Fixed-Parameter Algorithms, IA166

Sebastian Ordyniak

Faculty of Informatics Masaryk University Brno

Spring Semester 2013

Iterative Compression

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

- \blacksquare an easy but surprisingly powerful trick
- Most useful for deletion problems, i.e., delete *k* things to achieve some property
- \blacksquare like color coding, iterative compression comes for free;

k -VERTEX COVER **Parameter:** *k*

Input: A graph *G* and an integer *k*. **Question:** Does *G* have a vertex cover of size at most *k*?

Idea: Reduce the problem to an easier compression version of the problem.

k -VERTEX COVER COMPRESSION **Parameter:** *k*

Input: A graph *G*, an integer *k*, and a **vertex cover** *C* **of size at most** $k + 1$. **Question:** Does *G* have a vertex cover of size at most *k*?

K ロ ⊁ K 個 ≯ K 違 ≯ K 違 ≯ … 違

Idea: Reduce the problem to an easier compression version of the problem.

k -VERTEX COVER COMPRESSION **Parameter:** *k*

Input: A graph *G*, an integer *k*, and a **vertex cover** *C* **of size at most** $k + 1$. **Question:** Does *G* have a vertex cover of size at most *k*?

There are 2 questions remaining:

- \blacksquare How to solve the compression problem?
- ■ How to reduce *k* - VERTEX COVER to the compression problem?

k -VERTEX COVER COMPRESSION **Parameter:** *k*

Input: A graph *G*, an integer *k*, and a vertex cover *C* of size at most $k + 1$. **Question:** Does *G* have a vertex cover of size at most *k*?

An Algorithm for *k* -VERTEX COVER COMPRESSION

*For every C*_{KEEP} ⊆ *C* do $C_{\mathsf{RFM}} := C \setminus C_{\mathsf{KFFP}}$; *If G*[C_{REM}] *contains no edges then* $C_{\text{NFW}} := N[C_{\text{RFM}}] \setminus C$; $|f|C_{\text{NFW}}| + |C_{\text{KFFP}}| \leq k$ then *return C*NEW ∪ *C*KEEP*; return* NO*;*

k -VERTEX COVER COMPRESSION **Parameter:** *k*

モニマイボメイミメイロメ

Input: A graph *G*, an integer *k*, and a vertex cover *C* of size at most $k + 1$.

Question: Does *G* have a vertex cover of size at most *k*?

Proof of Correctness of the Algorithm (sketch):

It is straightforward to check that if the algorithm returns a set then this set is a vertex cover of *G* of size at most *k*. On the other hand any vertex cover C' of size at most k must contain $N[C\setminus C']\setminus C$ and hence if a solution exists it is found by the algorithm!

Theorem

k -VERTEX COVER COMPRESSION can be solved in time $O(2^k n^{O(1)})$.

How can we use the compression problem to solve vertex cover?

Start with the empty graph and add vertices one by one

An Algorithm for *k* -VERTEX COVER

 $C := \emptyset$ *;* $V := \emptyset$ *: For every* $v \in V(G)$ *do V* := *V* ∪ {*v*}*; if C is not a vertex cover for G*[*V*] *then* $C := C \cup \{v\};$ *if* $|C| > k$ *then; if k*-VCC(*G*[*V*], *C*, *k*) *is a* NO*-instance then return* NO*;* $C := k$ -VCC(*G*[*V*], *C*, *k*); *return* YES*;*

イロト イ押 トイヨ トイヨ トーヨー

An Algorithm for *k* -VERTEX COVER

 k -VERTEX COVER can be solved in time $O(2^k n^{O(1)})$.

General Iterative Compression

We can use the approach for any minimization problem on instances *G* that have an integer objective value and where we can construct a sequence G_1, \ldots, G_n of polynomial length with $G_n = G$ and:

- (1) A *k*-solution for *G*¹ exists and can be found in polynomial time.
- (2) If G_i has a *k*-solution then G_{i+1} has a $k+1$ -solution, which can be found in polynomial time.
- (3) If *Gⁱ* has no *k*-solution then *G* has no *k*-solution.
- (4) If a $(k + 1)$ -solution *S* for G_{i+1} is given, then there is an FPT algorithm for parameter *k* that decides whether G_{i+1} has a *k*-solution (The compression step).

General Iterative Compression

For problems satisfying the properties of the previous slide, the following algorithm is an FPT-algorithm for parameter *k* that decides whether a *k*-solution exists for *G*:

The General Algorithm for Iterative Compression

Let S_1 *be a k-solution for* G_1 ; *For i* = 1 *to i* = $n - 1$ *do: Use* S_i to construct a $(k + 1)$ -solution S_{i+1} for G_{i+1} ; *if* COMP(*Gi*+1, *Si*+1, *k*) *is a* NO*-instance then return* NO*;* S_{i+1} := COMP(G_{i+1}, S_{i+1}, k); *return* YES*;*

k -GRAPH BIPARTISATION **Parameter:** *k*

モニマイボメイミメイロメ

Input: A graph *G* and an integer *k*. **Question:** Is there an $S \subset V(G)$ with $|S| \leq k$ such that $G \setminus S$ is bipartite?

- Standard example for the use of iterative compression.
- ■ Very hard to tackle without iterative compression.

Using the sequence $G_i := G[v_1, \ldots, v_i]$ for an arbitrary ordering $v_1, \ldots, v_{|V(G)|}$ of the vertices of *G* we obtain:

- (1) $S_1 := \emptyset$ is a bipartization of G_1 .
- (2) If S_i is a *k*-bipartization for G_i then $S_{i+1} := S_i \cup \{v_{i+1}\}$ is a $(k + 1)$ -bipartization for G_{i+1} .
- (3) If *Gⁱ* has no *k*-bipartization then *G* has no *k*-bipartization. (4) FPT-algorithm for compression version????

KERK (ERKERK) EN 1990

Hence, we only need to find an FPT-algorithm for the compression version of the problem!

Using the sequence $G_i := G[v_1, \ldots, v_i]$ for an arbitrary ordering $v_1, \ldots, v_{|V(G)|}$ of the vertices of *G* we obtain:

- (1) $S_1 := \emptyset$ is a bipartization of G_1 .
- (2) If S_i is a *k*-bipartization for G_i then $S_{i+1} := S_i \cup \{v_{i+1}\}$ is a $(k + 1)$ -bipartization for G_{i+1} .
- (3) If *Gⁱ* has no *k*-bipartization then *G* has no *k*-bipartization.

KORKAR KERKER E VOOR

(4) FPT-algorithm for compression version????

Hence, we only need to find an FPT-algorithm for the compression version of the problem!

k -GRAPH BIPARTISATION COMPRESSION **Parameter:** *k*

Input: A graph *G*, an integer *k*, and a $S \subset V(G)$ with $|S| \leq k + 1$ s.t. $G \setminus S$ is bipartite. **Question:** Is there an $S' \subseteq V(G)$ with $|S'| \leq k$ such that $G \setminus S'$ is bipartite?

Question

How to solve this problem?

Answer

- Guess the intersection $S_{K^{\text{FFP}}}$ of an optimal solution with S.
- **Then the vertices in** $S_{\text{REM}} := S \setminus S_{\text{KFFP}}$ **are not part of an** optimal solution.
- Guess a bipartition $\{A, B\}$ of the vertices in S_{RFM} (s.t. A and *B* are independent sets in *G*).
- **Then the graph** $G \setminus S_{KFFP}$ **has a small bipartization (that** uses no vertices from S_{REM}) if and only if the graph $G \setminus S$ has a small bipartization where the neighbors the neighbors of *A* in *G* and the neighbors of *B* in *G* are in different parts of the bipartization.

Hence, after guessing the at most 3*^k* partitions of *S* we are left with the following problem:

k -{*A*, *B*}-GRAPH BIPARTISATION **Parameter:** *k*

モニマイボメイミメイロメ

Input: A bipartite graph *G*, an integer *k*, and 2 independent vertex sets *A* and *B*. **Question:** Is there a $S \subseteq V(G)$ with $|S'| \leq k$ such that $G \setminus S$ has a bipartization such that the vertices in $A \setminus S'$ and $B \setminus S'$ are in different parts?

Question

How to solve this problem?

Answer

- Find an arbitrary bipartization $\{A_0, B_0\}$ of *G*.
- Then the vertices in $C := (A_0 \cap B) \cup (B_0 \cap A)$ have to change, while the vertices in $R := (A_0 \cap A) \cup (B_0 \cap B)$ should remain in the same part.
- Observation: There is a set *S* ⊆ *V*(*G*) such that *G* \ *S* has the required bipartization if and only if *S* separates *C* and *R*, i.e., no component of *G* \ *S* contains vertices from both *C* \ *S* and *R* \ *S*.

Observation

There is a set $S \subseteq V(G)$ such that $G \setminus S$ has the required bipartization if and only if *S* separates *C* and *R*, i.e., no component of $G \setminus S$ contains vertices from both $C \setminus S$ and $R \setminus S$.

Proof (sketch):

 \rightarrow In a bipartitation of $G \setminus S$ every vertex either changed parts or stays in the same part. Adjacent vertices have to do the same. Hence, every component of *G* \ *S* either changed or remained in the same part.

 \leftarrow Flip the parts for all vertices in components of $G \setminus S$ containing vertices from *C*. Hence, no vertex from *R* is flipped.

 $(1, 1, 2)$ and $(1, 1, 1, 1)$ and $(1, 1, 1, 1, 1)$

Using max-flow min-cut techniques we can check whether there is such a set *S* that separates *C* and *R* in time *O*(*k*|*E*(*G*)|).

Theorem

k -GRAPH BIPARTIZATION COMPRESSION can be solved in time $O(3^k n^{O(1)})$.

And using our iterative compression framework, we obtain:

Theorem

 k -GRAPH BIPARTIZATION can be solved in time $O(3^k n^{O(1)})$.

k -FEEDBACK VERTEX SET **Parameter:** *k*

Input: A graph *G* and an integer *k*. **Question:** Is there a set $S \subseteq V(G)$ with $|S| \leq k$ and $G \setminus S$ is a tree?

Using the sequence $G_i := G[v_1, \ldots, v_i]$ for an arbitrary ordering $v_1, \ldots, v_{|V(G)|}$ of the vertices of *G* we obtain:

KORKAR KERKER E VOOR

 (1) $S_1 := \emptyset$ is a k-FVS for G_1 .

- (2) If S_i is a *k*-FVS for G_i then S_{i+1} := S_i ∪ { v_{i+1} } is a $(k + 1)$ -FVS for G_{i+1} .
- (3) If *Gⁱ* has no *k*-FVS then *G* has no *k*-FVS.

(4) FPT-algorithm for compression version????

Hence, we only need to find an FPT-algorithm for the compression version of the problem!

Using the sequence $G_i := G[v_1, \ldots, v_i]$ for an arbitrary ordering $v_1, \ldots, v_{|V(G)|}$ of the vertices of *G* we obtain:

KORKAR KERKER E VOOR

 (1) $S_1 := \emptyset$ is a k-FVS for G_1 .

- (2) If S_i is a *k*-FVS for G_i then S_{i+1} := S_i ∪ { v_{i+1} } is a $(k + 1)$ -FVS for G_{i+1} .
- (3) If *Gⁱ* has no *k*-FVS then *G* has no *k*-FVS.
- (4) FPT-algorithm for compression version????

Hence, we only need to find an FPT-algorithm for the compression version of the problem!

k -FEEDBACK VERTEX SET COMPRESSION **Parameter:** *k*

Input: A graph *G*, an integer *k*, and a $k + 1$ -FVS of *G*. **Question:** Is there a *k*-FVS for *G*?

Question

How to solve this problem?

Answer

Again we guess the intersection of *S* with an optimal solution. There are 2^{k+1} such guesses and for each guess we have to solve an instance of *k* -FEEDBACK VERTEX SET DISJOINT defined below.

k -*S*-DISJOINT FEEDBACK VERTEX SET **Parameter:** |*S*|

← ロ ▶ ← 御 ▶ ← 君 ▶ ← 君 ▶ │ 君

Input: A graph *G* , and a FVS *S* of *G*. **Question:** Is there a |*S*| − 1-FVS for *G* that is disjoint from *S*?

k -*S*-DISJOINT FEEDBACK VERTEX SET **Parameter:** |*S*|

Input: A graph *G* , and a FVS *S* of *G*. **Question:** Is there a |*S*| − 1-FVS for *G* that is disjoint from *S*?

Goal

We want to solve the above problem using kernelization.

Degree 1 rule

If $v \in V(G) \setminus S$ has degree 1 in *G*. Then *G* has a *k*-*S*-DFVS iff $G \setminus \{v\}$ has a *k*-*S*-DFVS.

Degree 2 rule

If $v \in V(G) \setminus S$ has 2 neighbors *u*, *w* in *G* and $w \notin S$. Then either

- (1) $\{v, w\} \in E(G)$ and *G* has a *k*-*S*-DFVS iff $G \setminus \{w\}$ has a *k* − 1-*S*-DFVS, or
- $(2) \{v, w\} \notin E(G)$ and *G* has a *k*-*S*-DFVS iff *G*^{\prime} has a k -*S*-DFVS, where *G*['] is obtained by contracting $\{v, w\}$.

Hence, in a reduced instance (*G*, *S*, *k*) of *k*-DFVS, all vertices in *V*(*G*) \ *S* have degree at least 3, or only neighbors in *S*.

◆ロト→個ト→重ト→重ト→重

Goal

Let (*G*, *S*, *k*) be a reduced *k*-*S*-DFVS instance and suppose a *k*-*S*-DFVS *S* ⁰ exists. We want to prove an upper bound on |*V*(*G*)|.

- Let $T := G \setminus S$. Then T is a forest.
	- Let H be the vertices in T with degree at least 3 in T .
	- Let *L* be the vertices in *T* with degree 1 in *T*.
	- Let *R* be the vertices in *T* with degree 2 in *T*.
	- Let *Z* be the vertices in *T* with degree 0 in *T*.

Let $H' := H \cap S'$, $L' := L \cap S'$, $R' := R \cap S'$ and $Z' := Z \cap S'$.

モニマイボメイミメイロメ

Because
$$
|E(T)| = \frac{1}{2} \sum_{v \in V(T)} d_T(v)
$$
, we have:

$$
|E(T)| = \frac{1}{2}|L| + |R| + \frac{1}{2} \sum_{v \in H} d_T(v)
$$

Furthermore, the number of edges removed by deleting $S' = H' \cup L' \cup R'$ is at most:

$$
|L'|+2|R'|+\sum_{v\in H'}d_T(v)
$$

Proposition

Let *T* be a forest with *c* components, where the set *H* (*L*) contains the vertices of degree at least 3 (exactly 1), $\text{respectively. Then } \sum_{v \in H} (d_{\mathcal{T}}(v) - 2) = |L| - 2c.$

モニマイボメイミメイロメ

Combining the previous (in)equalities, we obtain:

$$
|E(T \setminus S')| \geq
$$
\n
$$
\frac{1}{2}|L| + |R| + \frac{1}{2} \sum_{v \in H} d_T(v) - |L'| - 2|R'| - \sum_{v \in H'} d_T(v) \geq
$$
\n
$$
\sum_{v \in H} (d_T(v) - 1) + |R| - |L'| - 2|R'| - \sum_{v \in H'} d_T(v) =
$$
\n
$$
\sum_{v \in H \setminus H'} d_T(v) - |H| + |R| - |L'| - 2|R'| \geq
$$
\n
$$
3|H \setminus H'| - |H| + |R| - |L'| - 2|R'| =
$$
\n
$$
2|H| - 3|H'| + |R| - 2|R'| - |L'|
$$

Because *G* is reduced the vertices in *L*, *R*, and *Z* have at least 2, 1, or 2 neighbors in *S*, respectively. Hence:

$$
|E(G \setminus S')| \ge |E(T \setminus S')| + 2|L \setminus L'| + |R \setminus R'| + 2|Z \setminus Z'| \ge 2|H| - 3|H'| + |R| - 2|R'| - |L'| + 2|L| - 2|L'| + |R| - |R'| + 2|Z| - 2|Z'| = 2|H| - 3|H'| + 2|R| - 3|R'| + 2|L| - 3|L'| + 2|Z| - 2|Z'|
$$

Because S' is FVS $G \setminus S'$ is a forest and hence:

 $|E(G \setminus S')| \le |V(G \setminus S')|-1 = |S|+|H|+|L|+|R|+|Z|-|S'|-1$

KO KKOKKEXKEX E 1990

Combining these bounds gives:

$$
2|H| - 3|H'| + 2|R| - 3|R'| + 2|L| - 3|L'| + 2|Z| - 2|Z'| \le
$$

\n
$$
|E(G \setminus S')| \le
$$

\n
$$
|S| + |H| + |L| + |R| + |Z| - |S'| - 1 \leftrightarrow
$$

\n
$$
|H| + |L| + |R| + |Z| \le 2|S'| + |S| - 1 \leftrightarrow
$$

\n
$$
|V(G) \setminus S| \le 3k
$$

Hence, the reduced graph *G* has at most $4k + 1$ vertices!

Theorem

Let *G* be a graph that has a FVS *S* with $|S| = k + 1$. Then it can be decided whether *G* has a *k*-*S*-DFVS in time $n^{O(1)} + O^*(6.75^k)$.

Algorithm

- (1) If *G*[*S*] contains a cycle, return NO.
- (2) Apply the degree 1 and 2 reduction rules until a reduced instance (G', S, k') is obtained (This needs time $n^{O(1)}$).
- (3) If $|V(G') \setminus S| > 3k$, return No.
- (4) test all subsets $S' \subseteq V(G) \setminus S$ with $|S'| = k'$. If one of them is a FVS return YES, otherwise return NO.

Algorithm

- (1) If *G*[*S*] contains a cycle, return NO.
- (2) Apply the degree 1 and 2 reduction rules until a reduced instance (G', S, k') is obtained (This needs time $n^{O(1)}$).
- (3) If $|V(G') \setminus S| > 3k$, return No.
- (4) test all subsets $S' \subseteq V(G) \setminus S$ with $|S'| = k'$. If one of them is a FVS return YES, otherwise return NO.

◆ロト ◆ 伊 ト ◆ 君 ト ◆ 君 ト ◇ 君

The correctness of the algorithm follows from the previous slides. What about the complexity bound?

Theorem (Stirling's approximation)

$$
\lim_{n\to\infty}\frac{n!}{\sqrt{2\pi n}(\frac{n}{e})^n}=1
$$

Corollary

ⁿ! [∈] Θ([√] *n*(*n e*) *n*)

Recall

 means: there is *c* **and** *N* **such that for every** $n > N$ it holds that $f(n) \ge cg(n)$.

 $f(n) ∈ Θ(g(n))$ means: $f(n) ∈ O(g(n))$ and $f(n) ∈ Ω(g(n))$.

Clearly, if $f_1(n) \in \Theta(g_1(n))$ and $f_2(n) \in \Theta(g_2(n))$, then $f_1(n)f_2(n) \in \Theta(g_1(n)g_2(n))$ and $f_1(n)/f_2(n) \in \Theta(g_1(n)/g_2(n))$ $f_1(n)/f_2(n) \in \Theta(g_1(n)/g_2(n))$ $f_1(n)/f_2(n) \in \Theta(g_1(n)/g_2(n))$ [.](#page-0-0)

Applying the reduction rules takes time $n^{O(1)}$. Let the reduced instance G' have n' vertices not in S. If $n' \leq 3k'$ (and $k \geq 2$), then the number of sets tested is:

$$
\binom{n'}{k'} \leq \binom{3k'}{k'} \leq \binom{3k}{k} = \frac{(3k)!}{(2k)!k!} \in \\ \Theta(\frac{\sqrt{3k}(3k)^{3k}e^{-3k}}{\sqrt{2k}(2k)^{2k}e^{-2k}\sqrt{k}k^ke^{-k}})) \in \\ O(\frac{3^{3k}}{2^{2k}}) = O(\frac{3^3}{2^2})^k) = O(6.75^k)
$$

Testing whether a set S' is a FVS can be done in polynomial time *k O*(1) , hence the total time complexity is $n^{O(1)} + O(6.75^k)k^{O(1)}.$

On the last slide we had a function $f(k) \in \Theta(6.75^k k^c)$ for some constant *c*.

- Observe that: $f(k) \in O((6.75 + \epsilon)^k)$, but $f(k) \notin O(6.75^k)$.
- So the polynomial factor k^c seems irrelevant, but still we may not just omit it using the *O*-notation.
- ■ To get around this annoying situation the *O*^{*} notation is defined less precise as the *O*-notation and one can state $6.75^{k}k^{c} \in O^{*}(6.75^{k}).$

Hence, the overall complexity for the compression problem is $n^{O(1)}+O^*(6.75^k).$ Because we have to make $O(2^k)$ guesses to reduce to the compression problem, we obtain:

Theorem

 k -FVS can be decided in time $n^{O(1)}O^*(13.5^k)$.

