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Motivation

m works best when we need to ensure that a small number of
“things” are disjoint.

m We demonstrate it on the problem of finding s-t path of
length exactly k.

m Randomized algorithm, but can be derandomized using
standard techniques.

m Very robust technique, we can use it as an “opening step”
when investigating a new problem.
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Introduction

k-s-t-PATH Parameter: k

Input: Graph G, 2 vertices s and t, and a natural number k.
Question: Find an s-t-path, i.e. a path from sto t in G, with
exactly k internal vertices.

Remark

The problem is NP-hard because it contains the
S-t-HAMILTONIAN PATH problem.
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m Assign k colors to the
vertices in V(G) \ {s, t}

uniformly and
independently at random. | | | ;
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Basic |dea

m Assign k colors to the
vertices in V(G) \ {s, t}

uniformly and
independently at random. |

m Check if there is a colorful s I I
s-t-path, i.e., a path where .\
each color appears exactly
once on the internal

vertices. If so output YES,
if not output No.
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Basic |dea

This gives us a randomized algrithm for k-s-t-PATH such that:
m Given a NoO instance of k-s-t-PATH, the algorithm always
outputs NoO.

m Given a YES instance of k-s-t-PATH, the algorithm outputs
YES with probability:

Ko~ V2rk(L)k > ek

Here we use Stirling’s formula: k! ~ v2rk(X)X.
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Basic |dea

Observation

Let A be a randomized algorithm with success rate at least p.
Then repeating A at least 1/p-times leads to an error
probability of at most (1 — p)'/P < (e P)'/P=e ' =1/e~0.38
(Using the fact that 1 — x < e¥).

m Hence, if p > e~* then the error probability of A is at most
1/e after e repetitions.

m Repeating the algorithm ce” times (for some constant c)
decreases the error probability of the algorithm to an
arbitrary small constant, e.g., by trying 100e* random
colorings, the error probability becomes e—100.
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A Monte Carlo FPT-algorithm for k-s-t-PATH

Provided that we can find a colorful s-t-Path in time f(k)n° the
above randomized algorithm decides k-s-t-PATH with arbitrary
low error probability in time O*(e*f(k)n°). Such a randomized
algorithm is also called a Monte Carlo algorithm.

There are 2 important questions remaining:

Question (1)
How to find a colorful s-t-path in polynomial time?

Question (2)
Is it possible to derandomize the above algorithm?
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Finding a Colorful s-t-Path

k-COLORFUL PATH Parameter: k

Input: A graph G, 2 vertices s and f of G, and a vertex-coloring
c of G with k colors.
Question: Does G contain a colorful s-t-Path?

We will now show two methods to solve the above problem:
m Method 1: Trying all permutations;
m Method 2: Dynamic Programming.
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Method 1: Trying all permutations

The colors encountered on a colorful s-t-path form a

permutation = of {1,..., k}.
S@ @  J @ @ @
(1) 7(2) m(k—1) w(k)

We try all k! permutations. For a fixed permutation it is easy to
check if there is a path with this order of colors.
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Method 1: Trying all permutations

Let m be such a permutation. The following algorithm decides
whether G has a colorful s-t-path representing =:

m Remove edges connecting vertices colored by
non-neighboring colors with respect to .

m Direct the remaining edges according to .
m Check whether there is a directed s-t-path.
m Running time is O(|E(G)|).
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Method 1: Trying all permutations

k-COLORFUL PATH can be decided in time O(k!|E(G)|), for an
instance (G, c, k).

Corollary

k-s-t-PATH can be decided by a randomized algorithm with
arbitrary high constant success probability in time
O(e*K!|E(G))).
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Method 2: Dynamic Programming

We introduce 2%|V(G)| boolean variables, i.e., for every

v e V(G)andevery C C {1,..., k} we introduce a variable
x(v, C) that is TRUE iff G contains an s-v-path that contains
only colors in C and each color in C appears exactly once on
this path.
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Method 2: Dynamic Programming

m Clearly, x(s,0) = TRUE. Furthermore, we can use the
following recurrence for a vertex v with color r:

X(v, C) = Ve XU, C\{r})

m Using the above recurrence we can determine the values
of every x(v, C) from the values of every x(v, C') with
|C'| =|C| — 1. This allows us to determine the values of all
these variables in time O(2%|E(G))).

m Clearly, G has a colorful s-t-path iff
x(v,{1,...,k}) = TRUE for some neighbor v of .
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Method 2: Dynamic Programming

k-COLORFUL PATH can be decided in time O(2¥|E(G)|), for an
instance (G, c, k).

Corollary

k-s-t-PATH can be decided by a randomized algorithm with
arbitrary high constant success probability in time
O((2e)“|E(G))).
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Derandomization

Using Method 2, we obtain a O((2e)*|E(G)|) time Monte Carlo
algorithm. How can we make it deterministic?

Definition
A family # of functions from {1,...,n} to {1,... k}isa
k-perfect family of hash functions if for every S C {1,...,n}

with |S| = k, there is a h € H such that h(x) # h(y) for every
X,y € Swith x #£ y.

Instead of trying O(e*) random colorings, we go through a
k-perfect family H of hash functions. If there is a solution then
the internal vertices are colorful for at least 1 such function and
our algorithm returns YEs.
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Derandomization

Theorem

There is a k-perfect family of hash functions from {1,...,n} to
{1,..., k} having size at most 2°(%) |og n and such a family can
be constructed in polynomial time with respect to the size of the
family.

Corollary

There is a deterministic O(2°(K) n©(")) time algorithm for the
k-s-t-PATH problem.
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Some Simple Generalizations

k-CYCLE Parameter: k

Input: Graph G and a natural number k.
Question: Does G contain a cycle of length exactly k.

By computing k-s-t-PATH for every pair of distinct and adjacent
vertices s and t of G we obtain:

Corollary

There is a deterministic O(2°(K) n9(1)) time algorithm for the
k-CYCLE problem.



LColor Coding
LThe k-s-t-PATH Problem

Some Simple Generalizations

k-LONGEST PATH Parameter: k
Input: Graph G and a natural number k.
Question: Does G contain a path of length at least k.

By computing k-s-t-PATH for every pair of distinct vertices s
and t of G and observing that G contains a path of lenght at
least k iff G contains a path of length exactly k we obtain:

Corollary

There is a deterministic O(2°(k) n9(1)) time algorithm for the
k-LONGEST PATH problem.
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Introduction

k-TREE SUBGRAPH Parameter: |V(T)|

Input: A tree T and a graph G.
Question: Does G contain T as a subgraph?

As before, we start by solving its colorful version:

k-COLORFUL-TREE SUBGRAPH Parameter: |V(T)|

Input: Atree T and a graph G with a | V(T)|-vertex coloring
c: V(G)— |V(T)|.
Question: Does G contain a colorful copy of T as a subgraph?
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A Dynamic Programming Approach

W.l.o.g. we can assume that the tree T is rooted at some
arbitrary vertex r € V(T). We denote by T(t) the subtree of T
rooted in t.

We solve k-COLORFUL-TREE SUBGRAPH via a dynamic
programming algorithm that computes a set of records in a
bottom-up manner along the tree T, i.e, starting from the leaves
of T and progressing to the root of T. For every tree node ¢ of
T the set of records (denoted R(t)) contains all pairs (v, C)
suchthat v € V(G), C C {1,...,k} and G contains a colorful
copy (with respect to C) of T(t) where v takes the role of t.
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A Dynamic Programming Approach

Recursion Start:

If /e V(T)is aleave of T, then

R(I) :={(v,{c(v)}) : v e V(G) }. Hence, R(/) can be
computed in time O(|V(G)|) for every leave node / of T.
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A Dynamic Programming Approach

Recursion Step:

If tis an inner node of T with children t;, ..., f;, then

R(t) :={(v,C):ve V(G)and
there is an ordered partition (Cy, ..., Cy) of C\ ¢(v)
and neighbors vy, ..., v; of v in G such that:
(vi, Gi) € R(t)

How can we compute the above efficiently?
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A Dynamic Programming Approach

Lemma

If tis an inner node of T with children t;,...,t and let v € V(G)
with neighbors ny,....n,in G. Then (v, C) € R(t) iff c(v) € C
and there is an ordered partition (Cy, ..., C)) of C\ {c(v)} such
that the bipartite graph B(t) with vertices
{t1,...,t,}u{n1,...,n,}
and edges
{{ti,nj} - (n;, Gi) € R(t) }
has a matching that saturates {t,...,t}.



LColor Coding

L(.‘:eneralization: Finding tree subgraphs

A Dynamic Programming Approach

Because of the above Lemma we can decide whether a
potential record (v, C) is in the set R(t) as follows:

(1) Guess an ordered partition (Cy,...,C)) of C\ {c(v)}.

(2) Construct the bipartite graph B(t) as in the above lemma

(4) Check whether B(t) has a perfect matching. If so output
YES, otherwise output NO.
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A Dynamic Programming Approach

Because of the above Lemma we can decide whether a
potential record (v, C) is in the set R(t) as follows:

(1) Guess an ordered partition (Cy, ..., Cj) of C\ {c(v)}. This
takes time O(2/1") = O2IVDI(|v(T))1.

(2) Construct the bipartite graph B(t) as in the above lemma
This takes time O(Ir) = O(|V(T)||V(G)|).

(4) Check whether B(t) has a perfect matching. If so output

YES, otherwise output NO. This takes time
O((Ir) = o(IV(T)IIV(G)I)-
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A Dynamic Programming Approach

Because of the above Lemma we can decide whether a
potential record (v, C) is in the set R(t) as follows:

(1) Guess an ordered partition (Cy, ..., Cj) of C\ {c(v)}. This
takes time O(2/1") = O2IVDI(|v(T))1.

(2) Construct the bipartite graph B(t) as in the above lemma
This takes time O(Ir) = O(|V(T)||V(G))).

(4) Check whether B(t) has a perfect matching. If so output
YES, otherwise output NO. This takes time
O((Ir) = o(IV(T)IIV(G)I)-

Hence, we can decide whether (v, C) € R(t) intime O(2/1lIr) or

equivalently in time O(2!V(DI(|V(T)|H|V(T)||V(G))).
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A Dynamic Programming Approach

Since there are at most O(2!V(NI|V(G)|) potential records for
every tree node and at most | V(T)| tree nodes we obtain the
following:

Theorem

k-COLORFUL-TREE SUBGRAPH can be decided in time
oVMI(V(TH(IV(TDA(IV(G))?).

By running the above algorithm for every hash function of a
perfect family of hash functions, we obtain:

Corollary

k-TREE SUBGRAPH can be decided in time
OCIVIN(IV(T)N(V(T)2(IV(G)])?).
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Even More General

Let C be an arbitrary class of graphs.

k-C-SUBGRAPH Parameter: |V(H)|

Input: A graph H € C and a graph G.
Question: Does G contain H as a subgraph?

m Using the above algorithms we have seen that
k-C-SUBGRAPH is FPT if C is the class of all trees
respectively cycles.

m Because k-C-SUBGRAPH is equivalent to the k-CLIQUE
problem if C is the class of all cliques we can note hope for
an FPT algorithm in general (unless FPT=W[1]).
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Even More General

Is there some class C in between trees (cycles) and cliques that
allows for fixed-parameter tractability of k-C-SUBGRAPH?
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Introduction

Theorem

Let C be a class of graphs of treewidth at most w. Then
k-C-SUBGRAPH can be solved in time

o1V (|v(G)|)w+O(M) (if a tree decomposition of the
graph H of width w is given as the input).

Corollary

Let C be a class of graphs of bounded treewidth. Then
k-C-SUBGRAPH is fixed-parameter tractable.
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Solving the Colorful Problem

We first need to solve the following problem:

k-C-COLORFUL SUBGRAPH Parameter: |V(H)|

Input: A graph H € C and a graph G with a |V(H)|-vertex
coloring ¢: V(G) — {1,...,|V(H)|}.

Question: Does G contain a colorful subgraph isomorphic to
H?
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Solving the Colorful Problem

Let (T, X) be a nice tree decomposition of H and let t € V(T).
As always we compute a set of records R(t) for every t € V(T)
in a bottom up manner. This time a record is a pair (¢, C) such
that ¢ is a 1-to-1 mapping between vertices in X(t) and exaclt
|X(t)| vertices in V(G)and C C {1,...,|V(H)|} is a set of
colors.

The semantics of a record is as follows:

(¢, C) € R(t) iff G contains a colorful copy of X(t) using every
color in C exactly once such that the vertex ¢(v) is mapped to
v for every v € X(t).

Clearly, the solution for the k-C-COLORFUL SUBGRAPH problem
can be easily obtained from R(r) by checking wether
(0, {1, IV(H)I}) € R(). W
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Solving the Colorful Problem

Let (T, X) be a nice tree decomposition of H and let t € V(T).
tis a leaf node with X(t) = {v}
R(t) = {((v = V), {c(V)}) : v e V(G) }.
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Solving the Colorful Problem

Let (T, X) be a nice tree decomposition of H and let t € V(T).

tis a leaf node with X(t) = {v}
R(t) :={((v—V),{c(V)}): Vv e V(G)}.

Can be computed in time |V(G)|.



LColor Coding

L(.‘:eneralization: Bounded Treewidth

Solving the Colorful Problem

t is an introduce node with child ¢ and {v} = X(t) \ X(t)

R(t) :={(¢+ (v =), Cu{c(V)}):
(¢,C) e R(t') and v/ € V(G) and
Ywex({Vv,w} € E(H) = {v',¢(w)} € E(G) }
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Solving the Colorful Problem

t is an introduce node with child ¢ and {v} = X(t) \ X(t)

R(t) :={(¢+ (v =), Cu{c(V)}):
(¢,C) e R(t') and v/ € V(G) and
Ywex({Vv,w} € E(H) = {v',¢(w)} € E(G) }

Can be computed in time O(|R(t)||X(t)||V(G)]).
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Solving the Colorful Problem

t is a forget node with child ¢’ and {v} = X(t) \ X(t)

R(t) == { (¢[X(1)], C) : (¢, C) € R(t) }
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Solving the Colorful Problem

t is a forget node with child ¢’ and {v} = X(t) \ X(t)

R(t) == { (¢[X(1)], C) : (¢, C) € R(t) }

Can be computed in time O(|R(t')|).
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Solving the Colorful Problem

t is a join node with children t; and f

R(t) :={(¢1,C1UCp):
(¢1,Cy) € R(t) and (2, Cz) € R(f2) and
¢1 == ¢pand C1 N Co = { c(#1(v)) : v € X() }
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Solving the Colorful Problem

t is a join node with children t; and f

R(t) :={(¢1,C1UCp):
(¢1,Cy) € R(t) and (2, Cz) € R(f2) and
¢1 == ¢pand C1 N Co = { c(#1(v)) : v € X() }

Can be computed in time O(max{|R(t)|, |R(f)|})-
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Solving the Colorful Problem

Because there are at most O(|V(H)|) tree nodes and for each
tree node we need time at most O(|R(t)||X(t)||V(G)|) the total
running time of the algorithm is O(|R(t)||X(?)||V(H)||V(G)|) or
equivalently O(2IVII(|V(G) w1 (w + 1)|V(H)||V(G))).

Theorem

Let C be a class of graphs of treewidth at most w. Then
k-C-COLORFUL SUBGRAPH can be decided in time
OIVMI(V(G))"+2(w + 1)|V(H))) (if a tree decomposition of
the graph H of width w is given as the input).
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Solving the whole problem

Theorem

Let C be a class of graphs of treewidth at most w. Then
k-C-COLORFUL SUBGRAPH can be decided in time
OIVMII(V(G))"+2(w + 1)|V(H))) (if a tree decomposition of
the graph H of width w is given as the input).

Using perfect hash functions we obtain:

Corollary

Let C be a class of graphs of treewidth at most w. Then
k-C-SUBGRAPH can be decided in time
O2CUVIFDN(|v(G)|)w+O(M) (if a tree decomposition of the
graph H of width w is given as the input).
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Color Coding — Summary

m Color Coding is a useful technique for solving various
subgraph problems; fixing a coloring makes dynamic
programming possible.

m This method can be generalized to finding embendings
between general relations structures.

m Color Coding makes use of the fact that we can guess
properties of a solution.

m Giving a randomized (Monto Carlo) algorithm (as a first

step) is often easier than giving an algorithm that is always
correct.
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