Fixed-Parameter Algorithms, IA166

Sebastian Ordyniak

Faculty of Informatics Masaryk University Brno

Spring Semester 2013

1 [Color Coding](#page-1-0) **[Introduction](#page-1-0)**

- The *k*-*s*-*t*-PATH [Problem](#page-4-0)
- [Generalization: Finding tree subgraphs](#page-23-0)
- [Generalization: Bounded Treewidth](#page-35-0)
- **[Summary](#page-49-0)**

- **Notable works best when we need to ensure that a small number of** "things" are disjoint.
- We demonstrate it on the problem of finding *s*-*t* path of length exactly *k*.
- **Randomized algorithm, but can be derandomized using** standard techniques.
- ■ Very robust technique, we can use it as an "opening step" when investigating a new problem.

L[Color Coding](#page-4-0) The *k* -*s*-*t*-PATH [Problem](#page-4-0)

1 [Color Coding](#page-1-0)

[Introduction](#page-1-0)

■ The *k*-*s*-*t*-PATH [Problem](#page-4-0)

- [Generalization: Finding tree subgraphs](#page-23-0)
- [Generalization: Bounded Treewidth](#page-35-0) **COL**
- ■ [Summary](#page-49-0)

Introduction

k -*s*-*t*-PATH **Parameter:** k

Input: Graph *G*, 2 vertices *s* and *t*, and a natural number *k*. **Question:** Find an *s*-*t*-path, i.e. a path from *s* to *t* in *G*, with exactly *k* internal vertices.

Remark

The problem is NP-hard because it contains the *s*-*t*-HAMILTONIAN PATH problem.

- Assign *k* colors to the vertices in $V(G) \setminus \{s,t\}$ uniformly and independently at random.
- ■ Check if there is a colorful *s*-*t*-path, i.e., a path where each color appears exactly once on the internal vertices. If so output YES , if not output N O .

- Assign *k* colors to the vertices in $\mathit{V}(G)\setminus\{s,t\}$ uniformly and independently at random.
- ■ Check if there is a colorful *s*-*t*-path, i.e., a path where each color appears exactly once on the internal vertices. If so output YES , if not output N O .

- Assign *k* colors to the vertices in $\mathit{V}(G)\setminus\{s,t\}$ uniformly and independently at random.
- ■ Check if there is a colorful *s*-*t*-path, i.e., a path where each color appears exactly once on the internal vertices. If so output YES , if not output N O .

This gives us a randomized algrithm for *k* -*s*-*t*-PATH such that:

- Given a No instance of *k*-*s*-*t*-PATH, the algorithm always outputs NO.
- Given a YES instance of *k-s-t-PATH*, the algorithm outputs YES with probability:

$$
\frac{k!}{k^k} \approx \sqrt{2\pi k} (\frac{1}{e})^k > e^{-k}
$$

Here we use Stirling's formula: *k*! ≈ √ $\overline{2\pi k}$ ($\frac{k}{\epsilon}$ $(\frac{k}{e})^k$.

Observation

Let *A* be a randomized algorithm with success rate at least *p*. Then repeating *A* at least 1/*p*-times leads to an error probability of at most $(1-\rho)^{1/\rho}\leq (e^{-\rho})^{1/\rho}=e^{-1}=1/e\approx 0.38$ (Using the fact that $1 - x \le e^{-x}$).

- Hence, if $p > e^{-k}$ then the error probability of A is at most 1/*e* after e^k repetitions.
- Repeating the algorithm *ce^k* times (for some constant *c*) decreases the error probability of the algorithm to an arbitrary small constant, e.g., by trying 100*e k* random colorings, the error probability becomes e^{-100} .

A Monte Carlo FPT-algorithm for *k* -*s*-*t*-PATH

Provided that we can find a colorful s -*t*-Path in time $f(k)n^c$ the above randomized algorithm decides *k* -*s*-*t*-PATH with arbitrary low error probability in time *O*[∗] (*e k f*(*k*)*n c*). Such a randomized algorithm is also called a Monte Carlo algorithm.

There are 2 important questions remaining:

Question (1)

How to find a colorful *s*-*t*-path in polynomial time?

Question (2)

Is it possible to derandomize the above algorithm?

The *k* -*s*-*t*-PATH [Problem](#page-12-0)

Finding a Colorful *s*-*t*-Path

k -COLORFUL PATH **Parameter:** k

モニマイボメイミメイロメ

Input: A graph *G*, 2 vertices *s* and *t* of *G*, and a vertex-coloring *c* of *G* with *k* colors. **Question:** Does *G* contain a colorful *s*-*t*-Path?

We will now show two methods to solve the above problem:

- **Method 1: Trying all permutations;**
- **Method 2: Dynamic Programming.**

Method 1: Trying all permutations

The colors encountered on a colorful *s*-*t*-path form a permutation π of $\{1, \ldots, k\}$.

We try all *k*! permutations. For a fixed permutation it is easy to check if there is a path with this order of colors.

Method 1: Trying all permutations

Let π be such a permutation. The following algorithm decides whether *G* has a colorful *s*-*t*-path representing π:

モニマイボメイミメイロメ

- Remove edges connecting vertices colored by non-neighboring colors with respect to π .
- Direct the remaining edges according to π .
- Check whether there is a directed *s*-*t*-path.
- **Running time is** $O(|E(G)|)$ **.**

The *k* -*s*-*t*-PATH [Problem](#page-15-0)

Method 1: Trying all permutations

Theorem

k -COLORFUL PATH can be decided in time *O*(*k*!|*E*(*G*)|), for an instance (*G*, *c*, *k*).

Corollary

k -*s*-*t*-PATH can be decided by a randomized algorithm with arbitrary high constant success probability in time $O(e^{k}k!|E(G)|).$

Method 2: Dynamic Programming

We introduce 2*^k* |*V*(*G*)| boolean variables, i.e., for every *v* ∈ *V*(*G*) and every *C* ⊆ {1, . . . , *k*} we introduce a variable *x*(*v*, *C*) that is TRUE iff *G* contains an *s*-*v*-path that contains only colors in *C* and each color in *C* appears exactly once on this path.

Method 2: Dynamic Programming

Clearly, $x(s, \emptyset) = \text{TRUE}$. Furthermore, we can use the following recurrence for a vertex *v* with color *r*:

$$
x(v, C) = \bigvee_{\{u,v\} \in E(G)} x(u, C \setminus \{r\})
$$

 \blacksquare Using the above recurrence we can determine the values of every $x(v, C)$ from the values of every $x(v, C')$ with $|C'| = |C| - 1$. This allows us to determine the values of all these variables in time $O(2^k |E(G)|)$.

■ Clearly, *G* has a colorful *s*-*t*-path iff $x(v, \{1, \ldots, k\})$ = TRUE for some neighbor *v* of *t*.

Method 2: Dynamic Programming

Theorem

 k -COLORFUL PATH can be decided in time $O(2^k |E(G)|)$, for an instance (*G*, *c*, *k*).

Corollary

k -*s*-*t*-PATH can be decided by a randomized algorithm with arbitrary high constant success probability in time $O((2e)^k |E(G)|).$

Derandomization

Using Method 2, we obtain a *O*((2*e*) *k* |*E*(*G*)|) time Monte Carlo algorithm. How can we make it deterministic?

Definition

A family H of functions from $\{1, \ldots, n\}$ to $\{1, \ldots, k\}$ is a *k*-perfect family of hash functions if for every $S \subseteq \{1, \ldots, n\}$ with $|S| = k$, there is a $h \in H$ such that $h(x) \neq h(y)$ for every $x, y \in S$ with $x \neq y$.

Instead of trying $O(e^k)$ random colorings, we go through a *k*-perfect family H of hash functions. If there is a solution then the internal vertices are colorful for at least 1 such function and our algorithm returns YES.

Derandomization

Theorem

There is a *k*-perfect family of hash functions from {1, . . . , *n*} to {1, . . . , *k*} having size at most 2*O*(*k*) log *n* and such a family can be constructed in polynomial time with respect to the size of the family.

Corollary

There is a deterministic $O(2^{O(k)}n^{O(1)})$ time algorithm for the *k* -*s*-*t*-PATH problem.

Some Simple Generalizations

k -CYCLE **Parameter:** k

Input: Graph *G* and a natural number *k*. **Question:** Does *G* contain a cycle of length exactly *k*.

By computing *k* -*s*-*t*-PATH for every pair of distinct and adjacent vertices *s* and *t* of *G* we obtain:

Corollary

There is a deterministic $O(2^{O(k)}n^{O(1)})$ time algorithm for the *k* -CYCLE problem.

Some Simple Generalizations

k -LONGEST PATH **Parameter:** k

 $(1 + \epsilon) \mathbf{1} + \mathbf{1} \mathbf{1}$

Input: Graph *G* and a natural number *k*. **Question:** Does *G* contain a path of length at least *k*.

By computing *k* -*s*-*t*-PATH for every pair of distinct vertices *s* and *t* of *G* and observing that *G* contains a path of lenght at least *k* iff *G* contains a path of length exactly *k* we obtain:

Corollary

There is a deterministic $O(2^{O(k)}n^{O(1)})$ time algorithm for the *k* -LONGEST PATH problem.

L[Generalization: Finding tree subgraphs](#page-23-0)

1 [Color Coding](#page-1-0)

- **[Introduction](#page-1-0)**
- The *k-s-t-PATH [Problem](#page-4-0)*
- [Generalization: Finding tree subgraphs](#page-23-0)
- [Generalization: Bounded Treewidth](#page-35-0)
- ■ [Summary](#page-49-0)

L[Generalization: Finding tree subgraphs](#page-24-0)

Introduction

k -TREE SUBGRAPH **Parameter:** |*V*(*T*)|

Input: A tree *T* and a graph *G*. **Question:** Does *G* contain *T* as a subgraph?

As before, we start by solving its colorful version:

k -COLORFUL-TREE SUBGRAPH **Parameter:** |*V*(*T*)|

←ロ ▶ ← 伊 ▶ ← ミ ▶ ← ミ ▶ │ ミ

Input: A tree T and a graph G with a $|V(T)|$ -vertex coloring $c: V(G) \rightarrow |V(T)|$. **Question:** Does *G* contain a colorful copy of *T* as a subgraph?

A Dynamic Programming Approach

W.l.o.g. we can assume that the tree *T* is rooted at some arbitrary vertex $r \in V(T)$. We denote by $T(t)$ the subtree of T rooted in *t*.

We solve *k* -COLORFUL-TREE SUBGRAPH via a dynamic programming algorithm that computes a set of records in a bottom-up manner along the tree *T*, i.e, starting from the leaves of *T* and progressing to the root of *T*. For every tree node *t* of *T* the set of records (denoted $R(t)$) contains all pairs (*v*, *C*) such that $v \in V(G)$, $C \subseteq \{1, \ldots, k\}$ and *G* contains a colorful copy (with respect to *C*) of *T*(*t*) where *v* takes the role of *t*.

L[Generalization: Finding tree subgraphs](#page-26-0)

A Dynamic Programming Approach

Recursion Start:

If $l \in V(T)$ is a leave of T, then $\mathcal{R}(l) := \{ (v, \{c(v)\}) : v \in V(G) \}$. Hence, $\mathcal{R}(l)$ can be computed in time *O*(|*V*(*G*)|) for every leave node *l* of *T*.

A Dynamic Programming Approach

Recursion Step:

If *t* is an inner node of T with children t_1, \ldots, t_l , then

$$
\mathcal{R}(t) := \{ (v, C) : v \in V(G) \text{ and } \text{there is an ordered partition } (C_1, \ldots, C_l) \text{ of } C \setminus c(v) \text{ and neighbors } v_1, \ldots, v_l \text{ of } v \text{ in } G \text{ such that: } (v_i, C_i) \in \mathcal{R}(t_i) \}
$$

Question

How can we compute the above efficiently?

イロト 不優 トイモト イモト 一番

A Dynamic Programming Approach

Lemma

If *t* is an inner node of *T* with children t_1, \ldots, t_l and let $v \in V(G)$ with neighbors n_1, \ldots, n_r in G . Then $(v, C) \in \mathcal{R}(t)$ iff $c(v) \in C$ and there is an ordered partition (C_1, \ldots, C_l) of $C \setminus \{c(v)\}$ such that the bipartite graph *B*(*t*) with vertices $\{t_1, \ldots, t_l\} \cup \{n_1, \ldots, n_r\}$

and edges

 $\{ \{t_i, n_j\} : (n_j, C_i) \in \mathcal{R}(t_i) \}$ has a matching that saturates $\{t_1, \ldots, t_l\}$.

A Dynamic Programming Approach

Because of the above Lemma we can decide whether a potential record (v, C) is in the set $\mathcal{R}(t)$ as follows: (1) Guess an ordered partition (C_1, \ldots, C_l) of $C \setminus \{c(v)\}.$

- (2) Construct the bipartite graph *B*(*t*) as in the above lemma
- (4) Check whether *B*(*t*) has a perfect matching. If so output YES, otherwise output NO.

A Dynamic Programming Approach

Because of the above Lemma we can decide whether a potential record (v, C) is in the set $\mathcal{R}(t)$ as follows:

- (1) Guess an ordered partition (C_1, \ldots, C_l) of $C \setminus \{c(v)\}$. This $P(X|X|X) = O(2^{|V(T)|}(|V(T)|))!$.
- (2) Construct the bipartite graph *B*(*t*) as in the above lemma This takes time $O(h) = O(|V(T)||V(G)|)$.
- (4) Check whether *B*(*t*) has a perfect matching. If so output YES, otherwise output NO. This takes time $O((Ir) = O(|V(T)||V(G)|).$

A Dynamic Programming Approach

Because of the above Lemma we can decide whether a potential record (v, C) is in the set $\mathcal{R}(t)$ as follows:

- (1) Guess an ordered partition (C_1, \ldots, C_l) of $C \setminus \{c(v)\}$. This $P(X|X|X) = O(2^{|V(T)|}(|V(T)|))!$.
- (2) Construct the bipartite graph *B*(*t*) as in the above lemma This takes time $O(h) = O(|V(T)||V(G)|)$.
- (4) Check whether *B*(*t*) has a perfect matching. If so output YES, otherwise output NO. This takes time $O((lr) = O(|V(T)||V(G)|).$

Hence, we can decide whether $(v, C) \in \mathcal{R}(t)$ in time $O(2^l I! Ir)$ or equivalently in time $O(2^{|V(T)|}(|V(T)|!)|V(T)||V(G)|).$

A Dynamic Programming Approach

Since there are at most $O(2^{|V(T)|}|V(G)|)$ potential records for every tree node and at most $|V(T)|$ tree nodes we obtain the following:

Theorem

k -COLORFUL-TREE SUBGRAPH can be decided in time $O(4^{|V(T)|}(|V(T)|!)(|V(T)|)^2(|V(G)|)^2).$

By running the above algorithm for every hash function of a perfect family of hash functions, we obtain:

Corollary

k -TREE SUBGRAPH can be decided in time $O(2^{O(|V(T)|)}(|V(T)|!)(|V(T)|)^2(|V(G)|)^2).$

モニマイボメイミメイロメ

[Generalization: Finding tree subgraphs](#page-33-0)

Even More General

Let $\mathcal C$ be an arbitrary class of graphs.

k -C-SUBGRAPH **Parameter:** |*V*(*H*)|

Input: A graph $H \in \mathcal{C}$ and a graph *G*. **Question:** Does *G* contain *H* as a subgraph?

- Using the above algorithms we have seen that k -C-SUBGRAPH is FPT if C is the class of all trees respectively cycles.
- Because *k* -C-SUBGRAPH is equivalent to the *k* -CLIQUE problem if $\mathcal C$ is the class of all cliques we can note hope for an FPT algorithm in general (unless FPT=W[1]).

L[Generalization: Finding tree subgraphs](#page-34-0)

Even More General

Question

Is there some class C in between trees (cycles) and cliques that allows for fixed-parameter tractability of *k* -C-SUBGRAPH?

L[Generalization: Bounded Treewidth](#page-35-0)

1 [Color Coding](#page-1-0)

- **[Introduction](#page-1-0)**
- $\mathcal{L}_{\mathcal{A}}$ The *k* -*s*-*t*-PATH [Problem](#page-4-0)
- [Generalization: Finding tree subgraphs](#page-23-0)
- [Generalization: Bounded Treewidth](#page-35-0)
- **[Summary](#page-49-0)**

L[Generalization: Bounded Treewidth](#page-36-0)

Introduction

Theorem

Let C be a class of graphs of treewidth at most *w*. Then *k* -C-SUBGRAPH can be solved in time $O(2^{O(|V(H)|)}(|V(G)|)^{w+O(1)})$ (if a tree decomposition of the graph *H* of width *w* is given as the input).

Corollary

Let $\mathcal C$ be a class of graphs of bounded treewidth. Then *k* -C-SUBGRAPH is fixed-parameter tractable.

L[Generalization: Bounded Treewidth](#page-37-0)

Solving the Colorful Problem

We first need to solve the following problem:

k -C-COLORFUL SUBGRAPH **Parameter:** |*V*(*H*)|

Input: A graph $H \in \mathcal{C}$ and a graph *G* with a $|V(H)|$ -vertex coloring $c: V(G) \rightarrow \{1, \ldots, |V(H)|\}.$ **Question:** Does *G* contain a colorful subgraph isomorphic to *H*?

L[Generalization: Bounded Treewidth](#page-38-0)

Solving the Colorful Problem

Let (T, X) be a nice tree decomposition of *H* and let $t \in V(T)$. As always we compute a set of records $R(t)$ for every $t \in V(T)$ in a bottom up manner. This time a record is a pair (ϕ, C) such that ϕ is a 1-to-1 mapping between vertices in $X(t)$ and exaclt $|X(t)|$ vertices in $V(G)$ and $C \subseteq \{1, \ldots, |V(H)|\}$ is a set of colors.

The semantics of a record is as follows:

 $(\phi, C) \in \mathcal{R}(t)$ iff *G* contains a colorful copy of $X(t)$ using every color in *C* exactly once such that the vertex $\phi(\mathbf{v})$ is mapped to *v* for every $v \in X(t)$.

Clearly, the solution for the *k* -C-COLORFUL SUBGRAPH problem can be easily obtained from $R(r)$ by checking wether $(\emptyset, \{1, ..., |V(H)|\}) \in \mathcal{R}(r).$ **KORKAR KERKER E VOOR**

L[Generalization: Bounded Treewidth](#page-39-0)

Solving the Colorful Problem

Let (T, X) be a nice tree decomposition of *H* and let $t \in V(T)$.

t is a leaf node with $X(t) = \{v\}$

 $\mathcal{R}(t) := \{ ((v \to v'), \{c(v')\}) : v' \in V(G) \}.$

L[Generalization: Bounded Treewidth](#page-40-0)

Solving the Colorful Problem

Let (T, X) be a nice tree decomposition of *H* and let $t \in V(T)$.

t is a leaf node with $X(t) = \{v\}$

 $\mathcal{R}(t) := \{ ((v \to v'), \{c(v')\}) : v' \in V(G) \}.$

Can be computed in time |*V*(*G*)|.

L[Generalization: Bounded Treewidth](#page-41-0)

Solving the Colorful Problem

t is an introduce node with child t' and $\{v\} = X(t) \setminus X(t')$

$$
\mathcal{R}(t) := \{ (\phi + (\mathsf{v} \rightarrow \mathsf{v}'), \mathsf{C} \cup \{ \mathsf{c}(\mathsf{v}') \}) : \\ (\phi, \mathsf{C}) \in \mathcal{R}(t') \text{ and } \mathsf{v}' \in \mathsf{V}(\mathsf{G}) \text{ and } \\ \forall_{\mathsf{w} \in \mathsf{X}(t')} \{ \mathsf{v}, \mathsf{w} \} \in E(\mathsf{H}) \rightarrow \{ \mathsf{v}', \phi(\mathsf{w}) \} \in E(\mathsf{G}) \}
$$

L[Generalization: Bounded Treewidth](#page-42-0)

Solving the Colorful Problem

t is an introduce node with child t' and $\{v\} = X(t) \setminus X(t')$

$$
\mathcal{R}(t) := \{ (\phi + (\mathsf{v} \rightarrow \mathsf{v}'), \mathsf{C} \cup \{ \mathsf{c}(\mathsf{v}') \}) : \\ (\phi, \mathsf{C}) \in \mathcal{R}(t') \text{ and } \mathsf{v}' \in \mathsf{V}(\mathsf{G}) \text{ and } \\ \forall_{\mathsf{w} \in \mathsf{X}(t')} \{ \mathsf{v}, \mathsf{w} \} \in \mathsf{E}(\mathsf{H}) \rightarrow \{ \mathsf{v}', \phi(\mathsf{w}) \} \in \mathsf{E}(\mathsf{G}) \}
$$

Can be computed in time $O(|\mathcal{R}(t')||X(t)||V(G)|)$.

L[Generalization: Bounded Treewidth](#page-43-0)

Solving the Colorful Problem

t is a forget node with child *t'* and $\{v\} = X(t') \setminus X(t)$

$$
\mathcal{R}(t) := \{ (\phi[X(t)], C) : (\phi, C) \in \mathcal{R}(t') \}
$$

L[Generalization: Bounded Treewidth](#page-44-0)

Solving the Colorful Problem

t is a forget node with child *t'* and $\{v\} = X(t') \setminus X(t)$

$$
\mathcal{R}(t) := \{ (\phi[X(t)], C) : (\phi, C) \in \mathcal{R}(t') \}
$$

Can be computed in time $O(|\mathcal{R}(t')|)$.

L [Generalization: Bounded Treewidth](#page-45-0)

Solving the Colorful Problem

t is a join node with children t_1 and t_2

$$
\mathcal{R}(t) := \{ (\phi_1, C_1 \cup C_2) : \\ (\phi_1, C_1) \in \mathcal{R}(t_1) \text{ and } (\phi_2, C_2) \in \mathcal{R}(t_2) \text{ and } \\ \phi_1 == \phi_2 \text{ and } C_1 \cap C_2 = \{ c(\phi_1(v)) : v \in X(t) \}
$$

L[Generalization: Bounded Treewidth](#page-46-0)

Solving the Colorful Problem

t is a join node with children t_1 and t_2

$$
\mathcal{R}(t) := \{ (\phi_1, C_1 \cup C_2) : \\ (\phi_1, C_1) \in \mathcal{R}(t_1) \text{ and } (\phi_2, C_2) \in \mathcal{R}(t_2) \text{ and } \\ \phi_1 == \phi_2 \text{ and } C_1 \cap C_2 = \{ c(\phi_1(v)) : v \in X(t) \}
$$

Can be computed in time $O(max{|R(t_1)|, |R(t_2)|}).$

L[Generalization: Bounded Treewidth](#page-47-0)

Solving the Colorful Problem

Because there are at most $O(|V(H)|)$ tree nodes and for each tree node we need time at most $O(|\mathcal{R}(t)||X(t)||V(G)|)$ the total running time of the algorithm is $O(|\mathcal{R}(t)||X(t)||V(H)||V(G)|)$ or equivalently $O(2^{|V(H)|}(|V(G)|^{w+1}(w+1)|V(H)||V(G)|).$

Theorem

Let C be a class of graphs of treewidth at most *w*. Then *k* -C-COLORFUL SUBGRAPH can be decided in time $O(2^{|V(H)|}(|V(G)|)^{w+2}(w+1)|V(H)|)$ (if a tree decomposition of the graph *H* of width *w* is given as the input).

L[Generalization: Bounded Treewidth](#page-48-0)

Solving the whole problem

Theorem

Let C be a class of graphs of treewidth at most *w*. Then *k* -C-COLORFUL SUBGRAPH can be decided in time $O(2^{|V(H)|}(|V(G)|)^{w+2}(w+1)|V(H)|)$ (if a tree decomposition of the graph *H* of width *w* is given as the input).

Using perfect hash functions we obtain:

Corollary

Let C be a class of graphs of treewidth at most *w*. Then *k* -C-SUBGRAPH can be decided in time $O(2^{O(|V(H)|)}(|V(G)|)^{w+O(1)})$ (if a tree decomposition of the graph *H* of width *w* is given as the input).

- **[Introduction](#page-1-0)**
- $\mathcal{L}_{\mathcal{A}}$ The *k* -*s*-*t*-PATH [Problem](#page-4-0)
- [Generalization: Finding tree subgraphs](#page-23-0)
- [Generalization: Bounded Treewidth](#page-35-0)
- **■ [Summary](#page-49-0)**

Color Coding – Summary

- Color Coding is a useful technique for solving various subgraph problems; fixing a coloring makes dynamic programming possible.
- \blacksquare This method can be generalized to finding embendings between general relations structures.
- \blacksquare Color Coding makes use of the fact that we can guess properties of a solution.
- Giving a randomized (Monto Carlo) algorithm (as a first step) is often easier than giving an algorithm that is always correct.

