Fixed-Parameter Algorithms, I1A166

Sebastian Ordyniak

Faculty of Informatics
Masaryk University Brno

Spring Semester 2013

L Iterative Compression

L Introduction

Outline

Iterative Compression
m Introduction

L Iterative Compression

L Introduction

lterative Compression

L Iterative Compression

L Introduction

Motivation

m an easy but surprisingly powerful trick

m Most useful for deletion problems, i.e., delete k things to
achieve some property

m like color coding, iterative compression comes for free;

L Iterative Compression

L Introduction

A Simple Example: Vertex Cover

k-VERTEX COVER Parameter: k

Input: A graph G and an integer k.
Question: Does G have a vertex cover of size at most k?

Idea: Reduce the problem to an easier compression version of

the problem.

k-VERTEX COVER COMPRESSION Parameter: k
Input: A graph G, an integer k, and a vertex cover C of size
at most k + 1.

Question: Does G have a vertex cover of size at most k?

L Iterative Compression

L Introduction

A Simple Example: Vertex Cover

ldea: Reduce the problem to an easier compression version of
the problem.

k-VERTEX COVER COMPRESSION Parameter: k

Input: A graph G, an integer k, and a vertex cover C of size

at most k + 1.
Question: Does G have a vertex cover of size at most k?

There are 2 questions remaining:
m How to solve the compression problem?

m How to reduce k-VERTEX COVER to the compression
problem?

L Iterative Compression

L Introduction

A Simple Example: Vertex Cover

k-VERTEX COVER COMPRESSION Parameter: k

Input: A graph G, an integer k, and a vertex cover C of size at
most k + 1.
Question: Does G have a vertex cover of size at most k?

An Algorithm for k-VERTEX COVER COMPRESSION

For every Ckgep C C do
Crem := C\ Ckeep;
If G[Crem] contains no edges then
Cnew = N[Crem] \ C;
If |Cnew| + | Ckeep| < k then
return Cnew U Ckeep;
return NO;

L Iterative Compression

L Introduction

A Simple Example: Vertex Cover

k-VERTEX COVER COMPRESSION Parameter: k
Input: A graph G, an integer k, and a vertex cover C of size at
most k + 1.

Question: Does G have a vertex cover of size at most k?

Proof of Correctness of the Algorithm (sketch):

It is straightforward to check that if the algorithm returns a set
then this set is a vertex cover of G of size at most k.

On the other hand any vertex cover C’ of size at most k must
contain N[C\ C']\ C and hence if a solution exists it is found by
the algorithm!

L Iterative Compression

L Introduction

A Simple Example: Vertex Cover

k-VERTEX COVER COMPRESSION can be solved in time
O(2kn°(M).

How can we use the compression problem to solve vertex
cover?

Start with the empty graph and add vertices one by one

L Iterative Compression

L Introduction

A Simple Example: Vertex Cover

An Algorithm for k-VERTEX COVER

= ();
V =0;
Forevery v € V(G) do
V.=Vu{v},
if C is not a vertex cover for G[V] then
C:=Cu{v};
if|C| > k then;
if k-VCC(G[V], C, k) is a NO-instance then
return NO;
C .= k-VCC(G[V], C, k),
return YES;

L Iterative Compression

L Introduction

A Simple Example: Vertex Cover

An Algorithm for k-VERTEX COVER

k-VERTEX COVER can be solved in time O(2kn°M).

L Iterative Compression

L Introduction

General lterative Compression

We can use the approach for any minimization problem on
instances G that have an integer objective value and where we

can construct a sequence Gy, ..., G, of polynomial length with

G, = Gand:

(1) A k-solution for Gy exists and can be found in polynomial
time.

(2) If G;j has a k-solution then G; 4 has a k + 1-solution, which
can be found in polynomial time.

(3) If Gj has no k-solution then G has no k-solution.

(4) If a (k + 1)-solution S for G;, 1 is given, then there is an
FPT algorithm for parameter k that decides whether G;_ 4
has a k-solution (The compression step).

L Iterative Compression

L Introduction

General lterative Compression

For problems satisfying the properties of the previous slide, the
following algorithm is an FPT-algorithm for parameter k that
decides whether a k-solution exists for G:

The General Algorithm for Iterative Compression

Let Sy be a k-solution for Gy ;
Fori=1toi=n-—1 do;
Use S; to construct a (k + 1)-solution S+ for G+,
if COMP(Gj.1, Si11, k) is a NO-instance then
return NO;
S/+1 = COMP(G,'_H > Si+1 9 k),‘
return YES;

L Iterative Compression

L Introduction

Example: Graph Bipartisation

k-GRAPH BIPARTISATION Parameter: k

Input: A graph G and an integer k.
Question: Is there an S C V(G) with |S| < k such that G\ S'is
bipartite?

m Standard example for the use of iterative compression.
m Very hard to tackle without iterative compression.

L Iterative Compression

L Introduction

Example: Graph Bipartisation

Using the sequence G; := G|vi, ..., vj] for an arbitrary ordering
Vi,..., Yy(a) Of the vertices of G we obtain:

(1) S := 0 is a bipartization of G;.

(2) If S;is a k-bipartization for G; then S;. 1 := S;U{vj;1}isa
(k + 1)-bipartization for Gj1.

(3) If Gj has no k-bipartization then G has no k-bipartization.

Hence, we only need to find an FPT-algorithm for the
compression version of the problem!

L Iterative Compression

L Introduction

Example: Graph Bipartisation

Using the sequence G; := G|vi, ..., vj] for an arbitrary ordering
Vi,..., Yy(a) Of the vertices of G we obtain:

(1) S := 0 is a bipartization of G;.

(2) If S;is a k-bipartization for G; then S;. 1 := S;U{vj;1}isa
(k + 1)-bipartization for Gj1.

(3) If Gj has no k-bipartization then G has no k-bipartization.

(4) FPT-algorithm for compression version??7??

Hence, we only need to find an FPT-algorithm for the
compression version of the problem!

L Iterative Compression

L Introduction

Example: Graph Bipartisation

k-GRAPH BIPARTISATION COMPRESSION Parameter: k
Input: A graph G, an integer k, anda S C V(G) with

|S| < k+1s.t. G\ Sis bipartite.

Question: Is there an S’ C V(G) with |S'| < k such that G\ S
is bipartite?

Question

How to solve this problem?

L Iterative Compression

L Introduction

Example: Graph Bipartisation

m Guess the intersection Skeep of an optimal solution with S.

m Then the vertices in Sgreym := S\ Skeep are not part of an
optimal solution.

m Guess a bipartition {A, B} of the vertices in Sgepy (s.t. A
and B are independent sets in G).

m Then the graph G\ Skeep has a small bipartization (that
uses no vertices from Sggy) if and only if the graph G\ S
has a small bipartization where the neighbors the
neighbors of A in G and the neighbors of B in G are in
different parts of the bipartization.

L Iterative Compression

L Introduction

Example: Graph Bipartisation

Hence, after guessing the at most 3 partitions of S we are left
with the following problem:

k-{A, B}-GRAPH BIPARTISATION Parameter: k

Input: A bipartite graph G, an integer k, and 2 independent
vertex sets A and B.

Question: Is there a S C V(G) with |S’| < k such that G\ S
has a bipartization such that the verticesin A\ S"and B\ S’
are in different parts?

Question
How to solve this problem?

L Iterative Compression

L Introduction

Example: Graph Bipartisation

Answer

m Find an arbitrary bipartization {Ag, By} of G.

m Then the vertices in C := (Ap N B) U (By N A) have to
change, while the vertices in R := (Ay N A) U (By N B)
should remain in the same part.

m Observation: There is a set S C V(G) such that G\ S has
the required bipartization if and only if S separates C and
R, i.e., no component of G\ S contains vertices from both
C\Sand R\ S.

L Iterative Compression

L Introduction

Example: Graph Bipartisation

Observation

There is a set S C V(G) such that G\ S has the required
bipartization if and only if S separates C and R, i.e., no
component of G\ S contains vertices from both C\ Sand R\ S.

Proof (sketch):

— In a bipartitation of G\ S every vertex either changed parts
or stays in the same part. Adjacent vertices have to do the
same. Hence, every component of G\ S either changed or
remained in the same part.

+ Flip the parts for all vertices in components of G\ S
containing vertices from C. Hence, no vertex from R is flipped.

L Iterative Compression

L Introduction

Example: Graph Bipartisation

Using max-flow min-cut techniques we can check whether there
is such a set S that separates C and R in time O(k|E(G)|).

Theorem

k-GRAPH BIPARTIZATION COMPRESSION can be solved in time
O(3KnoM).

And using our iterative compression framework, we obtain:

Theorem
k-GRAPH BIPARTIZATION can be solved in time O(3Kn®M).

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

k-FEEDBACK VERTEX SET Parameter: k

Input: A graph G and an integer k.
Question: Isthereaset S C V(G) with |S| < kand G\ Sis a

tree?

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

Using the sequence G; := G|vi, ..., vj] for an arbitrary ordering
Vi,..., Yy(a) Of the vertices of G we obtain:

(1) S :=0is a k-FVS for G;.

(2) If Sjis a k-FVS for Gj then S;, 1 := S;jU{vj, 1} isa
(k+1)-FVS for G;.

(3) If Gj has no k-FVS then G has no k-FVS.

Hence, we only need to find an FPT-algorithm for the
compression version of the problem!

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

Using the sequence G; := G|vi, ..., vj] for an arbitrary ordering
Vi,..., Yy(a) Of the vertices of G we obtain:

(1) S :=0is a k-FVS for G;.

(2) If Sjis a k-FVS for Gj then S;, 1 := S;jU{vj, 1} isa
(k+1)-FVS for G;.

(3) If Gj has no k-FVS then G has no k-FVS.

(4) FPT-algorithm for compression version????

Hence, we only need to find an FPT-algorithm for the
compression version of the problem!

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

k-FEEDBACK VERTEX SET COMPRESSION Parameter: k

Input: A graph G, an integer k, and a k + 1-FVS of G.
Question: Is there a k-FVS for G?

How to solve this problem?

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

Answer

Again we guess the intersection of S with an optimal solution.
There are 25t such guesses and for each guess we have to
solve an instance of k-FEEDBACK VERTEX SET DISJOINT
defined below.

k-S-DISJOINT FEEDBACK VERTEX SET Parameter: |S|

Input: A graph G, and a FVS S of G.
Question: Is there a |S| — 1-FVS for G that is disjoint from S?

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

k-S-DISJOINT FEEDBACK VERTEX SET Parameter: |S|

Input: A graph G, and a FVS S of G.
Question: Is there a |S| — 1-FVS for G that is disjoint from S?

We want to solve the above problem using kernelization.

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

Degree 1 rule

If ve V(G)\ S has degree 1in G. Then G has a k-S-DFVS iff
G\ {v} has a k-S-DFVS.

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

Degree 2 rule

If v e V(G)\ S has 2 neighbors u,win Gand w ¢ S. Then
either

(1) {v,w} € E(G) and G has a k-S-DFVS iff G\ {w} has a
k —1-S-DFVS, or

(2) {v,w} ¢ E(G) and G has a k-S-DFVS iff G’ has a
k-S-DFVS, where G is obtained by contracting {v, w}.

Hence, in a reduced instance (G, S, k) of k-DFVS, all vertices
in V(G) \ S have degree at least 3, or only neighbors in S.

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

Let (G, S, k) be a reduced k-S-DFVS instance and suppose a
k-S-DFVS S’ exists. We want to prove an upper bound on

V(G)I.

Let T:= G\ S. Then T is a forest.
m Let H be the vertices in T with degree at least 3in T.
m Let L be the vertices in T with degree 1in T.
m Let A be the vertices in T with degree 2in T.
m Let Z be the vertices in T with degree 0in T.
LetH =HNS, L' =LNS,RR=RnSand 2/ :=2nS.

L Iterative Compression
L Introduction

Example: Feedback Vertex Set

Because |E(T)| = 3 X cy(r) dr(v), we have:
[E(T) = SILI+ Rl + 3 Xyep dr(v)

Furthermore, the number of edges removed by deleting
S' = H ULl'UR'is at most:

1L+ 2|R + X ven dr(v)

Proposition

Let T be a forest with ¢ components, where the set H (L)
contains the vertices of degree at least 3 (exactly 1),
respectively. Then >, (dr(v) —2) = |L]| — 2c.

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

Combining the previous (in)equalities, we obtain:

|E(T\ S >
3ILL 1Rl + 3 X yen dr(v) — I = 2R = X cpy dr(v) =
2 ven(@r(v) = 1) + Rl = [L] = 2[R = 3. cpp dr(V) =
2vernm dr(v) — [HI +[Rl - L] - 2|R'| >
3|H\ H'| — [H| + R — |L'| - 2|R| =
2|H| = 3|H'[+ |R| - 2|R| — |L|

L Iterative Compression
L Introduction

Example: Feedback Vertex Set

Because G is reduced the vertices in L, R, and Z have at least
2, 1, or 2 neighbors in S, respectively. Hence:

[E(G\ §)| = [E(T\ S)[+2|L\L'| +|R\ R'| +2|Z2\ Z'| =
2|H| = 3|H'| +|R| = 2|R'| — |L'| + 2|L| = 2|L'| + [R| — |R'[+
2|1Z| —2|Z'| =
2|H| - 3|H'| + 2|R| — 3|R'| + 2|L| — 3|L'| + 2|Z] — 2|Z'|

Because S’ is FVS G\ S’ is a forest and hence:

[E(G\S)| < [V(G\S)| =1 = |S|+|H|+|L|+|R|+|Z] -S| -1

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

Combining these bounds gives:

2|H| — 3|H'| + 2|R| — 3|R'| + 2|L| — 3|L'| + 2|Z| — 2|1Z| <
|E(G\ §')| <
S|+ |H[+ L+ |R[+1Z] = [S'] =1«
|HI+|L|+|R| +1Z| < 2|S'|+|S] -1«
IV(G)\ S| < 3k

Hence, the reduced graph G has at most 4k + 1 vertices!

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

Theorem

Let G be a graph that has a FVS S with |S| = k+ 1. Then it can
be decided whether G has a k-S-DFVS in time
n°") + 0%(6.75%).

Algorithm

(1) If G[S] contains a cycle, return No.

(2) Apply the degree 1 and 2 reduction rules until a reduced
instance (G, S, k') is obtained (This needs time n°(").

(3) If [V(G)\ S| > 3k, return No.

(4) test all subsets S’ C V(G) \ S with |S'| = k’. If one of them
is a FVS return YES, otherwise return NO.

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

Algorithm

(1) If G[S] contains a cycle, return No.

(2) Apply the degree 1 and 2 reduction rules until a reduced
instance (G, S, k') is obtained (This needs time n°(").

(8) If|V(@)\ S| > 3k, return No.

(4) test all subsets S’ C V(G) \ S with |S'| = k'. If one of them
is a FVS return YES, otherwise return NoO.

The correctness of the algorithm follows from the previous
slides. What about the complexity bound?

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

Theorem (Stirling’s approximation)

liMp— oo VZen(T)y

Corollary

nl e o(va(2)")

m f(n) € Q(g(n)) means: there is ¢ and N such that for every
n > N it holds that f(n) > cg(n).

m f(n) € ©(g(n)) means: f(n) € O(g(n)) and f(n) € Q(g(n)).
Clearly, if f1(n) € ©(g1(n)) and f>(n) € ©(g2(n)), then
fi(mf(n) € ©(g1(n)g2(n)) and f1(n)/f(n) € ©(g1(n)/gz(n)).

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

Applying the reduction rules takes time n®(1),
Let the reduced instance G’ have n’ vertices not in S. If
n’ < 3k’ (and k > 2), then the number of sets tested is:

/ Kld 3k 3k)!
(k) < (o) < (%) = (gk)!)k! €
\/?7(3/()3/‘9*3/(
@(\/27(2k)2ke—2kﬁkke—k)) S

33k

0(%x) = O(%)¥) = 0(6.75)

Testing whether a set S’ is a FVS can be done in polynomial
time k1), hence the total time complexity is
n°1) 4 O(6.75%)kO0),

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

On the last slide we had a function (k) € ©(6.75k¢) for some
constant c.

m Observe that: f(k) € O((6.75 + €)¥), but f(k) ¢ O(6.75).

m So the polynomial factor k¢ seems irrelevant, but still we
may not just omit it using the O-notation.

m To get around this annoying situation the O* notation is
defined less precise as the O-notation and one can state
6.75Kk¢ € O*(6.75%).

L Iterative Compression

L Introduction

Example: Feedback Vertex Set

Hence, the overall complexity for the compression problem is
n®0) 4 0*(6.75). Because we have to make O(2¥) guesses
to reduce to the compression problem, we obtain:

Theorem
k-FVS can be decided in time n°(") 0*(13.5k).

	Iterative Compression
	Introduction

