Fixed-Parameter Algorithms, I1A166

Sebastian Ordyniak

Faculty of Informatics
Masaryk University Brno

Spring Semester 2013

L Treewidth

LDynamic Programming on Trees

Outline

Treewidth
m Dynamic Programming on Trees

L Treewidth

LDynamic Programming on Trees

The Party Problem

PARTY PROBLEM

Problem: Invite some colleagues to a party.

Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

Do not invite a colleague and his direct boss at the same time!

L Treewidth

LDynamic Programming on Trees

The Party Problem

N
—

PARTY PROBLEM

Input: A tree with weights on the
vertices.

5
Question: Find an independent set of / \
maximum weight.

L Treewidth

LDynamic Programming on Trees

The Party Problem

N
—

PARTY PROBLEM

Input: A tree with weights on the

vertices. ° @ 36
Question: Find an independent set of / ‘ \
maximum weight. _ o 2

v v L)

4 4 6

L Treewidth

LDynamic Programming on Trees

Dynamic Programming on trees (or tree-like
structures)

m A dynamic programming algorithm on a tree (or a tree-like
structure) usually computes a set of records for every node
of the tree in a bottom-up manner, i.e., we first compute the
records for the leaves of the tree and then work our way up
the tree.

m Informally, a record is a compact representation of partial
solutions, i.e., solutions obtained for the subtree below the
current node.

m |deally, the solution for the whole problem can be directly
inferred from the set of records computed for the root of the
tree. w

L Treewidth

LDynamic Programming on Trees

Example: Solving the party problem

Here and in the sequel we use the following notation: Let T be
a (rooted) tree and t € V(T), then:

m T(t) is the subtree of T rooted at ¢;
m R(t) denotes the set of records for the tree node t.

L Treewidth

LDynamic Programming on Trees

Solving the party problem: The Records

For the PARTY PROBLEM a record is a pair (inc, w) where inc is
a boolean value and w is a real value. The semantics of a
record for a tree node t € V(T) is as follows:
m (0, w) € R(t) iff w is the maximum weight of an
independent set of T(t) that does not contain v;
m (1,w) € R(t) iff wis the maximum weight of an
independent set of T(t);
Clearly, the solution of the party problem can be easily obtained
from R(r) as the weight w such that (1, w) € R(r).

L Treewidth

LDynamic Programming on Trees

Solving the party problem: Computing the Records

We need to show that we can compute the records for the
PARTY PROBLEM for every node of the tree in a bottom-up
manner, i.e., we need to show that the set of all records can be
computed:

(1) For the leave nodes of the tree.

(2) For every inner node of the tree (given the set of records of
all its children).

L Treewidth

LDynamic Programming on Trees

Solving the party problem: Computing the Records

For the PARTY PROBLEM this can be done as follows (here T is
the given tree with weight function w and t € V(T)):
(1) If tis aleave node of T then R(t) := {(0,0), (1, w(t))}.
(2) If tis aninner node of T with children t4, ..., t, then
R(t) :={(0, wp), (1, w;)} where
Wo:=> {w:1<i<land (1,w) € R(t;) }
and
wi = max{wo, w(t)+> {w:1<i</land (0,w) e R(t)}.

L Treewidth

LDynamic Programming on Trees

Solving the party problem: Computing the Records

For the PARTY PROBLEM this can be done as follows (here T is
the given tree with weight function w and t € V(T)):
(1) If tis aleave node of T then R(t) := {(0,0), (1, w(t))}.
(2) If tis aninner node of T with children t4, ..., t, then

R(t) := {(0, wp), (1, w;)} where

Wo:=> {w:1<i<land (1,w) € R(t;) }

and

wi = max{wo, w(t)+> {w:1<i</land (0,w) e R(t)}.
This gives a polynomial time algorithm for the PARTY PROBLEM
on trees!

L Treewidth

LTreewidth: Generalizing Trees

Outline

Treewidth

m Treewidth: Generalizing Trees

LTreewidth

LTreewidth: Generalizing Trees

Treewidth

L Treewidth

LTreewidth: Generalizing Trees

Introduction

m Treewidth is a measure of how “tree-like” a graph is.

m Treewidth has become a very successful notion both in
structural and algorithmic graph theory.

m Almost every natural problem on graphs becomes solvable
in polynomial time on graphs of bounded treewidth, usually
even fixed-parameter tractable when parameterized by
treewidth.

m Algorithms on graphs of bounded treewidth usually follow
the general dynamic programming approach that we
presented for trees.

m Treewidth is usually defined in terms of a so called
tree-decomposition (although many different alternative
definitions exist). w

L Treewidth

LTreewidth: Generalizing Trees

Definition

A tree decomposition of a graph G is a pair (T, X) where T is a
treeand X = { X(t): t € V(T) } is set of subsets of V(G) such
that:

T1 For every {u,v} € E(G) thereis anode t € V(T) such that
{u,v} e X(1).

T2 For every v € V(G), the subgraph of T induced by
X~'(v):={te V(T):ve X(t)} is non-empty and
connected.

To distinguish between vertices of G and T, the vertices of T

are called nodes. The sets X(t) are also called the bags of the

tree decompositon.

The width of a tree decomposition is (max:cy () [X(t)[) — 1 and

the treewidth of G is the smallest width of any tree

decompositon of G.

L Treewidth

LTreewidth: Generalizing Trees

Example

>0

L Treewidth

LTreewidth: Generalizing Trees

Example

>0

L Treewidth

LTreewidth: Generalizing Trees

Example

L Treewidth

LTreewidth: Generalizing Trees

Example

>0

L Treewidth

LTreewidth: Generalizing Trees

Example

>0

L Treewidth

LTreewidth: Generalizing Trees

Basic Properties

A tree decomposition of a graph G is a pair (T, X) where T is a
tree and X = { X(t) : t € V(T) } is set of subsets of V(G) such
that:

T1 Forevery {u,v} € E(G) there isanode t € V(T) such that
{u, v} e X(1).

T2 For every v € V(G), the subgraph of T induced by
X~Y(v):={te V(T):ve X(t)}is non-empty and
connected.

Property T2 is often called the “connectedness condition” and
can be equivalently formulated as:

T2 Forevery t,t',t" € V(T) such that t' lies on the unique
path between t and t” in T it holds that:
X(t)n X(t") C X(t'). Furthermore, every vertex of G is
contained in some bag of T.

L Treewidth

LTreewidth: Generalizing Trees

Basic Properties

Observation (-1)
Let G be a graph. Then tw(G) < |V(G)| — 1.

Observation (0)
tw(G) = 0 iff G contains no edges.

Observation (1)
Let H be a subgraph of a graph G. Then tw(H) < tw(G).

Proof:

Let (T, X) be a tree decomposition of G. Then (T, X’) such that
X(t) := X(t)n V(H) for every t € V(T) is a tree decomposition
of H whose width is at most as high as the width of (T, X). [

LTreewidth

LTreewidth: Generalizing Trees

Basic Properties

Observation (2)

Let A and B be 2 graphs and let G be the disjoint union of A
and B. Then tw(G) = max{tw(A),tw(B)}.

Proof:

Let (TA, X#) and (T8, XB) be tree decompositions of A and B,
respectively. Then (T, X) such that:
m T is the disjoint union of TA and T2 plus an addional node
r that is connected to one node of T# and one node of T&.
m X(r):=0, X(t) := X(t)" for every t € V(TA), and
X(t) := X(t)B for every t € V(TB).
is a tree decomposition of G of width at most
max{tw(A), tw(B)}. O W

L Treewidth

LTreewidth: Generalizing Trees

Basic Properties

Observation (2)

Let A and B be 2 graphs and let G be the disjoint union of A
and B. Then tw(G) = max{tw(A),tw(B)}.

Corollary (1)

Let G be a graph. Then the treewidth of G is equal to the
maximum treewidth of the connected components of G.

L Treewidth

LTreewidth: Generalizing Trees

Basic Properties

Observation (2)

Let A and B be 2 graphs and let G be the disjoint union of A
and B. Then tw(G) = max{tw(A),tw(B)}.

Corollary (1)

Let G be a graph. Then the treewidth of G is equal to the
maximum treewidth of the connected components of G.

LTreewidth

LTreewidth: Generalizing Trees

Basic Properties

Observation (3)

If G is a forest and contains at least one edge then tw(G) = 1.

Proof:

Because of Observation (0) it holds that tw(G) > 1.
Furthermore, it follows from Corollary (1) that we only need to
consider the treewidth of G’'s connected components, i.e., we
need to show that every tree has a tree decomposition of width
1. Suppose that G is a tree. W.l.0.g. we can assume that G is
rooted in some arbitrary vertex and that p(t) denotes the parent
of avertex t € V(G). Then (G, X) such that X(t) := {t,p(t)} is
a tree decomposition of G of width at most 1. Ol

L Treewidth

LTreewidth: Generalizing Trees

Small Tree Decompostions

A tree decomposition (T, X) is small if X(t) € X(t') for every
distinct t,t' € V(T).

Proposition (1)

Given a tree decomposition of a graph G. Then in polynomial
time we can construct a small tree decompositon of G (of the
same width).

Proposition (2)

Let (X, T) be a small tree decomposition of G. Then
V(DI < [V(G)I.

LTreewidth

LTreewidth: Generalizing Trees

Small Tree Decompostions

Proposition (1)

Given a tree decomposition of a graph G. Then in polynomial
time we can construct a small tree decompositon of G.

Proof:

Let (T, X) be a tree decomposition of G with X(t) C X(t') for
some distinct ¢, ¢’ € V(T). By considering the unique path from
tto t in T we can find adjacent nodes with this property.
Hence, w.l.0.g. we can assume that {t,t'} € E(T).
Consequently, contracting the edge {t, t'} into a new node t”’
and setting X(t") := X(t') gives a smaller tree decomposition of
G. Hence, we can continue this process until a small tree
decomposition of G is obtained. Ol

LTreewidth

LTreewidth: Generalizing Trees

Small Tree Decompostions

Proposition (2)

Let (X, T) be a small tree decomposition of G. Then

V(T < [V(G)I.
By induction over n = |V(G)|. If n=1then |V(T)| =1, as
required.

If n > 1 then consider a leaf / of T with neighbor /. Deleting /

from T yields a small tree decomposition (T, X”) of

G =G\ (X(DH\ X(I)).

Because X(/) \ X(I') # 0 we obtain by induction:

V(T)| = V(T +1< V(G +1< V(G

, as required. O W

L Treewidth

LTreewidth: Generalizing Trees

Minors

Observation (4)

Let H be obtained from G by contracting an edge {v, w} into z.
Then tw(H) < tw(G).

Proof:

Let (T, X) be a tree decomposition of G. Then (T, X’) such that
X(t) := X(t)u{z} forevery t € V(T) with {v,w} N X(t) # 0
and X(t)' := X(t), otherwise, is a tree decomposition of H
whose width is at most the width of (T, X). O

L Treewidth

LTreewidth: Generalizing Trees

Minors

Definition
A graph H is a minor of a graph G if H can be obtained from a
subgraph of G via edge contractions.

Because of Observation (1) and (4) we obtain:

Observation (5)
Let H be a minor of G. Then tw(H) < tw(G).

LTreewidth
LTreewidth: Generalizing Trees

Tree Decompositions and Cuts

m Let (T, X) be a tree decomposition, {t,t'} € E(T), and
U C V(T). We denote by T; and Ty the 2 components of
T —{t, '} (such that T; contains t and Ty contains t').
Furthermore, we denote by X(U) the set of vertices
Ureu X ().

m Let G be a connected graph and S, T C V(G) be disjoint
and non-empty vertex sets of G. Aset C C V(G) is a cut if
G\ Cis disconnected. Itis a k-cut if |C| < k. Furthermore,
Cisan (S, T)-cut oracutseparating Sand Tif G\ C
contains no paths with end vertices in both Sand T.

L Treewidth

LTreewidth: Generalizing Trees

Tree Decompositions and Cuts

Lemma

Let (T, X) be a tree decomposition of a graph G and

{t,t'} € E(T). Furthermore, let C := X(t) N X(t'),

St = X(T)) \ X(Tr) and Sy := X(Ty) \ X(Tt). Then Cis an
(St, Sﬂ)'CU’[in G.

; (.d. D
b CII N CAY)
D

L Treewidth

LTreewidth: Generalizing Trees

Tree Decompositions and Cuts

Lemma

Let (T, X) be a tree decomposition of a graph G and

{t,t'} € E(T). Furthermore, let C := X(t) N X(t'),

St = X(T)) \ X(Tr) and Sy := X(Ty) \ X(Tt). Then Cis an
(St, Sﬂ)'CU’[in G.

; (.d. D
b CII I CAY)
D

L Treewidth

LTreewidth: Generalizing Trees

Tree Decompositions and Cuts

Lemma

Let (T, X) be a tree decomposition of a graph G and

{t,t'} € E(T). Furthermore, let C := X(t) N X(t'),

St = X(T)) \ X(Tr) and Sy := X(Ty) \ X(Tt). Then Cis an
(St, Sﬂ)'CU’[in G.

a (.d. D
b CII YD
D

L Treewidth

LTreewidth: Generalizing Trees

Tree Decompositions and Cuts

Lemma

Let (T, X) be a tree decomposition of a graph G and

{t,t'} € E(T). Furthermore, let C := X(t) N X(t'),

St = X(Ty) \ X(Ty) and Sy := X(Ty) \ X(T;). Then Cis an
(St, Sﬂ)'CU’[in G.

a

LTreewidth

LTreewidth: Generalizing Trees

Tree Decompositions and Cuts

Lemma

Let (T, X) be a tree decomposition of a graph G and

{t,t'} € E(T). Furthermore, let C := X(t) N X(t'),

St = X(T) \ X(Tr) and Sy := X(Ty) \ X(Tt). Then Cis an
(St, Sy)-cutin G.

Proof:

Because of Property T2 of a tree decomposition we obtain
C=X({t)nX(t)=X(T;) N X(Ty).

Hence, {S;, C, Sy} is a partition of V(G). It hence suffices to
show that G\ C contains no edge {u, v} with u € St and

v e Sy.

LTreewidth

LTreewidth: Generalizing Trees

Tree Decompositions and Cuts

Lemma (1)

Let (T, X) be a tree decomposition of a graph G and

{t,t'} € E(T). Furthermore, let C := X(t) N X(t'),

St = X(T) \ X(Ty) and Sy := X(Ty) \ X(T¢). Then Cis an
(St, St/)-CUt in G.

Proof, continued:

Let {u, v} € E(G). Because of Property T1 of a tree
decomposition we know that there is a t” € V(T) such that
{u,v} C X(t").

If " € V(T;) then u,v € X(T;) and hence u, v ¢ X(Ty). If

t" e V(Ty)then u,v € X(Ty) and hence u, v ¢ X(Tt). O

LTreewidth

LTreewidth: Generalizing Trees

Tree Decompositions and Cuts

Lemma (2)

Let G be a connected graph with tw(G) < k. Then
|V(G)| = k+ 1 or G has a k-cut.

Proof:

Consider a small tree decomposition (T, X) of G of width at
most k. If |V(G)| > k+ 1, then |V(T)| > 2, so we may consider
any two adjacent nodes t,t' € V(T). Because (T, X) is small it
holds that X(t) \ X(t') # 0 and X(t') \ X(t) # 0, and

|X(t) N X(t')| < k. Then, by the previous lemma,

C=X(t)n X(t') is a k-cutin G. O

L Treewidth

LTreewidth: Generalizing Trees

Tree Decompositions and Cuts

As an immediate consequence of Lemma (2) we obtain:

Corollary

If tw(G) = 1, then G is a forest.

Corollary

Let K, be the complete graph on n vertices. Then
tw(Kn) =n—1.

L Treewidth

LTreewidth: Generalizing Trees

Tree Decompositions and Cuts

A k x I-grid, denoted Gy, is the
graph with vertex set:

{(i,))y:1<i<kand1<j<I}

and edge set:

HE), G j+1):1<i<k1<j<
U
HOU) (i+1,)): 1 <i<k1<j< I}

L Treewidth

LTreewidth: Generalizing Trees

Tree Decompositions and Cuts

tW(GkX/) < min{k, /}

As an immediate consequence of Lemma (2) we obtain:

Proposition
tW(GkX/) > min{k, /}

L Treewidth

L Computing Treewidth

Outline

Treewidth

m Computing Treewidth

LTreewidth

L Computing Treewidth

Computing Treewidth

The following problem is NP-hard:

k-TREEWIDTH Parameter: k

Input: A graph G and a natural number k.
Question: Is tw(G) < k (and if so compute a tree
decomposition of width at most k)

Theorem

k-TREEWIDTH is fixed-parameter tractable, i.e., there are 2
FPT-algorithms for k-TREEWIDTH: (1) O(2°()|V(G)|) and (2)
O(B*k(IV(G)])?)-

Theorem
Treewidth can be approximated to within k/log k.

L Treewidth

L Computing Treewidth

Computing Treewidth

Because k-TREEWIDTH is fixed-parameter tractable we can
always assume that we are given a tree decomposition of
optimal width when designing fixed-parameter algorithms for
problems parameterized by treewidth.

	Treewidth
	Dynamic Programming on Trees
	Treewidth: Generalizing Trees
	Computing Treewidth

