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Planar Graphs

Introduction

Definitions and Basic Facts

Let G be a graph.
A drawing of G in the plane R2 is a mapping Π that maps all
vertices v ∈ V (G) to distinct points Π(v) in R2, and edges
{u, v} ∈ E(G) to simple curces between Π(u) and Π(v).
A planar embedding of G is a drawing of G without edge
crossings, i.e., the curces corresponding to the 2 edges
can only have a common endpoints of the edges in
common.
A plane graph (G,Π) consists of G and a planar
embedding Π of G.
G is planar if it admits a planar embedding.
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Introduction

Definitions and Basic Facts

Let G be a graph.
Let Π be a planar embedding of G. The faces of Π are the
maximal connected subsets of R2 that contain no images
of Π, i.e., the regions of R2 \ Π(V ∪ E).
A plane graph has 1 unbounded face. This is called the
outer face.

Proposition

Let (G,Π) be a connected plane graph such that every edge
lies on a cycle of G. Then the boundaries of faces are (images
of) cycles, and (the image of) every edge is contained in the
boundary of two faces.
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Introduction

Definitions and Basic Facts

Let G be a graph.

Euler’s formula

Let (G,Π) be a non-empty connected plane graph with n
vertices, m edges and f faces. Then n −m + f = 2.
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Introduction

Definitions and Basic Facts

Let (G,Π) be a plane graph. A triangulation of (G,Π) is a plane
graph (G′,Π′) with V (G) = V (G′), E(G) ⊆ E(G′), and Π′

extends Π such that
G′ is connected and every edge of G′ lies on a cycle, and
all faces of (G′,Π′) are triangles.

Proposition

If |V (G)| ≥ 3, a triangulation of (G,Π) exists and can be
constructed in time O(|E(G)|).
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Proposition

Let G be a planar graph with |V (G)| ≥ 3. Then
|E(G)| ≤ 3|V (G)| − 6.

Proof:

Let n := |V (G)| and m = |E(G)|. Let Π be a planar embedding
of G with f faces. By the previous proposition it suffices to show
the statement in case (G,Π) is a triangulation.
In this case all faces are triangles and every edge is part of 2
faces, hence 3f = 2m.
Then Euler’s formula gives m = n + f − 2 = n + 2

3m − 2 and
m = 3n − 6.
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Corollary

Every planar graph has a vertex of degree at most 5.

Theorem

In linear time it can be checked whether a given graph is planar
and if so a planar embedding can be computed.

Four Color Theorem

Every planar graph admits a proper 4-vertex coloring.
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Algorithms on Planar Graphs

k -PLANAR INDEPENDET SET

k -PLANAR INDEPENDET SET Parameter: k

Input: A planar graph G and an integer k .
Question: Does G have an independent set of size at least k?

For the non-planar version of the problem, FPT algorithms are
unlikely to exists (W[1]-hard), but for the planar version FPT
algorithms are easily found.
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Algorithms on Planar Graphs

k -PLANAR INDEPENDET SET

Trivial FPT algorithms for k -PLANAR INDEPENDENT SET:

Kernelization

Because of the Four Color Theorem G is 4-colorable. Hence, G
has an independent set of size at least |V (G)|/4.

Hence, without any preprocessing, a 4k -vertex kernel is
obtained, which is actually also a 4k -edge kernel because
|E(G)| ≤ 3|V (G)| − 6.
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Algorithms on Planar Graphs

k -PLANAR INDEPENDET SET

Trivial FPT algorithms for k -PLANAR INDEPENDENT SET:

Branching

Consider a vertex v of degree at most 5. A maximal
independent set contains v or 1 of its neighbors.

Branching on this choice yields a search tree with at most 6k

leaves.
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Algorithms on Planar Graphs

Treewidth of Planar Graphs

Some Definitions:

The length of a (v1, vk )-path v1, . . . , vk is k − 1, and the
distance between 2 vertices u and v is the minimum length
over all (u, v)-paths, or∞ is no such path exists.
The diameter of a graph is the maximum distance between
any two vertices.
The height of a rooted tree is the maximum distance from
the root to a leaf.
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Algorithms on Planar Graphs

Treewidth of Planar Graphs

Theorem

Let G be a planar graph for which a rooted spanning tree T of
height l is given. Then a tree decomposition of G of width at
most 3l exists, and can be constructed in polynomial time.

Corollary

A planar graph with diameter D has a tree decomposition of
width at most 3D.

Proof: Construct a breadth-first search tree starting at arbitrary
root vertex.
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Algorithms on Planar Graphs

Treewidth of Planar Graphs

Theorem

Let G be a planar graph for which a rooted spanning tree T of
height l is given. Then a tree decomposition of G of width at
most 3l exists, and can be constructed in polynomial time.

Proof:

Let (G,Π) be a planar embedding of G and T be the spanning
tree of height l with root r . W.l.o.g. we can assume that G is
triangulated.

We may assume that |V (G)| ≥ 4 (the case |V (G)| ≤ 3 is trivial).
Hence, 2 faces share at most 1 edge.
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Algorithms on Planar Graphs

Treewidth of Planar Graphs

Proof, continued:

Let F be the set of faces of (G,Π). Let T ∗ be the graph with
vertex set V (T ∗) := F and {f ,g} ∈ E(T ∗) iff the boundaries of
the faces f and g share an edge in E(G) \ E(T ).

For f ∈ F , define the bag Xf to contain the 3 vertices u, v , w on
the boundary of f , and all of their ancestors with respect to T
and r .

We will prove that (T ∗,X ) is the desired tree decomposition of
G.

Lemma

(T ∗,X ) is a tree decomposition of G of width at most 3l .
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Algorithms on Planar Graphs

Treewidth of Planar Graphs

Claim

T ∗ contains no cycles.

Proof:

A cyle C := f0, . . . , fk , f0 of T ∗ corresponds to a simple closed
curve C in the plane through the faces f1, . . . , fk that crosses
the edge shared by fi and fi+1 mod k exactly once for all i and
crosses no other edges.

By the Jordan Curve Theorem C divides the plane into 2
regions, which both contain at least 1 vertex.
Because C crosses no edges of T , this contradicts that T is a
spanning tree.
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Algorithms on Planar Graphs

Treewidth of Planar Graphs

Claim

For every face f , |Xf | ≤ 3l + 1.

Proof:

Xf contains the 3 vertices on its boundary and all of its
ancestors in T .
Because T has height l , every vertex has at most l ancestors.
The root r is shared a shared ancestor of the 3 vertices. Hence,
|Xf | ≤ 3 + 3l − 2 = 3l + 1.
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Algorithms on Planar Graphs

Treewidth of Planar Graphs

Claim

For every edge {u, v} ∈ E(G) there is an f ∈ V (T ∗) with
{u, v} ∈ Xf .

Proof:

This is trivial because every edge lies on the boundary of at
leasy one face.
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Algorithms on Planar Graphs

Treewidth of Planar Graphs

Claim

For every v ∈ V (G), the subgraph of T ∗ induced by X−1(v) is
non-empty and connected.

Proof:

By induction over the height of the subtree rooted at v .
Induction Start: If v is a leaf of T , then v ∈ Xf iff v is incident
with f . Because v is a leaf, the faces incident with v induce a
path in T ∗.
Induction Step: Suppose v is not a leaf and v 6= r . Let
v0, . . . , vd−1 be the neighbors of v in clockwise order around v
such that v0 is the parent of v in T .
Let f0, . . . , fd−1 be the faces incident with v such that fi is
incident with vi and vi+1 mod d .
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Algorithms on Planar Graphs

Treewidth of Planar Graphs

Proof, continued:

Let f0, . . . , fd−1 be the faces incident with v such that fi is
incident with vi and vi+1 mod d .
Let vi1 , . . . , vik be the children of v in T . Then v is contained in
all bags Xfi and in all bags that also contain a child vij , but in no
other bags, i.e.:

X−1(v) = {f0, . . . , fd−1} ∪ X−1(vi1) ∪ · · · ∪ X−1(vik )

By induction X−1(vij ) is connected for every j .
If the edge shared by fi and fi+1 is not in T , then they are
adjactent in T ∗. Otherwise, they share an edge {v , vij}, and are
both part of the connected set X−1(vij ).
This shows that X−1(v) is connected in T ∗. If v is the root of T
the argument is similar.
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Algorithms on Planar Graphs

Treewidth of Planar Graphs

Because the root r is part of every bag Xf and X−1(r) induces
a connected subgraph of T ∗ by the previous claim it follows that
T ∗ is also connected.
Summary:

T ∗ contains no cycles and is connected.
For every f , |Xf | ≤ 3l + 1.
Every edge {u, v} ∈ E(G) is covered by some Xf .
For every v ∈ V (G) the subgraph of T ∗ induced by X−1(v)
is connected.

Hence, (T ∗,X ) is the desired tree decomposition of G.
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Algorithms on Planar Graphs

k -PLANAR DOMINATING SET

k -PLANAR DOMINATING SET Parameter: k

Input: A planar graph G and an integer k .
Question: Does G have a dominating set S of cardinality at
most k?

Theorem

k -PLANAR DOMINATING SET is fixed parameter tractable.
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Algorithms on Planar Graphs

k -PLANAR DOMINATING SET

Theorem

k -PLANAR DOMINATING SET is fixed parameter tractable.

Proof:

W.l.o.g. we can assume that G is connected. Compute the
diameter d of G in polynomial time (e.g. using BFS trees). If
d ≥ 3k then return NO. This is correct because a vertex can
dominate at most 3 vertices of any shortest path. Otherwise,
planarly embed the graph, construct a BFS tree of height at
most 3k − 1, and use it to construct a tree decomposition of
width at most 3(3k − 1) (all can be done in polynomial time).
Use dynamic programming to find the correct answer.
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Algorithms on Planar Graphs

Summary and Outlook

When restricted to planar graphs, FPT algorithms exist for
problems that are unlikely to admit FPT algorithms for
general graphs (e.g. k -INDEPENDENT SET and
k -DOMINATING SET).
One essential property for this is that for planar graphs, the
treewidth is bounded by a function of the diameter (they
have bounded local treewidth). There are many more
graph classes with bounded local treewidth, and this can
be used to construct FPT algorithms for them.
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Locally Bounded Treewidth

Definition

Let C be a class of graphs. C has locally bounded treewidth if
there is a function f : N→ N such that for every G ∈ C,
v ∈ V (G), and natural number r it holds that
tw(G[NG

r [v ]]) ≤ f (r).

Every class of graphs of bounded treewidth also has
locally bounded treewidth.
We have already seen that planar graphs have locally
bounded treewidth.
There are many more important graph classes that have
locally bounded treewidth such as graph classes of
bounded degree, graph classes of bounded genus, etc..
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Locally Bounded Treewidth

A Meta-Theorem for FO-Logic and Locally Bounded
Treewidth

Theorem

Let C be a class of graphs with locally bounded treewidth and Φ
be an FO-formula of length k . Then it can be decided in time
f (k)O(n2) whether G |= Φ for every G ∈ C.

FO-definable problems include problems such as
k -DOMINATING SET and k -INDEPENDENT SET

it does not include MSO-definable problems such as
COLORING and HAMILTONICITY, etc.
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Locally Bounded Treewidth

A Meta-Theorem for FO-Logic and Locally Bounded
Treewidth

To sketch a proof of the Meta-Theorem we need the following
Notions and Facts:
Let r be a natural number.

We denote by d(x , y) > r the FO-formula such that
G |= d(v ,u) > r iff the vertices v and u have distance at
least r in G.
We say a FO-formula Φ(x) is r -local iff the validity of Φ(x)
only depends on the r -neighborhood of x , i.e., if for all
graphs G and vertices v ∈ V (G) it holds that G |= Φ(v) iff
G[NG

r [v ]] |= Φ(v).
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Locally Bounded Treewidth

A Meta-Theorem for FO-Logic and Locally Bounded
Treewidth

Gaifman’s Theorem

Every FO-sentence is equivalent to a Boolean combination of
sentences of the form:

∃x1, . . . xl(
∧

1≤i<j≤l d(xi , xj) > 2r ∧
∧

1≤i≤l Φ(xi)

with l , r ≥ 1 and r -local Φ(x). Furthermore, such a boolean
combination can be found in an effective way.

The above theorem is sometimes also called the Locality
Theorem for FO-Logic.
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Locally Bounded Treewidth

A Meta-Theorem for FO-Logic and Locally Bounded
Treewidth

Let G be a graph, S ⊆ V (G) and l , r ∈ N. Then S is
(l , r)-scattered if there exist v1, . . . , vl ∈ S such that
dG(vi , vj) > r for every 1 ≤ i < j ≤ l .

Lemma

Let C be a class of graphs of locally bounded treewidth. Then
there is an algorithm that, given G ∈ C, a set S ⊆ V (G) and
l , r ∈ N, decides if S is (l , r)-scattered in time g(l , r)|V (G)|.
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Locally Bounded Treewidth

A Meta-Theorem for FO-Logic and Locally Bounded
Treewidth

Lemma

Let C be a class of graphs of locally bounded treewidth. Then
there is an algorithm that, given G ∈ C, a set S ⊆ V (G) and
l , r ∈ N, decides if S is (l , r)-scattered in time g(l , r)|V (G)|.

Proof:

We start by computing a maximal set T ⊆ S such dG(ti , tj) > r
for every 1 ≤ i < j ≤ |T |. Clearly, such a set T can be easily
found by a simple greedy algorithm. If |T | ≥ l then we are done.
So suppose |T | < l . Because of the maximality of T it holds
that S ⊆ NG

r [T ] and S is (l , r)-scattered in G iff S is
(l , r)-scattered in NG

2r [T ].
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Locally Bounded Treewidth

A Meta-Theorem for FO-Logic and Locally Bounded
Treewidth

Lemma

Let C be a class of graphs of locally bounded treewidth. Then
there is an algorithm that, given G ∈ C, a set S ⊆ V (G) and
l , r ∈ N, decides if S is (l , r)-scattered in time g(l , r)|V (G)|.

Proof:

We now show that the treewidth of G[NG
2r [T ])] is bounded by

some function that depends only on l and r . Using Courcelle’s
Theorem this implies the lemma. To see this note that the
diameter of every component of NG

2r [T ] is bounded by (4r + 1)l
and hence every such component is contained in the (4r + 1)l
neighborhood of any vertex in that component.
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Locally Bounded Treewidth

A Meta-Theorem for FO-Logic and Locally Bounded
Treewidth

Theorem

Let C be a class of graphs with locally bounded treewidth and Φ
be an FO-formula of length k . Then it can be decided in time
f (k)O(n2) whether G |= Φ for every G ∈ C.

Proof:

Let Φ be the given FO-formula of length at most k and G ∈ C.
Because of Gaifman’s Theorem we can assume that Φ has the
form:

Φ := ∃x1, . . . xl(
∧

1≤i<j≤l d(xi , xj) > 2r ∧
∧

1≤i≤l φ(xi)

with l , r ≥ 1 and r -local φ(x).
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A Meta-Theorem for FO-Logic and Locally Bounded
Treewidth

Theorem

Let C be a class of graphs with locally bounded treewidth and Φ
be an FO-formula of length k . Then it can be decided in time
f (k)O(n2) whether G |= Φ for every G ∈ C.

Proof, continued:

Because of Courcelle’s Theorem and the fact that C has
bounded local treewidth can decide whether G |= φ(v) in time
f (k)|V (G)| for every v ∈ V (G). Consequently, we can compute
the set { v ∈ V (G) : G |= φ(v) } in time f (|φ|)|V (G)|2. Now,
G |= φ iff S is (l , r)-scattered. Using the previous Lemma it
follows that we can decide whether S is (l , r)-scattered in time
g(k)|V (G)|. This shows the theorem.
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Layer decompositions and Applications

Outerplanar Graphs and Layers

Let G be a plane graph.
G is outerplanar or 1-outerplanar if every vertex is incident
with the outer face.
G is k -outerplanar for k ≥ 2 if deleting all vertices that are
incident with the outer face yields a (k − 1)-outerplanar
graph.
Layer Decomposition: The vertices of a k -outerplanar
graph can be partitioned into k layers L1, . . . ,Lk as follows:
L1 consists of the vertices incident with the outer face, and
Li consists of the vertices incident with the outer face after
deleting the vertex sets L1, . . . ,Li−1.
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Outerplanar Graphs and Layers

Proposition (1)

Let L1, . . . ,Lk be a layer decomposition of a k -outerplanar
graph (G,Π), and let L = Li ∪ · · · ∪ Li+j . A tree decomposition of
G[L] of width 3j + 3 can be found in polynomial time.

Proof:

Add a single vertex r drawn in the outer face of G[L] and
connect it to every vertex in Li while maintaining a plane graph.
Add edges to ensure that every vertex in layer Lx has a
neighbor in layer Lx−1 while maintaining a plane graph. Call the
resulting plane graph G′. Then a BFS tree of G′ rooted at r has
height j + 1, hence tw(G) ≤ tw(G′) ≤ 3j + 3.
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Outerplanar Graphs and Layers

Proposition (2)

Let S1, . . . ,Sl be disjoint vertex sets of G and S := S1 ∪ · · · ∪ Sl
such that:

tw(G \ S) ≤ t ,
Every component of G \ S only has neighbors in Si and
Si+1 for some i ,
there are no edges between Si and Sj if |j − i | ≥ 2, and
|Si | ≤ x for every i .

Then tw(G) ≤ t + 2x .

Sets S1, . . . ,Sl that satisfy the above properties are called
t-x-separators.
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Outerplanar Graphs and Layers

Proof:

Construct a tree decomposition as follows: Start with a path on
vertices v1, . . . , vl−1 and let X (vi) := Si ∪ Si+1.
For every component C of G \ S that only has neighbors in Si
and Si+1, add a tree decomposition of width t of C, add
Si ∪Si+1 to all bags, and connect this tree to vi with an arbitrary
edge. This yields a tree decomposition of width t + 2x .
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Outerplanar Graphs and Layers

Theorem

A planar graph G on n vertices has tw(G) < 4.9
√

n.

Proof:

Consider a planar embedding of G and let k be its
outerplanarity. Construct a layer decomposition L1, . . . ,Lk .

Let α =
√

3
2 < 1.225. Construct t-x-separators S1, . . . ,Sl with

t = 3
α

√
n and x = α

√
n as follows:
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Outerplanar Graphs and Layers

Theorem

A planar graph G on n vertices has tw(G) < 4.9
√

n.

Proof:

Consider the layers L1, . . . ,Lk in order. Whenever |Li | ≤ x , this
Li is chosen as the next Sj .
Suppose b layers are not selected as separator. Then
n ≥ bx = bα

√
n, so b ≤

√
n/α.

Therefore, tw(G \ S) ≤ 3b ≤ 3
α

√
n by Proposition 1.

Then by Proposition 2,
tw(G) ≤ t + 2x ≤ 3

α

√
n + 2α

√
n = 4α

√
n < 4.9

√
n.
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Some simple Applications

The following algorithm decides in time 2O(
√

k)nO(1) whether a
planar graph G on n vertices admits a k -vertex cover:
(1) In polynomial time reduce (G, k) to an equivalent (planar!)

instance (G′, k ′) with n = |V (G′)| ≤ 2k (See the
kernelization lecture and note that the reduction rules
preserve planarity).

(2) Use the previous theorem to construct a tree
decomposition of G′ of width w ∈ O(

√
n) = O(

√
k).

(3) Use dynamic programming to decide whether G′ has a
k ′-VC in time 2O(

√
k)nO(1) (see lecture on dynamic

programming over tree decompositions).
Similarly, a 2O(

√
k)nO(1) algorithm can be given for k -PLANAR

INDEPENDENT SET because we have a 4k -vertex kernel (on
planar graphs) and a 2wnO(1) dynamic programming algorithm
from a previous lecture.
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Advanced Applications

Recall that we had a 5k -vertex kernel for k -MAX LEAVES

SPANNING TREE which used planarity preserving reduction
rules.

Question

Can a 2O(
√

k)nO(1) algorithm for k -PLANAR MAX LEAVES

SPANNING TREE be given?

Answer

Yes, but in this case a 2O(w)nO(1) dynamic programming
algorithm is far from trivial: such algorithms make heavy use of
planarity!
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Advanced Applications

Question

Can this approach be used to give a fast FPT algorithm for
planar problems without linear kernels?

Answer

Yes, by constructing the separators S1, . . . ,Sl more smartly,
and bounding their size in terms of an optimal solution.
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Bidimensionality and Applications

Grid Minors and Treewidth – General Graphs

Recall: Gk×k denotes the k × k grid, which is a planar
graph with tree width k .
Recall: Graph H is a minor of graph G if H can be obtained
from G by vertex deletions, edge deletions, and edge
constractions. In that case tw(H) ≤ tw(G).
Hence, if G has a Gk×k as a minor, then tw(G) ≥ k .

Theorem

Every graph of tree width at least w(k) := 202k5
has Gk×k as a

minor.
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Grid Minors and Treewidth – General Graphs

Theorem

Let G be a graph that has a Gk×k as a minor. Then G has a
k2-path.
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An FPT-algorithm for k -PATH

Decide whether tw(G) ≤ w(
√

k) and if so construct a tree
decomposition.
Use the tree decompostion to decide whether G has a
k -path using an f (w(

√
k))nO(1) dynamic programming

algorithm. (which exists due to Courcelle’s Theorem).
Otherwise, i.e., if tw(G) ≥ w(

√
k) then return YES (This is

correct by the previous theorem).

This is by far the most unpractical and slowest FPT algorithm
that we have seen yet!
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Bidimensionality – the General Framework

The above scheme suggests that in order to prove that a
problem admits an FPT algorithm, we only need to show:
(1) For graphs with large grid minors the answer is trivially

YES or NO.
(2) The problem can be expressed in MSOL or otherwise

solved efficiently on graphs of bounded treewidth.

For many problems Properites (1) and (2) can be easily
verified (e.g., k -MLST, k -FVS, k -VC).
Not surprisingly, Property (1) above does not hold for
problems such as k -INDEPENDENT SET or k -DOMINATING

SET.
Next: For planar and related graph classes the above
scheme gives fast and practical FPT algorithm even for
k -INDEPENDENT SET and k -DOMINATING SET.
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Bidimensionality for Planar Graphs

Theorem

Every planar graph of treewidth at least 6k − 5 has a Gk×k as a
minor.

Theorem

Let G be a planar graph. In polynomial time, a tree
decomposition of G of width at most 3

2 tw(G) can be
constructed, i.e, treewidth is constant factor approximable on
planar graphs.
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Bidimensionality for Planar Graphs

Suppose that for a parameterized planar graph problem the
following properties hold:
(A) for graphs with Gc×c minor the answer is trivially YES or

NO, where c ∈ O(
√

k), and
(B) When a tree decomposition of width w is given, the

problem can be solved in time 2O(w)nO(1).
Then the following algorithm is a 2O(

√
k)nO(1) FPT algorithm:

(1) In polynomial time, compute a 3/2-approximate tree
decomposition (T ,X ) of G.

(2) If the width of (T ,X ) is at least O(
√

k), then return the
trivial answer.

(3) If the width of (T ,X ) is at most O(
√

k), then solve the
problem by dynamic programming.

Problems that satisfy Property (A) are called bidimensional.
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k -VERTEX COVER is bidimensional

Proposition

If a graph G contains a Gk×k as a minor, then G has no vertex
cover smaller than k(k − 1)/2.

Theorem

k -PLANAR VERTEX COVER can be solved in time
O(2O(

√
k)nO(1).
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Contraction Bidimensionality

Some definitions:
Graph H is a contraction minor of G if it can be obtained
from G by only using edge contractions.
A connected plane graph H is a partially triangulated
k × k -grid if E(Gk×k ) ⊆ E(H) ⊆ E(G) holds for some
triangulation G of Gk×k .
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Contraction Bidimensionality

Proposition

If a planar graph G has Gk×k as a minor, then it has a partially
triangulated k × k -grid as a contraction minor.

Proof:

Apply the contractions that obtain Gk×k from G but not the
deletions. The result is a planar graph H with V (H) = V (Gk×k )
and E(Gk×k ) ⊆ E(H). H can be triangulated by adding more
edges. The statement follows.
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Bidimensionality and Applications

k -PLANAR DOMINATING SET IS BIDIMENSIONAL

Proposition

If a planar graph G contains Gk×k as a minor, then G has no
dominating set of size less than (k − 2)2/9.

Proof:

By the previous proposition, G has a partially triangulated
k × k -grid H as a contraction minor. Let the vertices of Gk×k be
labeled vij with i , j ∈ {1, . . . , k}.
The vertices vij of H with 2 ≤ i ≤ k − 1 and 2 ≤ j ≤ k − 1 are
called internal vertices of H.
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k -PLANAR DOMINATING SET IS BIDIMENSIONAL

Proposition

If a planar graph G contains Gk×k as a minor, then G has no
dominating set of size less than (k − 2)2/9.

Proof, continued:

Let S be a minimum dominating set of H. Any vertex of S
dominates at most 9 internal vertices of H, hence
|S| ≥ (k − 1)2/9.
If G has a dominating set S, and G′ is obtained from G by
contracting {u, v} into w , then: (1) if u, v /∈ S, then S is a
dominating set of G′, and (2) if u ∈ S or v ∈ S, then
S − u − v + w is a dominating set of G′.
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k -PLANAR DOMINATING SET IS BIDIMENSIONAL

Theorem

k -PLANAR DOMINATING SET can be solved in time
O(2O(

√
k)nO(1).
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Planar Graphs, Layers, and Grid Minors – Summary

Many problems that (probably) do not allow FPT
algorithms in general do admit FPT algorithms when
restricted to planar graphs (e.g. k -INDEPENDENT SET,
k -DOMINATING SET)
2 general methods to obtain (fast) FPT algorithms for
problems of planar graphs: layer decompositions and
bidimensionality/grid minors
The layer decomposition methods tends to be faster and
easier to implement.
The bidimensionality/grid minor method is stronger, and
gives easier proofs.
Even for general graphs considering grid minors is useful
for proving that an FPT algorithm exists.
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Planar Graphs, Layers, and Grid Minors – Summary

To obtain subexponential FPT algorithms for planar
graphs, we need:
(A) either a linear kernel (layers) or a bidimensionality proof

(grid minors).
(B) A dynamic programming algorithm with parameter function

2O(tw(G)), and

Bidimensionality gives fast FPT algorithms for many other
graph classes that are closed under taking minors!
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