Fixed-Parameter Algorithms, IA166

Sebastian Ordyniak

Faculty of Informatics Masaryk University Brno

Spring Semester 2013

1 Basic Ideas and Foundations

Parameterized Complexity

- Fixed-Parameter Tractability
- VERTEX COVER an illustrative example
- The Art of Problem Parameterization
- Algorithmic Techniques
- Fixed-Parameter Intractability

Basic Ideas and Foundations

Parameterized Complexity

Classical Complexity

- The complexity of a problem is measured in terms of its input size.
- A problem is considered tractable if it can be solved in polynomial time and intractable if it is at least NP-hard.
- Unfortunately, many important problems are NP-hard so what can we do to tackle these problems?

Parameterized Complexity

- The complexity of a problem is measured in terms of its input size and any number of additional parameters.
- Taking into account additional parameters:
 - provides a more fine-grained view of the complexity of a problem.
 - tells us where the exponential explosion of an NP-hard problem comes from.
 - allows us to design tailored algorithms for different parameterizations.

Parameterized Complexity

Problem: Input: Question: MINIMUM VERTEX COVER Graph *G*, integer *k* Is it possible to cover the edges with *k* vertices? MAXIMUM INDEPENDENT SET Graph *G*, integer *k* Is it possible to find *k* independent vertices?

・ロット (雪) (日) (日)

Classical NP-complete

NP-complete

Parameterized Complexity

Problem:MINIMUM VERTEX COVERInput:Graph G, integer kQuestion:Is it possible to cover
the edges with k vertices?

MAXIMUM INDEPENDENT SET Graph *G*, integer *k* Is it possible to find *k* independent vertices?

・ロット (雪) ・ (日) ・ (日)

ъ

Classical
trivialNP-completealgorithm $O(n^k)$

NP-complete

 $O(n^k)$

Parameterized Complexity

Problem:MINIMUM VERTEX COVERInput:Graph G, integer kQuestion:Is it possible to cover
the edges with k vertices?

MAXIMUM INDEPENDENT SET Graph *G*, integer *k* Is it possible to find *k* independent vertices?

No $n^{o(k)}$ algorithm known

Classical
trivialNP-completealgorithm $O(n^k)$

NP-complete

 $O(n^k)$

 $O(2^k n^2)$ algorithm exists

$$e_1 = x_1 y_1$$

Input: Graph G and integer k.

Running time

- at every node there are 2 choices;
- height of the search tree is at most k;
- number of nodes in the search tree is at most 2^k;
- complete search possible in O(2^kn^c)

・ロット (雪) ・ (日) ・ (日)

э

Outline

1 Basic Ideas and Foundations

- Parameterized Complexity
- Fixed-Parameter Tractability
- VERTEX COVER an illustrative example

・ロン ・雪 と ・ ヨ と ・ ヨ と

ж

- The Art of Problem Parameterization
- Algorithmic Techniques
- Fixed-Parameter Intractabilty

Fixed-Parameter tractability

Definition

A **parameterization** of a decision problem is a function that assigns an integer parameter (usually denoted by k) to each input instance.

What can the parameter be?

- The size of the solution we are looking for.
- The maximum degree of the input graph.
- The diameter of the input graph.
- The length of clauses in the input SAT-formula.

Fixed-Parameter Tractability

Definition

A **parameterized problem** is a language $L \subseteq \Sigma^* \times \Sigma^*$ where Σ is a finite alphabet. The first component is the classical input and second component is the **parameter** of the problem.

Definition

A parameterized problem is **fixed-parameter tractable (FPT)** if there is an $f(k)n^c$ time algorithm for an arbitrary function f of the parameter k, input size n, and some constant c.

Fixed-Parameter Tractability

Definition

A parameterized problem is **fixed-parameter tractable (FPT)** if there is an $f(k)n^c$ time algorithm for an arbitrary function f of the parameter k, input size n, and some constant c.

Example: MINIMUM VERTEX COVER parameterized by the solution size is FPT: we have already seen that it can be solved in time $O(2^k n^2)$.

Better algorithms are known (and are still being developed), e.g., $O(1.2832^k k + kn)$.

Main goal (of parameterized complexity): to find efficient FPT algorithms for NP-hard problems.

Fixed-Parameter Tractability

Definition

A parameterized problem is **fixed-parameter tractable (FPT)** if there is an $f(k)n^c$ time algorithm for an arbitrary function f of the parameter k, input size n, and some constant c.

Remarks

- O*-notation: O*(f(k)) means O(f(k)n^c) for some constant
 c.
- unless otherwise stated we always use k to denote the parameter and n to denote the input size.

. . . .

Fixed-Parameter Tractability

Fixed-Parameter Tractability

Examples of NP-hard problems that are FPT:

- Finding a vertex cover of size *k*.
- Finding a path of length k.
- Finding *k* disjoint triangles.
- Drawing the graph in the plane with k edge crossings.
- Finding disjoint paths that connect *k* pairs of points.

ال ال ال ال ال ال ال ال ال

Fixed-parameter algorithms limit the exponential explosion to the parameter instead of the whole input size.

instead of

(日)

- + Guaranteed optimality of the solution.
- + Provable upper bounds on the computational complexity.
- Exponential running time.

Other approaches to tackle intractable problems:

- Randomized algorithms
- Approximation algorithms
- Heuristics
- Average Case Analysis
- New models of computing (DNA or quantum computing)

Basic Ideas and Foundations

└─ VERTEX COVER an illustrative example

Outline

1 Basic Ideas and Foundations

- Parameterized Complexity
- Fixed-Parameter Tractability

VERTEX COVER an illustrative example

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- The Art of Problem Parameterization
- Algorithmic Techniques
- Fixed-Parameter Intractability

VERTEX COVER an illustrative example

VERTEX COVER an illustrative example

VERTEX COVER

Parameter: k

Input: An undirected graph G = (V, E) and a natural number k. **Question:** Find a subset of vertices $C \subseteq V$ of size at most k such that each edge in E has at least one of its endpoints in C.

Solution methods:

- Bounded Search Tree: $O^*(1.28^k)$.
- Data reduction by preprocessing: techniques by Buss, Nemhauser Trotter.

└─ VERTEX COVER an illustrative example

VERTEX COVER an illustrative example

Parameterizing

- Specializing
- Generalizing
- Counting or Enumeration
- Lower bounds
- Implementing and applying
- Exploiting the structure given by a VERTEX COVER for other problems

VERTEX COVER an illustrative example

VERTEX COVER an illustrative example

Parameterizing

- Size of the vertex cover;
- Dual parameterization: INDEPENDENT SET;
- Parameterizing above guaranteed values, e.g., in planar graphs;
- Structure of the input graph, e.g., treewidth
- Specializing
- Generalizing
- Counting or Enumeration
- Lower bounds
- Implementing and applying
- Exploiting the structure given by a VERTEX COVER for other problems

VERTEX COVER an illustrative example

VERTEX COVER an illustrative example

Parameterizing

- Specializing: special graph classes, e.g., planar graphs O^{*}(c^{√k}).
- Generalizing
- Counting or Enumeration
- Lower bounds
- Implementing and applying
- Exploiting the structure given by a VERTEX COVER for other problems

└─ VERTEX COVER an illustrative example

VERTEX COVER an illustrative example

Parameterizing

- Specializing
- Generalizing: WEIGHTED VERTEX COVER, CAPACITATED VERTEX COVER, HITTING SET, ...
- Counting or Enumeration
- Lower bounds
- Implementing and applying
- Exploiting the structure given by a VERTEX COVER for other problems

VERTEX COVER an illustrative example

VERTEX COVER an illustrative example

- Parameterizing
- Specializing
- Generalizing
- Counting or Enumeration:
 - Counting: $O^*(1.47^k)$.
 - Enumeration: $O^*(2^{\acute{k}})$.
- Lower bounds
- Implementing and applying
- Exploiting the structure given by a VERTEX COVER for other problems

└─ VERTEX COVER an illustrative example

VERTEX COVER an illustrative example

Parameterizing

- Specializing
- Generalizing
- Counting or Enumeration
- Lower bounds: widely open!
- Implementing and applying
- Exploiting the structure given by a VERTEX COVER for other problems

└─ VERTEX COVER an illustrative example

VERTEX COVER an illustrative example

- Parameterizing
- Specializing
- Generalizing
- Counting or Enumeration
- Lower bounds
- Implementing and applying: re-engineering case distinctions, parallelization, ...
- Exploiting the structure given by a VERTEX COVER for other problems

VERTEX COVER an illustrative example

VERTEX COVER an illustrative example

- Parameterizing
- Specializing
- Generalizing
- Counting or Enumeration
- Lower bounds
- Implementing and applying
- Exploiting the structure given by a VERTEX COVER for other problems: solve related problems using an optimal vertex cover.

Basic Ideas and Foundations

L The Art of Problem Parameterization

Outline

1 Basic Ideas and Foundations

- Parameterized Complexity
- Fixed-Parameter Tractability
- VERTEX COVER an illustrative example

・ロト ・個 ト ・ ヨト ・ ヨト … ヨ

- The Art of Problem Parameterization
- Algorithmic Techniques
- Fixed-Parameter Intractability

L The Art of Problem Parameterization

The Art of Problem Parameterization

- Parameter really small?
- Guaranteed parameter value?
- More than one obvious parameterization?
- Close to "trivial" problem instances?

-Algorithmic Techniques

1 Basic Ideas and Foundations

- Parameterized Complexity
- Fixed-Parameter Tractability
- VERTEX COVER an illustrative example

・ロト ・個 ト ・ ヨト ・ ヨト … ヨ

- The Art of Problem Parameterization
- Algorithmic Techniques
- Fixed-Parameter Intractability

Basic Ideas and Foundations

Algorithmic Techniques

Algorithmic Techniques

Powerful toolbox for designing FPT algorithms with significant advances over the last 20 years:

ъ

・ロット (雪) ・ (日) ・ (日)

Outline

1 Basic Ideas and Foundations

- Parameterized Complexity
- Fixed-Parameter Tractability
- VERTEX COVER an illustrative example
- The Art of Problem Parameterization
- Algorithmic Techniques
- Fixed-Parameter Intractability

Fixed-Parameter Intractability

- Corresponding to the class NP in the classical setting in parameterized complexity there is a whole hierarchy of complexity classes (the W-hierarchy).
- All problems that are at least W[1]-hard are considered fixed-parameter intractable.
- Most natural problems are either FPT, W[1]-complete or W[2]-complete.

Parameterized Complexity Classes

・ロット (雪) (日) (日)

Fixed-Parameter Intractability

FPT	W[1]-complete	W[2]-complete
NP-complete	NP-complete	NP-complete
VERTEX COVER	INDEPENDENT SET	DOMINATING SET

- Rolf Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford University Press 2006
- Joerg Flum and Martin Grohe, Parameterized Complexity Theory, Springer 2006
- Micheal R. Fellows and Rodney G. Downey, Parameterized Complexity, Springer 1999

