Fixed-Parameter Algorithms, IA166

Sebastian Ordyniak

Faculty of Informatics Masaryk University Brno

Spring Semester 2013

Lerative Compression

Directed Feedback Vertex Set

Directed Feedback Vertex Set

Literative Compression

L Directed Feedback Vertex Set

Iterative Compression

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト の (

Example: Directed Feedback Vertex Set

k-Directed Feedback Vertex Set

Parameter: *k*

Input: A digraph *D* and an integer *k*. **Question:** Is there a set $S \subseteq V(D)$ with $|S| \le k$ and $D \setminus S$ is a DAG, i.e., a directed acyclic graph?

Example: Directed Feedback Vertex Set

Using the sequence $D_i := D[v_1, ..., v_i]$ for an arbitrary ordering $v_1, ..., v_{|V(D)|}$ of the vertices of *D* we obtain:

(1)
$$S_1 := \emptyset$$
 is a *k*-DFVS for D_1 .

- (2) If S_i is a *k*-DFVS for D_i then $S_{i+1} := S_i \cup \{v_{i+1}\}$ is a (k+1)-DFVS for D_{i+1} .
- (3) If D_i has no k-DFVS then D has no k-DFVS.
- (4) FPT-algorithm for compression version????

Example: Directed Feedback Vertex Set

Using the sequence $D_i := D[v_1, ..., v_i]$ for an arbitrary ordering $v_1, ..., v_{|V(D)|}$ of the vertices of *D* we obtain:

(1)
$$S_1 := \emptyset$$
 is a *k*-DFVS for D_1 .

- (2) If S_i is a *k*-DFVS for D_i then $S_{i+1} := S_i \cup \{v_{i+1}\}$ is a (k+1)-DFVS for D_{i+1} .
- (3) If D_i has no k-DFVS then D has no k-DFVS.
- (4) FPT-algorithm for compression version????

Hence, we only need to find an FPT-algorithm for the compression version of the problem!

Example: Directed Feedback Vertex Set

Answer

Again we guess the intersection of S with an optimal solution. There are 2^{k+1} such guesses and for each guess we have to solve an instance of k-S-DISJOINT DIRECTED FEEDBACK VERTEX SET defined below.

k-S-DISJOINT DIRECTED FEEDBACK VERTEX SET **Parameter:** |*S*|

Input: A digraph *D*, and a DFVS *S* of *D*. **Question:** Is there a (|S| - 1)-DFVS for *D* that is disjoint from *S*?

Example: Directed Feedback Vertex Set

k-S-DISJOINT FEEDBACK VERTEX SET

Parameter: |S|

Input: A graph *D*, and a FVS *S* of *D*. **Question:** Is there a (|S| - 1)-FVS for *D* that is disjoint from *S*?

Problem

We need a novel approach here as the kernelization approach used for k-S-DFVS fails!

Example: Directed Feedback Vertex Set

Topological Ordering

The vertices of a DAG, i.e., directed acyclic graph, can be ordered v_1, \ldots, v_n such that for every $1 \le i < j \le n$, there is no arc from the vertex v_j to the vertex v_i . Such an ordering is often called a topological ordering and can be found in polynomial time.

Example: Directed Feedback Vertex Set

Reduction of *k*-*S*-DDFVS to the *k*-SKEW SEPARATOR PROBLEM.

MINIMUM SKEW SEPARATOR (K-MSS)

Parameter: k

Input: Digraph *G*, vertex sequences $S = (s_1, ..., s_l)$ and $T = (t_1, ..., t_l)$ where all s_i have in-degree 0 and all t_i have out-degree 0, and an integer *k*. **Question:** Does *G* have a skew-separator (SS) *C* of size at

most *k*, i.e., is there a $C \subseteq V(G) \setminus (S \cup T)$ such that $|C| \le k$ and for all $j \le i$, t_i is not reachable from s_i in $G \setminus C$?

Example: Directed Feedback Vertex Set

Definition

Let (D, S, k) be an instance of k-S-DDFVS and let

 $\sigma : \{1, \dots, k+1\} \to S$ be a bijective function (a numbering of *S*). We define the graph $D(\sigma)$ to be the graph obtained from

- $D \setminus S$ and for every $1 \le i \le k + 1$:
 - **adding the vertices** s_i and t_i and
 - for every out-neighbor v of $\sigma(i)$ adding an arc (s_i, v) , and

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト ・ 国

for every in-neighbor v of $\sigma(i)$ adding an arc (v, t_i)

Example: Directed Feedback Vertex Set

Lemma

 $S' \subseteq V \setminus S$ is a *k*-*S*-DDFVS iff there is a numbering σ of *S* such that *S'* is a *k*-Skew-separator for $D(\sigma)$.

Proof:

 (\rightarrow) Let S' be a k-S-DDFVS for D. Then $D \setminus S'$ is acyclic and admits a topological ordering v_1, \ldots, v_m .

All vertices of *S* are part of $D \setminus S'$. Hence, we can use the ordering to define a numbering σ of *S* such that for all $j < i, \sigma(j)$ is not reachable from $\sigma(i)$.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example: Directed Feedback Vertex Set

Lemma

 $S' \subseteq V \setminus S$ is a *k*-*S*-DDFVS iff there is a numbering σ of *S* such that *S'* is a *k*-Skew-separator for $D(\sigma)$.

Proof, continued:

Consider $D(\sigma)$ and suppose that $D(\sigma) \setminus S'$ contains an (s_i, t_j) -path for $j \leq i$.

If j < i this gives a $(\sigma(i), \sigma(j))$ -path in $D \setminus S'$ contradicting the choice of σ .

If j = i, this gives a cycle in $G \setminus S'$ (containing $\sigma(i)$), a contradiction.

Hence, S' is a Skew-Separator for $D(\sigma)$.

Example: Directed Feedback Vertex Set

Lemma

 $S' \subseteq V \setminus S$ is a *k*-*S*-DDFVS iff there is a numbering σ of *S* such that *S'* is a *k*-Skew-separator for $D(\sigma)$.

Proof, continued:

(\leftarrow) Let *S'* be a *k*-Skew-Separator for *D*(σ) and suppose that $G \setminus S'$ contains a cycle *C*.

Because *S* is a DFVS for *D*, *C* contains at least one vertex from *S*.

If *C* contains exactly one vertex $\sigma(i)$ from *S*, then *C* corresponds to an (s_i, t_i) -path in $D(\sigma) \setminus S'$, a contradiction.

Example: Directed Feedback Vertex Set

Lemma

 $S' \subseteq V \setminus S$ is a *k*-*S*-DDFVS iff there is a numbering σ of *S* such that *S'* is a *k*-Skew-separator for $D(\sigma)$.

Proof, continued:

If *C* contains $l \ge 2$ vertices from *S*, then let $\sigma(i_0), \sigma(i_1), \ldots, \sigma(i_{l-1})$ be the order of those vertices in *C*. Note that i_x and i_y are distinct when $x \ne y$. Hence, there is an *x* such that $i_x > i_{x+1 \mod l}$. Let $i = i_x$ and $j = i_{x+1 \mod l}$.

The subpath of *C* from $\sigma(i)$ to $\sigma(j)$ corresponds to an (s_i, t_j) -path in $D(\sigma) \setminus S'$ with j < i, a contradiction.

Example: Directed Feedback Vertex Set

Recall:

k-MINIMUM SKEW SEPARATOR can be solved in time $4^k n^{O(1)}$.

Corollary

k-*S*-DDFVS can be solved in time $(k + 1)!4^k n^{O(1)}$.

Hence, the combined parameter function for *k*-DFVS is:

$$\frac{\sum_{l=0}^{k} \binom{k+1}{l+1} (l+1)! 4^{l}}{\sum_{l=0}^{k} \frac{(k+1)!}{(k-l)!} 4^{l} < (k+1)! (k+1) 4^{k}}$$

Theorem

k-*S*-DFVS can be solved in time $O^*(4^k(k+1)!)$.

