Fixed-Parameter Algorithms, IA166

Sebastian Ordyniak

Faculty of Informatics Masaryk University Brno

Spring Semester 2013

[Introduction](#page-1-0)

- **[Algorithms on Planar Graphs](#page-9-0)**
- **[Locally Bounded Treewidth](#page-26-0)**
- **[Layer decompositions and Applications](#page-36-0)**
- [Bidimensionality and Applications](#page-46-0) $\mathcal{L}_{\mathcal{A}}$

 L [Introduction](#page-2-0)

イロトメタトメ 君 トメ君 トー者

Let *G* be a graph.

- **A** drawing of *G* in the plane \mathbb{R}^2 is a mapping Π that maps all vertices $v \in V(G)$ to distinct points $\Pi(v)$ in $\mathbb{R}^2,$ and edges $\{u, v\} \in E(G)$ to simple curces between $\Pi(u)$ and $\Pi(v)$.
- A planar embedding of *G* is a drawing of *G* without edge crossings, i.e., the curces corresponding to the 2 edges can only have a common endpoints of the edges in common.
- A plane graph (*G*, Π) consists of *G* and a planar embedding Π of *G*.
- ■ *G* is planar if it admits a planar embedding.

Let *G* be a graph.

- Let Π be a planar embedding of *G*. The faces of Π are the maximal connected subsets of \mathbb{R}^2 that contain no images of Π, i.e., the regions of $\mathbb{R}^2 \setminus \Pi(V \cup E)$.
- A plane graph has 1 unbounded face. This is called the outer face.

Proposition

Let (*G*, Π) be a connected plane graph such that every edge lies on a cycle of *G*. Then the boundaries of faces are (images of) cycles, and (the image of) every edge is contained in the boundary of two faces.

Let *G* be a graph.

Euler's formula

Let (*G*, Π) be a non-empty connected plane graph with *n* vertices, *m* edges and *f* faces. Then $n - m + f = 2$.

Let (*G*, Π) be a plane graph. A triangulation of (*G*, Π) is a plane $\mathsf{graph}\ (G',\Pi')$ with $\mathsf{V}(G)=\mathsf{V}(G'),\, \mathsf{E}(G)\subseteq \mathsf{E}(G'),$ and Π' extends Π such that

- *G*' is connected and every edge of *G*' lies on a cycle, and
- all faces of (G', Π') are triangles.

Proposition

If $|V(G)| \geq 3$, a triangulation of (G, Π) exists and can be constructed in time *O*(|*E*(*G*)|).

Proposition

Let *G* be a planar graph with $|V(G)| > 3$. Then $|E(G)| \leq 3|V(G)| - 6.$

Proof:

Let $n := |V(G)|$ and $m = |E(G)|$. Let Π be a planar embedding of *G* with *f* faces. By the previous proposition it suffices to show the statement in case (*G*, Π) is a triangulation.

In this case all faces are triangles and every edge is part of 2 faces, hence $3f = 2m$.

Then Euler's formula gives $m = n + f - 2 = n + \frac{2}{3}m - 2$ and $m = 3n - 6$.

Corollary

Every planar graph has a vertex of degree at most 5.

Theorem

In linear time it can be checked whether a given graph is planar and if so a planar embedding can be computed.

Four Color Theorem

Every planar graph admits a proper 4-vertex coloring.

[Algorithms on Planar Graphs](#page-9-0)

1 [Planar Graphs](#page-1-0)

[Introduction](#page-1-0)

■ [Algorithms on Planar Graphs](#page-9-0)

- **[Locally Bounded Treewidth](#page-26-0)**
- **[Layer decompositions and Applications](#page-36-0)**
- [Bidimensionality and Applications](#page-46-0)**T**

[Algorithms on Planar Graphs](#page-10-0)

k -PLANAR INDEPENDET SET

k -PLANAR INDEPENDET SET **Parameter:** *k*

Input: A planar graph *G* and an integer *k*. **Question:** Does *G* have an independent set of size at least *k*?

For the non-planar version of the problem, FPT algorithms are unlikely to exists (W[1]-hard), but for the planar version FPT algorithms are easily found.

k -PLANAR INDEPENDET SET

Trivial FPT algorithms for *k* -PLANAR INDEPENDENT SET:

Kernelization

Because of the Four Color Theorem *G* is 4-colorable. Hence, *G* has an independent set of size at least |*V*(*G*)|/4.

Hence, without any preprocessing, a 4*k*-vertex kernel is obtained, which is actually also a 4*k*-edge kernel because $|E(G)|$ ≤ 3| $V(G)|$ − 6.

[Algorithms on Planar Graphs](#page-12-0)

k -PLANAR INDEPENDET SET

Trivial FPT algorithms for *k* -PLANAR INDEPENDENT SET:

Branching

Consider a vertex *v* of degree at most 5. A maximal independent set contains *v* or 1 of its neighbors.

Branching on this choice yields a search tree with at most 6*^k* leaves.

Treewidth of Planar Graphs

Some Definitions:

- The length of a (v_1, v_k) -path v_1, \ldots, v_k is $k 1$, and the distance between 2 vertices *u* and *v* is the minimum length over all (u, v) -paths, or ∞ is no such path exists.
- The diameter of a graph is the maximum distance between any two vertices.
- ■ The height of a rooted tree is the maximum distance from the root to a leaf.

Treewidth of Planar Graphs

Theorem

Let *G* be a planar graph for which a rooted spanning tree *T* of height *l* is given. Then a tree decomposition of *G* of width at most 3*l* exists, and can be constructed in polynomial time.

Corollary

A planar graph with diameter *D* has a tree decomposition of width at most 3*D*.

Proof: Construct a breadth-first search tree starting at arbitrary root vertex.

 $(1, 1, 2)$ and $(1, 1, 1, 1)$ and $(1, 1, 1, 1, 1)$

 \equiv

Treewidth of Planar Graphs

Theorem

Let *G* be a planar graph for which a rooted spanning tree *T* of height *l* is given. Then a tree decomposition of *G* of width at most 3*l* exists, and can be constructed in polynomial time.

Proof:

Let (*G*, Π) be a planar embedding of *G* and *T* be the spanning tree of height *l* with root *r*. W.l.o.g. we can assume that *G* is triangulated.

We may assume that $|V(G)| \geq 4$ (the case $|V(G)| \leq 3$ is trivial). Hence, 2 faces share at most 1 edge.

Treewidth of Planar Graphs

Proof, continued:

Let *F* be the set of faces of (*G*, Π). Let *T* [∗] be the graph with vertex set $V(T^*) := F$ and $\{f,g\} \in E(T^*)$ iff the boundaries of the faces *f* and *g* share an edge in $E(G) \setminus E(T)$.

For $f \in F$, define the bag X_f to contain the 3 vertices u, v, w on the boundary of *f*, and all of their ancestors with respect to *T* and *r*.

We will prove that (T^*, X) is the desired tree decomposition of *G*.

Lemma

(*T* ∗ , *X*) is a tree decomposition of *G* of width at most 3*l*.

 \Rightarrow

K ロ ト K 何 ト K ヨ ト K ヨ ト

Treewidth of Planar Graphs

Claim

T [∗] contains no cycles.

Proof:

A cyle $C:=f_0,\ldots,f_k,f_0$ of \mathcal{T}^* corresponds to a simple closed curve *C* in the plane through the faces f_1, \ldots, f_k that crosses the edge shared by f_i and $f_{i+1 \mod k}$ exactly once for all *i* and crosses no other edges.

By the Jordan Curve Theorem *C* divides the plane into 2 regions, which both contain at least 1 vertex. Because *C* crosses no edges of *T*, this contradicts that *T* is a spanning tree.

L[Algorithms on Planar Graphs](#page-18-0)

Treewidth of Planar Graphs

Claim

For every face $f, |X_f| \leq 3l + 1$.

Proof:

X^f contains the 3 vertices on its boundary and all of its ancestors in *T*.

Because *T* has height *l*, every vertex has at most *l* ancestors. The root *r* is shared a shared ancestor of the 3 vertices. Hence, $|X_f| \leq 3 + 3I - 2 = 3I + 1.$

[Algorithms on Planar Graphs](#page-19-0)

Treewidth of Planar Graphs

Claim

For every edge $\{u, v\} \in E(G)$ there is an $f \in V(T^*)$ with $\{u, v\} \in X_f$.

Proof:

This is trivial because every edge lies on the boundary of at leasy one face.

Treewidth of Planar Graphs

Claim

For every $v \in V(G)$, the subgraph of \mathcal{T}^* induced by $X^{-1}(v)$ is non-empty and connected.

Proof:

By induction over the height of the subtree rooted at *v*. **Induction Start:** If *v* is a leaf of *T*, then $v \in X_f$ iff *v* is incident with *f*. Because *v* is a leaf, the faces incident with *v* induce a path in T^* . **Induction Step:** Suppose *v* is not a leaf and $v \neq r$. Let

*v*₀, . . . , *v*_{*d*−1} be the neighbors of *v* in clockwise order around *v* such that v_0 is the parent of *v* in *T*.

Let *f*0, . . . , *fd*−¹ be the faces incident with *v* such that *fⁱ* is incident with v_i and v_{i+1} mod d.

Treewidth of Planar Graphs

Proof, continued:

Let *f*0, . . . , *fd*−¹ be the faces incident with *v* such that *fⁱ* is incident with v_i and v_{i+1} mod *d*.

Let v_{i_1},\ldots,v_{i_k} be the children of v in $\mathcal T.$ Then v is contained in all bags $X_{\mathit{f}_{i}}$ and in all bags that also contain a child v_{i_j} , but in no other bags, i.e.:

$$
X^{-1}(v) = \{f_0, \ldots, f_{d-1}\} \cup X^{-1}(v_{i_1}) \cup \cdots \cup X^{-1}(v_{i_k})
$$

By induction $X^{-1}({\mathsf{v}}_{\mathsf{i}\mathsf{j}})$ is connected for every *j*. If the edge shared by f_i and f_{i+1} is not in T , then they are adjactent in \mathcal{T}^* . Otherwise, they share an edge $\{\pmb{\nu},\pmb{\nu}_{i_j}\},$ and are both part of the connected set $X^{-1}(\mathsf{v}_{\mathsf{i}_j}).$ This shows that $X^{-1}(v)$ is connected in T^* . If v is the root of *T* the argument is similar.

Treewidth of Planar Graphs

Because the root *r* is part of every bag X_f and $X^{-1}(r)$ induces a connected subgraph of *T* [∗] by the previous claim it follows that *T* ∗ is also connected.

Summary:

- *T* [∗] contains no cycles and is connected.
- For every $f, |X_f| \leq 3l + 1$.
- Every edge $\{u, v\} \in E(G)$ is covered by some X_f .
- For every $v \in V(G)$ the subgraph of T^* induced by $X^{-1}(v)$ is connected.

П

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 〈君 〉

Hence, (*T* ∗ , *X*) is the desired tree decomposition of *G*.

[Algorithms on Planar Graphs](#page-23-0)

k -PLANAR DOMINATING SET

k -PLANAR DOMINATING SET **Parameter:** *k*

Input: A planar graph *G* and an integer *k*. **Question:** Does *G* have a dominating set *S* of cardinality at most *k*?

Theorem

k -PLANAR DOMINATING SET is fixed parameter tractable.

k -PLANAR DOMINATING SET

Theorem

k -PLANAR DOMINATING SET is fixed parameter tractable.

Proof:

W.l.o.g. we can assume that *G* is connected. Compute the diameter *d* of *G* in polynomial time (e.g. using BFS trees). If *d* ≥ 3*k* then return No. This is correct because a vertex can dominate at most 3 vertices of any shortest path. Otherwise, planarly embed the graph, construct a BFS tree of height at most 3*k* − 1, and use it to construct a tree decomposition of width at most 3(3*k* − 1) (all can be done in polynomial time). Use dynamic programming to find the correct answer.

П

Summary and Outlook

- When restricted to planar graphs, FPT algorithms exist for problems that are unlikely to admit FPT algorithms for general graphs (e.g. *k* -INDEPENDENT SET and *k* -DOMINATING SET).
- ■ One essential property for this is that for planar graphs, the treewidth is bounded by a function of the diameter (they have bounded local treewidth). There are many more graph classes with bounded local treewidth, and this can be used to construct FPT algorithms for them.

[Locally Bounded Treewidth](#page-26-0)

Outline

1 [Planar Graphs](#page-1-0)

- **[Introduction](#page-1-0)**
- **[Algorithms on Planar Graphs](#page-9-0)**

[Locally Bounded Treewidth](#page-26-0)

- **[Layer decompositions and Applications](#page-36-0)**
- [Bidimensionality and Applications](#page-46-0)**T**

[Locally Bounded Treewidth](#page-27-0)

Locally Bounded Treewidth

Definition

Let C be a class of graphs. C has locally bounded treewidth if there is a function $f : \mathbb{N} \to \mathbb{N}$ such that for every $G \in \mathcal{C}$, $v \in V(G)$, and natural number *r* it holds that $\mathsf{tw}(G[N_r^G[v]]) \leq f(r).$

- Every class of graphs of bounded treewidth also has locally bounded treewidth.
- We have already seen that planar graphs have locally bounded treewidth.
- \blacksquare There are many more important graph classes that have locally bounded treewidth such as graph classes of bounded degree, graph classes of bounded genus, etc..

K ロ X × 伊 X × ミ X × ミ X → ミ ミ

[Locally Bounded Treewidth](#page-28-0)

A Meta-Theorem for FO-Logic and Locally Bounded **Treewidth**

Theorem

Let C be a class of graphs with locally bounded treewidth and Φ be an FO-formula of length *k*. Then it can be decided in time $f(k)O(n^2)$ whether $G \models \Phi$ for every $G \in \mathcal{C}.$

- FO-definable problems include problems such as *k* -DOMINATING SET and *k* -INDEPENDENT SET
- \blacksquare it does not include MSO-definable problems such as COLORING and HAMILTONICITY, etc.

A Meta-Theorem for FO-Logic and Locally Bounded **Treewidth**

To sketch a proof of the Meta-Theorem we need the following Notions and Facts:

Let *r* be a natural number.

- We denote by $d(x, y) > r$ the FO-formula such that $G \models d(v, u) > r$ iff the vertices v and u have distance at least *r* in *G*.
- \blacksquare We say a FO-formula $Φ(x)$ is *r*-local iff the validity of $Φ(x)$ only depends on the *r*-neighborhood of *x*, i.e., if for all graphs *G* and vertices $v \in V(G)$ it holds that $G \models \Phi(v)$ iff $G[N_r^G[v]] \models \Phi(v)$.

◆ロト ◆ 伊 ト ◆ 君 ト ◆ 君 ト ◇ 君

[Locally Bounded Treewidth](#page-30-0)

A Meta-Theorem for FO-Logic and Locally Bounded **Treewidth**

Gaifman's Theorem

Every FO-sentence is equivalent to a Boolean combination of sentences of the form:

$$
\exists x_1,\ldots x_l(\bigwedge_{1\leq i2r\wedge \bigwedge_{1\leq i\leq l}\Phi(x_i)
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 〈君 〉

with $l, r \ge 1$ and r -local $\Phi(x)$. Furthermore, such a boolean combination can be found in an effective way.

The above theorem is sometimes also called the Locality Theorem for FO-Logic.

[Locally Bounded Treewidth](#page-31-0)

A Meta-Theorem for FO-Logic and Locally Bounded **Treewidth**

Let *G* be a graph, $S \subseteq V(G)$ and *l*, $r \in \mathbb{N}$. Then *S* is (l, r) -scattered if there exist $v_1, \ldots, v_l \in S$ such that $d_G(v_i, v_j) > r$ for every $1 \leq i < j \leq l$.

Lemma

Let $\mathcal C$ be a class of graphs of locally bounded treewidth. Then there is an algorithm that, given $G \in \mathcal{C}$, a set $S \subseteq V(G)$ and *l*, *r* ∈ ℕ, decides if *S* is (l, r) -scattered in time $g(l, r)$ |*V*(*G*)|.

[Locally Bounded Treewidth](#page-32-0)

A Meta-Theorem for FO-Logic and Locally Bounded **Treewidth**

Lemma

Let $\mathcal C$ be a class of graphs of locally bounded treewidth. Then there is an algorithm that, given $G \in \mathcal{C}$, a set $S \subseteq V(G)$ and *l*, *r* ∈ ℕ, decides if *S* is (l, r) -scattered in time $g(l, r)$ |*V*(*G*)|.

Proof:

We start by computing a maximal set $\mathcal{T} \subseteq \mathcal{S}$ such $d_G(t_i,t_j) > t$ for every $1 \le i \le j \le |T|$. Clearly, such a set T can be easily found by a simple greedy algorithm. If $|T| > l$ then we are done. So suppose |*T*| < *l*. Because of the maximality of *T* it holds that $S \subseteq N_r^G[T]$ and S is (l,r) -scattered in G iff S is $(1, r)$ -scattered in $N_{2r}^G[T]$. **CONTRACT ASK**

[Locally Bounded Treewidth](#page-33-0)

A Meta-Theorem for FO-Logic and Locally Bounded **Treewidth**

Lemma

Let $\mathcal C$ be a class of graphs of locally bounded treewidth. Then there is an algorithm that, given $G \in \mathcal{C}$, a set $S \subseteq V(G)$ and *l*, *r* ∈ N, decides if *S* is (l, r) -scattered in time $g(l, r)$ |*V*(*G*)|.

Proof:

We now show that the treewidth of $G[N_{2r}^G[T])$] is bounded by some function that depends only on *l* and *r*. Using Courcelle's Theorem this implies the lemma. To see this note that the diameter of every component of $\mathcal{N}_{2r}^G[\mathcal{T}]$ is bounded by $(4r+1)$ *l* and hence every such component is contained in the $(4r + 1)$ *l* neighborhood of any vertex in that component.

 $($ ロ እ { f } { \mathcal{L} } { \mathcal{L} } { \mathcal{L} }

[Locally Bounded Treewidth](#page-34-0)

A Meta-Theorem for FO-Logic and Locally Bounded **Treewidth**

Theorem

Let C be a class of graphs with locally bounded treewidth and Φ be an FO-formula of length *k*. Then it can be decided in time $f(k)O(n^2)$ whether $G \models \Phi$ for every $G \in \mathcal{C}.$

Proof:

Let Φ be the given FO-formula of length at most *k* and $G \in \mathcal{C}$. Because of Gaifman's Theorem we can assume that Φ has the form:

$$
\Phi:=\exists x_1,\ldots x_l(\bigwedge_{1\leq i2r\wedge \bigwedge_{1\leq i\leq l}\phi(x_i)
$$

with $l, r > 1$ and *r*-local $\phi(x)$.

[Locally Bounded Treewidth](#page-35-0)

A Meta-Theorem for FO-Logic and Locally Bounded **Treewidth**

Theorem

Let C be a class of graphs with locally bounded treewidth and Φ be an FO-formula of length *k*. Then it can be decided in time $f(k)O(n^2)$ whether $G \models \Phi$ for every $G \in \mathcal{C}.$

Proof, continued:

Because of Courcelle's Theorem and the fact that $\mathcal C$ has bounded local treewidth can decide whether $G \models \phi(v)$ in time *f*(*k*)| $V(G)$ | for every $v \in V(G)$. Consequently, we can compute the set { $v \in V(G)$: $G \models \phi(v)$ } in time $f(|\phi|) |V(G)|^2.$ Now, $G \models \phi$ iff *S* is (I, r) -scattered. Using the previous Lemma it follows that we can decide whether *S* is (*l*, *r*)-scattered in time *g*(*k*)|*V*(*G*)|. This shows the theorem.

[Layer decompositions and Applications](#page-36-0)

1 [Planar Graphs](#page-1-0)

- **[Introduction](#page-1-0)**
- **[Algorithms on Planar Graphs](#page-9-0)**
- **[Locally Bounded Treewidth](#page-26-0)**
- **[Layer decompositions and Applications](#page-36-0)**
- [Bidimensionality and Applications](#page-46-0) $\mathcal{L}_{\mathcal{A}}$

Outerplanar Graphs and Layers

Let *G* be a plane graph.

- *G* is outerplanar or 1-outerplanar if every vertex is incident with the outer face.
- *G* is *k*-outerplanar for $k \geq 2$ if deleting all vertices that are incident with the outer face yields a $(k - 1)$ -outerplanar graph.
- ■ Layer Decomposition: The vertices of a *k*-outerplanar graph can be partitioned into *k* layers L_1, \ldots, L_k as follows: *L*¹ consists of the vertices incident with the outer face, and *Lⁱ* consists of the vertices incident with the outer face after deleting the vertex sets L_1, \ldots, L_{i-1} .

Outerplanar Graphs and Layers

Proposition (1)

Let L_1, \ldots, L_k be a layer decomposition of a *k*-outerplanar graph (*G*, Π), and let *L* = *Lⁱ* ∪ · · · ∪ *Li*+*^j* . A tree decomposition of $G[L]$ of width $3j + 3$ can be found in polynomial time.

Proof:

Add a single vertex *r* drawn in the outer face of *G*[*L*] and connect it to every vertex in *Lⁱ* while maintaining a plane graph. Add edges to ensure that every vertex in layer *L^x* has a neighbor in layer *Lx*−¹ while maintaining a plane graph. Call the resulting plane graph G'. Then a BFS tree of G' rooted at *r* has height $j + 1$, hence tw $(G) \le$ tw $(G') \leq 3j + 3$.

Outerplanar Graphs and Layers

Proposition (2)

Let S_1, \ldots, S_l be disjoint vertex sets of *G* and $S := S_1 \cup \cdots \cup S_l$ such that:

- tw $(G \setminus S) \leq t$,
- Every component of $G \setminus S$ only has neighbors in S_i and S_{i+1} for some *i*,
- there are no edges between \mathcal{S}_i and \mathcal{S}_j if $|j-i|\geq 2,$ and
- $|S_i| \leq x$ for every *i*.

Then tw(G) $\leq t + 2x$.

Sets S_1, \ldots, S_l that satisfy the above properties are called *t*-*x*-separators.

Outerplanar Graphs and Layers

Proof:

Construct a tree decomposition as follows: Start with a path on vertices v_1, \ldots, v_{l-1} and let $X(v_i) := S_i \cup S_{i+1}$. For every component *C* of $G \setminus S$ that only has neighbors in S_i and *Si*+1, add a tree decomposition of width *t* of *C*, add $S_i \cup S_{i+1}$ to all bags, and connect this tree to *v_i* with an arbitrary edge. This yields a tree decomposition of width *t* + 2*x*.

Outerplanar Graphs and Layers

Theorem

A planar graph *G* on *n* vertices has tw(*G*) < 4.9 √ *n*.

Proof:

Consider a planar embedding of *G* and let *k* be its outerplanarity. Construct a layer decomposition *L*1, . . . , *L^k* . Let $\alpha=\sqrt{\frac{3}{2}}<$ 1.225. Construct *t*-*x*-separators $\mathcal{S}_1,\ldots,\mathcal{S}_l$ with $t=\frac{3}{\alpha}$ √ *n* and $x = \alpha$ √ *n* as follows:

Outerplanar Graphs and Layers

Theorem

A planar graph *G* on *n* vertices has tw(*G*) < 4.9 √ *n*.

Proof:

Consider the layers L_1, \ldots, L_k in order. Whenever $|L_i| \leq x$, this *Li* is chosen as the next *S^j* . Suppose *b* layers are not selected as separator. Then $n \ge bx = b\alpha\sqrt{n},$ so $b \le \sqrt{n}/\alpha$. Therefore, tw $(G \setminus S) \leq 3b \leq \frac{3}{\alpha}$ √ *n* by Proposition 1. Then by Proposition 2, tw $(G) \leq t + 2x \leq \frac{3}{\alpha}$ √ \overline{n} + 2 α √ $\overline{n} = 4\alpha$ √ \overline{n} $<$ 4.9 $\,$ √ *n*.

 $(1 + \epsilon)$, $(1 + \epsilon)$, $(1 + \epsilon)$

 \equiv

Some simple Applications

The following algorithm decides in time $2^{O(\sqrt{k})}n^{O(1)}$ whether a planar graph *G* on *n* vertices admits a *k*-vertex cover:

- (1) In polynomial time reduce (*G*, *k*) to an equivalent (planar!) $\mathsf{instance}\ (G',k')$ with $n = |\mathcal{V}(G')| \leq 2k$ (See the kernelization lecture and note that the reduction rules preserve planarity).
- (2) Use the previous theorem to construct a tree decomposition of G' of width $w\in O(\sqrt{n})=O(\sqrt{n})$ √ *k*).
- (3) Use dynamic programming to decide whether G' has a *k* 0 -VC in time 2*O*(*^k*)*n O*(1) (see lecture on dynamic programming over tree decompositions).

Similarly, a 2*O*(√ *^k*)*n ^O*(1) algorithm can be given for *k* -PLANAR INDEPENDENT SET because we have a 4*k*-vertex kernel (on planar graphs) and a 2*^w n ^O*(1) dynamic programming algorithm from a previous lecture.**モニマイボメイミメイロメ**

Advanced Applications

Recall that we had a 5*k*-vertex kernel for *k* -MAX LEAVES SPANNING TREE which used planarity preserving reduction rules.

Question

Can a 2*O*(√ *^k*)*n ^O*(1) algorithm for *k* -PLANAR MAX LEAVES SPANNING TREE be given?

Answer

Yes, but in this case a 2^{O(w)}n^{O(1)} dynamic programming algorithm is far from trivial: such algorithms make heavy use of planarity!

 \equiv

 $(1, 1, 2)$ and $(1, 1, 1, 1)$ and $(1, 1, 1, 1, 1)$

 L [Layer decompositions and Applications](#page-45-0)

Advanced Applications

Question

Can this approach be used to give a fast FPT algorithm for planar problems without linear kernels?

Answer

Yes, by constructing the separators S_1, \ldots, S_l more smartly, and bounding their size in terms of an optimal solution.

L[Bidimensionality and Applications](#page-46-0)

1 [Planar Graphs](#page-1-0)

- **[Introduction](#page-1-0)**
- **[Algorithms on Planar Graphs](#page-9-0)**
- **[Locally Bounded Treewidth](#page-26-0)**
- **[Layer decompositions and Applications](#page-36-0)**
- **[Bidimensionality and Applications](#page-46-0)**

Grid Minors and Treewidth – General Graphs

- Recall: $G_{k\times k}$ denotes the $k\times k$ grid, which is a planar graph with tree width *k*.
- Recall: Graph *H* is a minor of graph *G* if *H* can be obtained from *G* by vertex deletions, edge deletions, and edge constractions. In that case $tw(H) < tw(G)$.
- Hence, if *G* has a $G_{k\times k}$ as a minor, then tw(*G*) > *k*.

Theorem

Every graph of tree width at least $w(k) := 20^{2k^5}$ has $G_{k \times k}$ as a minor.

L[Bidimensionality and Applications](#page-48-0)

Grid Minors and Treewidth – General Graphs

Theorem

Let *G* be a graph that has a $G_{k \times k}$ as a minor. Then *G* has a *k* 2 -path.

An FPT-algorithm for *k* -PATH

- Decide whether tw $(G) \leq w(G)$ √ *k*) and if so construct a tree decomposition.
- Use the tree decompostion to decide whether *G* has a √ *k*-path using an $f(w(\sqrt{k}))n^{O(1)}$ dynamic programming algorithm. (which exists due to Courcelle's Theorem). √
- Otherwise, i.e., if tw $(G) \geq w(G)$ *k*) then return YES (This is correct by the previous theorem).

← ロ ▶ ← 御 ▶ ← 君 ▶ ← 君 ▶ │ 君

This is by far the most unpractical and slowest FPT algorithm that we have seen yet!

Bidimensionality – the General Framework

The above scheme suggests that in order to prove that a problem admits an FPT algorithm, we only need to show:

- (1) For graphs with large grid minors the answer is trivially YES or NO.
- (2) The problem can be expressed in MSOL or otherwise solved efficiently on graphs of bounded treewidth.
	- For many problems Properites (1) and (2) can be easily verified (e.g., *k*-MLST, *k*-FVS, *k*-VC).
	- Not surprisingly, Property (1) above does not hold for problems such as *k* -INDEPENDENT SET or *k* -DOMINATING SET.
	- Next: For planar and related graph classes the above scheme gives fast and practical FPT algorithm even for *k* -INDEPENDENT SET and *k* -DOMINAT[IN](#page-49-0)G [S](#page-49-0)[ET](#page-50-0)[.](#page-51-0)

Bidimensionality for Planar Graphs

Theorem

Every planar graph of treewidth at least 6*k* − 5 has a *Gk*×*^k* as a minor.

Theorem

Let *G* be a planar graph. In polynomial time, a tree decomposition of G of width at most $\frac{3}{2}$ tw (G) can be constructed, i.e, treewidth is constant factor approximable on planar graphs.

Bidimensionality for Planar Graphs

Suppose that for a parameterized planar graph problem the following properties hold:

- (A) for graphs with $G_{c \times c}$ minor the answer is trivially YES or No, where $c\in O(\sqrt{k}),$ and
- (B) When a tree decomposition of width *w* is given, the problem can be solved in time 2*O*(*w*)*n O*(1) .

Then the following algorithm is a $2^{O(\sqrt{k})}n^{O(1)}$ FPT algorithm:

- (1) In polynomial time, compute a 3/2-approximate tree decomposition (*T*, *X*) of *G*. √
- (2) If the width of (*T*, *X*) is at least *O*(*k*), then return the trivial answer. √
- (3) If the width of (T, X) is at most $O($ *k*), then solve the problem by dynamic programming.

Problems that satisfy Property (A) are call[ed](#page-51-0) [bi](#page-53-0)[di](#page-51-0)[m](#page-52-0)[e](#page-53-0)[n](#page-45-0)[s](#page-46-0)[io](#page-60-0)[n](#page-0-0)[a](#page-1-0)[l.](#page-60-0)

k -VERTEX COVER is bidimensional

Proposition

If a graph *G* contains a $G_{k\times k}$ as a minor, then *G* has no vertex cover smaller than $k(k-1)/2$.

Theorem

k -PLANAR VERTEX COVER can be solved in time √ $O(2^{O(\sqrt{k})}n^{O(1)}.$

Contraction Bidimensionality

Some definitions:

- Graph *H* is a contraction minor of *G* if it can be obtained from *G* by only using edge contractions.
- ■ A connected plane graph *H* is a partially triangulated *k* × *k*-grid if $E(G_{k×k})$ ⊆ $E(H)$ ⊆ $E(G)$ holds for some triangulation *G* of $G_{k \times k}$.

Contraction Bidimensionality

Proposition

If a planar graph *G* has *Gk*×*^k* as a minor, then it has a partially triangulated $k \times k$ -grid as a contraction minor.

Proof:

Apply the contractions that obtain *Gk*×*^k* from *G* but not the deletions. The result is a planar graph *H* with $V(H) = V(G_{k \times k})$ and $E(G_{k\times k}) \subseteq E(H)$. *H* can be triangulated by adding more edges. The statement follows.

k -PLANAR DOMINATING SET IS BIDIMENSIONAL

Proposition

If a planar graph *G* contains $G_{k \times k}$ as a minor, then *G* has no dominating set of size less than $(k-2)^2/9.$

Proof:

By the previous proposition, *G* has a partially triangulated $k \times k$ -grid *H* as a contraction minor. Let the vertices of $G_{k \times k}$ be labeled v_{ii} with $i, j \in \{1, \ldots, k\}$. The vertices v_{ii} of *H* with $2 \le i \le k - 1$ and $2 \le j \le k - 1$ are called internal vertices of *H*.

◆ロト→ 伊ト→ 君ト→ 君ト → 君

k -PLANAR DOMINATING SET IS BIDIMENSIONAL

Proposition

If a planar graph *G* contains $G_{k\times k}$ as a minor, then *G* has no dominating set of size less than $(k-2)^2/9.$

Proof, continued:

Let *S* be a minimum dominating set of *H*. Any vertex of *S* dominates at most 9 internal vertices of *H*, hence $|S|$ ≥ $(k − 1)^2/9$. If *G* has a dominating set *S*, and *G'* is obtained from *G* by contracting $\{u, v\}$ into *w*, then: (1) if $u, v \notin S$, then *S* is a dominating set of G' , and (2) if $u \in S$ or $v \in S$, then $S - u - v + w$ is a dominating set of G' .

L[Bidimensionality and Applications](#page-58-0)

k -PLANAR DOMINATING SET IS BIDIMENSIONAL

Theorem

k -PLANAR DOMINATING SET can be solved in time $O(2^{O(\sqrt{k})}n^{O(1)}.$

Planar Graphs, Layers, and Grid Minors – Summary

- Many problems that (probably) do not allow FPT algorithms in general do admit FPT algorithms when restricted to planar graphs (e.g. *k* -INDEPENDENT SET, *k* -DOMINATING SET)
- 2 general methods to obtain (fast) FPT algorithms for problems of planar graphs: *layer decompositions* and *bidimensionality/grid minors*
- The layer decomposition methods tends to be faster and easier to implement.
- \blacksquare The bidimensionality/grid minor method is stronger, and gives easier proofs.
- Even for general graphs considering grid minors is useful for proving that an FPT algorithm exists.

Planar Graphs, Layers, and Grid Minors – Summary

- To obtain subexponential FPT algorithms for planar graphs, we need:
	- (A) either a linear kernel (layers) or a bidimensionality proof (grid minors).
	- (B) A dynamic programming algorithm with parameter function 2 *^O*(tw(*G*)), and
- Bidimensionality gives fast FPT algorithms for many other graph classes that are closed under taking minors!

