (with respect to
AP(p)) of K it is sufficient to keep at least one representative of
these paths in K.

1A159 Formal Verification Methods: Partial Order Reduction 13/53

Example

Let AP(y) contain just x = 2.

1A159 Formal Verification Methods: Partial Order Reduction 14/53

Example

Let AP(y) contain just x = 2.

1A159 Formal Verification Methods: Partial Order Reduction 15/53

Let AP(y) contain just x = 2.

1A159 Formal Verification Methods: Partial Order Reduction 16/53

Theory of partial order reduction

Conditions on ample sets

1A159 Formal Verification Methods: Partial Order Reduction 17/53

Terminology: (in)visibility and full expansion

A transition « € T is invisible if for each pair of states s,s' € S
such that a(s) = &' it holds that

L(s) N AP(p) = L(s') N AP(y).

A transition is visible if it is not invisible.

1A159 Formal Verification Methods: Partial Order Reduction 18/53

Terminology: (in)visibility and full expansion

A transition « € T is invisible if for each pair of states s,s' € S
such that a(s) = &' it holds that

L(s) N AP(p) = L(s') N AP(y).

A transition is visible if it is not invisible.

A state s is fully expanded when ample(s) = enabled(s).

1A159 Formal Verification Methods: Partial Order Reduction 19/53

Terminology: (in)dependence

An independence relation I C T x T is a symmetric and
antireflexive relation satisfying the following two conditions for
each state s € S and for each (o,) € I

enabledness: if a, 8 € enabled(s) then o € enabled(5(s))
commutativity: if «, 8 € enabled(s) then a(5(s)) = B(«a(s))

The dependency relation D is the complement of /.

I1A159 Formal Verification Methods: Partial Order Reduction 20/53

Condition CO

If all ample sets satisfy the following conditions C0, C1, C2, and
C3, then K’ ~AP(y) K.

1A159 Formal Verification Methods: Partial Order Reduction 21/53

Condition CO

If all ample sets satisfy the following conditions C0, C1, C2, and
C3, then K’ ~AP(y) K.

ample(s) =0 <= enabled(s) = 0.

1A159 Formal Verification Methods: Partial Order Reduction 22/53

Condition C1

Along every path in the original structure that starts in s, the
following condition holds: a transition that is dependent on a
transition in ample(s) cannot be executed without a transition in
ample(s) occurring first.

1A159 Formal Verification Methods: Partial Order Reduction 23/53

Condition C1

C1

Along every path in the original structure that starts in s, the
following condition holds: a transition that is dependent on a
transition in ample(s) cannot be executed without a transition in
ample(s) occurring first.

Lemma

If C1 holds, then the transitions in enabled(s) ~. ample(s) are
all independent of those in ample(s).

1A159 Formal Verification Methods: Partial Order Reduction 24/53

Condition C1

Along every path in the original structure that starts in s, the
following condition holds: a transition that is dependent on a
transition in ample(s) cannot be executed without a transition in
ample(s) occurring first.

Thanks to C1, all paths of K starting in a state s and not
included in K’ have one of the following two forms:

m the path has a prefix 551 . .. fma, Where a € ample(s)
and each g; is independent of all transitions in ample(s)
including o

m the path is an infinite sequence of transitions 5yf; . ..
where each f; is independent of all transitions in ample(s).

I1A159 Formal Verification Methods: Partial Order Reduction 25/53

Condition C1: consequences

Due to C1, after execution of a se-
quence (pf4...0m of a transitions
not in ample(s) from s, all the tran-
sitions in ample(s) remain enabled.
Further, the sequence 50 ... Bma
executed from s leads to the same
state as the sequence aSy31 . .. Bm.

As the sequence (g0 ... Bma is not
included in the reduced system, we
want BB ...8ma and aByfB ... 0m
to be prefixes of stutter equivalent
paths. This is guaranteed if « is in-
visible.

I1A159 Formal Verification Methods: Partial Order Reduction 26/53

Condition C2

C2 (invisibility)

If s is not fully expanded, then every a € ample(s) is invisible.

1A159 Formal Verification Methods: Partial Order Reduction 27/53

Condition C3: motivation

Conditions C0, C1, and C2 are not yet sufficient to guarantee
that K’ is stutter equivalent to K. There is a possibility that
some transition will be delayed forever because of a cycle.

ag a9 ag aq

ap a2

S is visible, a1, ap, az are invisible, g is independent of
aq, ao, az, and aq, as, ag are interdependent

I1A159 Formal Verification Methods: Partial Order Reduction 28/53

Condition C3

C3 (cycle condition)

A cycle in reduced structure is not allowed if it contains a state
in which some transition is enabled, but is never included in
ample(s) for any state s on the cycle.

1A159 Formal Verification Methods: Partial Order Reduction 29/53

Calculating ample sets

Complexity of checking conditions C0—-C3

1A159 Formal Verification Methods: Partial Order Reduction 30/53

Conditions CO and C2

ample(s) =0 <= enabled(s) = 0.

C2 (invisibility)

If s is not fully expanded, then every a € ample(s) is invisible.

m conditions CO and C2 are local: their validity depends just
on enabled(s) and ample(s), not on the whole structure

m CO can be checked in constant time
m C2 can be checked in linear time with respect to |ample(s)|

1A159 Formal Verification Methods: Partial Order Reduction 31/53

Condition C1

Along every path in the original structure that starts in s, the
following condition holds: a transition that is dependent on a
transition in ample(s) cannot be executed without a transition in
ample(s) occurring first.

m checking C1 for a state s and a set T C enabled(s) is at
least as hard as checking reachability for K (reachability
problem can be reduced to checking C1)

m we give a procedure computing a set of transitions that is
guaranteed to satisfy C1

m computed sets do not have to be optimal: tradeoff
efficiency Vs. amount of reduction

|1A159 Formal Verification Methods: Partial Order Reduction 32/53

Condition C3

C3 (cycle condition)

A cycle in reduced structure is not allowed if it contains a state
in which some transition is enabled, but is never included in
ample(s) for any state s on the cycle.

m C3is also non-local
m in contrast to C1, C3 refers only to the reduced structure

m instead of checking C3, we formulate a stronger condition
which is easier to check

I1A159 Formal Verification Methods: Partial Order Reduction 33/53

Condition C3

Lemma

Assume that C1 holds for all ample sets along a cycle in a
reduced structure. If at least one state along the cycle is fully
expanded, then C3 hold for this cycle.

m C1 implies that each « € enabled(s) ~. ample(s) is
independent of transitions in ample(s)

B o € enabled(s) ~ ample(s) is also enabled in the next
state on the cycle in K’

m if the cycle contains a fully expanded state, then it surely
satisfies C3

I1A159 Formal Verification Methods: Partial Order Reduction 34/53

Condition C3’

If K is generated using depth-first search strategy, then every
cycle in K’ has to contain a back edge (i.e. an edge going to a
state on the search stack)

Cc3

If sis not fully expanded, then no transition in ample(s) may
reach a state that is on the search stack.

m C3’ can be checked efficiently during nestedDFS algorithm

I1A159 Formal Verification Methods: Partial Order Reduction 35/53

Calculating ample sets

Algorithm

1A159 Formal Verification Methods: Partial Order Reduction 36/53

Basic information

Reduced system is constructed on-the-fly: ample(s) is
computed only when a model checking algorithm needs to
know successors of s.

Algorithm computing ample sets depends on the model of
computation. We consider processes with

m shared variables and
B message passing with queues.

I1A159 Formal Verification Methods: Partial Order Reduction 37/53

m pc;(s) denotes the program counter of process P; in a
state s

m pre(a) is a set including all transitions 5 such that there
exists a state s for which « ¢ enabled(s) and

a € enabled(5(s))

dep(«) is the set of all transitions that are dependent on «
T; is the set of transitions of process P;

Ti(s) = T; N enabled(s)

current;(s) is the set of all transitions of P; that are enabled
in some s’ such that pc;(s) = pc;(s’)

(note that T;(s) C current;(s))

I1A159 Formal Verification Methods: Partial Order Reduction 38/53

Tradeoff

We do not compute the sets pre(a) and dep(o) precisely.
We prefer to efficiently compute over-approximations of these
sets.

1A159 Formal Verification Methods: Partial Order Reduction 39/53

Computing pre(«)

m pre(«) includes the transitions of the processes that
contain . and that can change a program counter to a
value from which a can execute

m if the enabling condition for « involves shared variables,
then pre(«) includes all other transitions that can change
these shared variables

m if o sends or receives messages on some queue g, then
pre(«) includes transitions of other processes that receive
or send data through q, respectively

I1A159 Formal Verification Methods: Partial Order Reduction 40/53

Computing dep(«)

m pairs of transitions that share a variable, which is changed
by at least one of them, are dependent

m pairs of transitions belonging to the same process are
dependent

m two receive fransitions that use the same message queue
are dependent

m two send transitions are also dependent (sending a
message may cause the queue to fill)

Note that a pair of send and receive transitions in different
processes are independent as they can potentially enable each
other, but not disable.

I1A159 Formal Verification Methods: Partial Order Reduction 41/53

Sketch of the algorithm

m C1 implies that transitions in enabled(s) ~. ample(s) are
independent on those in ample(s)

m as transitions in T;(s) are interdependent, it holds
Ti(s) C ample(s) v T;(s) N ample(s) = 0

m hence, T;(s) is a good candidate for ample(s)

I1A159 Formal Verification Methods: Partial Order Reduction 42/53

Sketch of the algorithm

m C1 implies that transitions in enabled(s) ~. ample(s) are
independent on those in ample(s)

m as transitions in T;(s) are interdependent, it holds
Ti(s) C ample(s) v T;(s) N ample(s) = 0

m hence, T;(s) is a good candidate for ample(s)

Idea of the algorithm

We check whether some T;(s) # () satisfies the conditions C1,
C2, and C3'. If there is no such T;(s), we set
ample(s) = enabled(s).

|1A159 Formal Verification Methods: Partial Order Reduction 43/53

Checking C1

Along every path in the original structure that starts in s, the
following condition holds: a transition that is dependent on a
transition in ample(s) cannot be executed without a transition in
ample(s) occurring first.

If ample(s) = T;(s) violates C1, then there is a path

B Bn a

s Bo
PN
where

m o ¢ Ti(s) and « is dependent on T;(s),
m f,..., [y are independent on T;(s).

I1A159 Formal Verification Methods: Partial Order Reduction 44/53

Checking C1

s Bo o B4 o Bn S agTi(s) .

AN

There are two cases.

Case A « € T;forsome i # j. Then dep(Ti(s)) 1 T, # (.

1A159 Formal Verification Methods: Partial Order Reduction 45/53

Checking C1

s Bo o B4 o Bn S agTi(s) .

AN

There are two cases.

Case A a € T;forsome i # j. Then dep(T(s)) 1 T, # (.
CaseB acT,.

m fy,..., s are independent on T;(s) and hence
Bo, - .., Bn & T; (all transitions of P; are considered as
interdependent).

m Therefore pc;(s) = pc;(s’) and thus « € current;(s) \ Ti(s).

m As a ¢ Ti(s), some transition of 5y, ..., 3, has to be
included in pre(«).

m Hence, pre(current;(s) ~ Ti(s)) 1 T; # (for some j # i.

I1A159 Formal Verification Methods: Partial Order Reduction 46/53

Algorithm checking C1

function checkC1(s, P;)
forall P; # P; do
if dep(Ti(s))NT; #0 v pre(current;(s) ~ Ti(s)) N T; # 0 then
return false
return true
end function

If the function returns irue, then C1 holds. It may return false
even if T;(s) satisfies C1.

1A159 Formal Verification Methods: Partial Order Reduction 47/53

Algorithm

function checkC2(X) function checkC3'(s, X)
forall o € X do forall « € X do
if visible(«) then if onStack(a(s)) then
return false return false
return true return true
end function end function

function ample(s)
forall P; such that T;(s) # 0 do
if checkC1(s, P;) A checkC2(T;(s)) A checkC3'(s, T;(s)) then
return T;(s)
return enabled(s)
end function

I1A159 Formal Verification Methods: Partial Order Reduction 48/53

Partial order reduction

Example

1A159 Formal Verification Methods: Partial Order Reduction 49/53

Example: code

Specification formula ¢ = G=((pcy = CSp) A (pc1 = CSy))

NCy :
CSO .

NC1 :
CS1 .

cobegin Py||Py coend

while true do
wait(turn = 0);
turn = 1;
endwhile;

while true do
wait(turn = 1);
turn = 0;
endwhile;

1A159 Formal Verification Methods: Partial Order Reduction

50/53

Example

e

1A159 Formal Verification Methods: Partial Order Reduction 51/53

Example

I1A159 Formal Verification Methods: Partial Order Reduction 52/53

The End

Thank you for your attention!

m Oral exam (subscribe via IS!)
m 30 min per student.

m The order to be determined later.

m Topics
m Everything we have covered in the course.
m Including the material not on the slides!

1A159 Formal Verification Methods: Partial Order Reduction 53/53

