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Abstract

We study the parameterized complexity of the feedback vertex set problem (fvs) on undi-
rected graphs. We approach the problem by considering a variation of it, the disjoint feedback

vertex set problem (disjoint-fvs), which finds a disjoint feedback vertex set of size k when a
feedback vertex set of a graph is given. We show that disjoint-fvs admits a small kernel, and can
be solved in polynomial time when the graph has a special structure that is closely related to the
maximum genus of the graph. We then propose a simple branch-and-search process on disjoint-fvs,
and introduce a new branch-and-search measure. The branch-and-search process effectively reduces
a given graph to a graph with the special structure, and the new measure more precisely evaluates
the efficiency of the branch-and-search process. These algorithmic, combinatorial, and topological
structural studies enable us to develop an O(3.83kkn2) time parameterized algorithm for the general
fvs problem, improving the previous best algorithm of time O(5kkn2) for the problem.

1 Introduction

All graphs in our discussion are supposed to be undirected. A feedback vertex set (FVS) F in G is
a set of vertices in G whose removal results in an acyclic graph. The problem of finding a minimum
feedback vertex set in a graph is one of the classical NP-complete problems [17]. The history of the
problem can be traced back to early ’60s. For several decades, many different algorithmic approaches were
tried on this problem, including approximation algorithms, linear programming, local search, polyhedral
combinatorics, and probabilistic algorithms (see the survey [11]). There are also exact algorithms finding
a minimum FVS in a graph of n vertices in time O(1.9053n) [22] and in time O(1.7548n) [12].

An important application of the FVS problem is deadlock recovery in operating systems [24], in which
a deadlock is presented by a cycle in a system resource-allocation graph G. Therefore, in order to recover
from deadlocks, we need to abort a set of processes in the system, i.e., to remove a set of vertices in the
graph G, so that all cycles in G are broken. Equivalently, we need to find an FVS in G.

In a practical system resource-allocation graph G, it can be expected that the size k of the minimum
FVS in G, i.e., the number of vertices in the FVS, is fairly small. This motivated the study of the
parameterized version of the problem, which we will name fvs: given a graph G and a parameter k,
either construct an FVS of size bounded by k in G or report no such an FVS exists. Parameterized
algorithms for the fvs problem have been extensively investigated that find an FVS of k vertices in a
graph of n vertices in time f(k)nO(1) for a fixed function f (thus, the algorithms become practically
efficient when the value k is small). The first group of parameterized algorithms for fvs was given by
Bodlaender [3] and by Downey and Fellows [9]. Since then a chain of dramatic improvements was obtained
by different researchers (see Figure 1).
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Authors Complexity Year

Bodlaender[3]

Downey and Fellows [9] O(17(k4)!nO(1)) 1994

Downey and Fellows [10] O((2k + 1)kn2) 1999
Raman et al.[21] O(max{12k, (4 log k)k}n2.376) 2002

Kanj et al.[16] O((2 log k + 2 log log k + 18)kn2) 2004

Raman et al.[20] O((12 log k/ log log k + 6)kn2.376) 2006
Guo et al.[15] O((37.7)kn2) 2006

Dehne et al.[8] O((10.6)kn3) 2005

Chen et al.[5] O(5kkn2) 2008
This paper O(3.83kkn2) 2010

Figure 1: The history of parameterized algorithms for the unweighted FVS problem.

Randomized parameterized algorithms have also been studied for the problem. The best randomized
parameterized algorithm for the problems is due to Becker et al. [2], which runs in time O(4kkn2).

The main result of the current paper is an algorithm that solves the fvs problem. The running time
of our algorithm is O(3.83kkn2). This improves a long chain of results in parameterized algorithms for
the problem. We remark that the running time of our (deterministic) algorithm is even faster than that
of the previous best randomized algorithm for the problem as given in [2].

Our approach, as some of the previous ones, is to study a variation of the fvs problem, the disjoint

feedback vertex set problem (disjoint-fvs), which finds a disjoint feedback vertex set of size k in a
graph G when a feedback vertex set of G is given. Our significant contribution to this research includes:

1. A new technique that produces a kernel of size 3k for the disjoint-fvs problem, and improves the
previous best kernel of size 4k for the problem [8]. The new kernelization technique is based on a
branch and search algorithm for the problem, which is, to our best knowledge, the first time used
in the literature of kernelization;

2. A polynomial time algorithm that solves the disjoint-fvs problem when the input graph has a
special structure;

3. A branch and search process that effectively reduces an input instance of disjoint-fvs to an
instance of the special structure as given in 2;

4. A new measure that more precisely evaluates the efficiency of the branch and search process in 3;

5. A new algorithm for the fvs problem that significantly improves previous algorithms for the prob-
lem.

2 disjoint-fvs and its kernel

We start with a precise definition of our problem.

disjoint-fvs. Given a graph G = (V,E), an FVS F in G, and a parameter k, either construct
an FVS F ′ of size k in G such that F ′ ⊆ V \ F , or report that no such an FVS exists.

Let V1 = V \ F . Since F is an FVS, the subgraph induced by V1 must be a forest. Moreover, if
the subgraph induced by F is not a forest, then it is impossible to have an FVS F ′ in G such that
F ′ ⊆ V \ F . Therefore, an instance of disjoint-fvs can be written as (G;V1, V2; k), and consists of a
partition (V1, V2) of the vertex set of the graph G and a parameter k such that both V1 and V2 induce
forests (where V2 = F ). We will call an FVS entirely contained in V1 a V1-FVS. Thus, the instance
(G;V1, V2; k) of disjoint-fvs is looking for a V1-FVS of size k in the graph G.

Given an instance (G;V1, V2; k) of disjoint-fvs, we apply the following two simple rules:
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Rule 1. Remove all degree-0 vertices; and remove all degree-1 vertices;

Rule 2. For a degree-2 vertex v in V1,
• if the two neighbors of v are in the same connected component of G[V2], then include v into

the objective V1-FVS, G = G \ v, and k = k − 1;
• otherwise, move v from V1 to V2: V1 = V1 \ {v}, V2 = V2 ∪ {v}.

Note that the second case in Rule 2 includes the case where one or both neighbors of v are not in V2.
The correctness of Rule 1 is trivial: no degree-0 or degree-1 vertices can be contained in any cycle.

On the other hand, although Rule 2 is also easy to verify for the general fvs problem [5] (because any
cycle containing a degree-2 vertex v must also contain the two neighbors of v), it is much less obvious for
the disjoint-fvs problem – the two neighbors of a degree-2 vertex v in V1 may not be in V1 and cannot
be included in the objective V1-FVS. For this, we have the following lemma.

Lemma 2.1 Rule 2 is safe.

Proof. If the two neighbors of the degree-2 vertex v in V1 are contained in the same connected
component in G[V2], then v and some vertices in V2 form a cycle. Therefore, in order to break this cycle,
the vertex v must be contained in the objective V1-FVS. This justifies the first case for Rule 2.

Now consider the second case for Rule 2. We only need to show that if the graph G has a V1-FVS
of size k, then G has a V1-FVS of size at most k that does not contain the degree-2 vertex v. Let F be
a V1-FVS of size k that contains v. If one u1 of the neighbors of v is in V1, then the set (F \ v) ∪ {u1}
will be a V1-FVS of size bounded by k that does not contain the vertex v. Thus, we can assume that the
two neighbors u1 and u2 of v are in two different connected components in G[V2]. Since G \ F is acyclic,
there is either no path or a unique path in G \ F between u1 and u2. If there is no path between u1 and
u2 in G \F , then adding v to G \F does not create any cycle. Therefore, in this case, the set F ′ = F \ v
is a V1-FVS of size k− 1 that does not contain v. If there is a unique path P between u1 and u2 in G\F ,
then the path P must contain at least one vertex w in V1 (since u1 and u2 are in different connected
components in G[V2]). Every cycle C in (G \ F ) ∪ {v} must contain v, thus, also contain u1 and u2.
Therefore, the partial path C \ v from u1 to u2 in C must be the unique path P between u1 and u2 in
G \ F , which contains the vertex w. This shows that w must be contained in all cycles in (G \ F ) ∪ {v}.
In consequence, the set F ′ = (F \ v)∪ {w} is a V1-FVS of size bounded by k that does not contain v.

Note that the second case of Rule 2 cannot be applied simultaneously on more than one vertex in V1.
For example, let v1 and v2 be two degree-2 vertices in V1 that are both adjacent to two vertices u1 and
u2 in V2. Then it is obvious that we cannot move both v1 and v2 to V2. In fact, if we first apply the
second case of Rule 2 on v1, then the first case of Rule 2 will become applicable on the vertex v2.

We show that the simple Rules 1-2 reduce an instance (G;V1, V2; k) of disjoint-fvs to a small kernel.
Our kernelization algorithm is based on an algorithm proposed in [5], which can be described as

follows: on a given instance (G;V1, V2; k) of disjoint-fvs, keep all vertices in V1 of degree at least 3
(whenever a vertices in V1 becomes degree less than 3, applying Rules 1-2 on the vertex), and repeatedly
branch on a leaf in the induced subgraph G[V1]. In particular, if the graph G has a V1-FVS of size
bounded by k, then at least one P of the computational paths in the branching program will return
a V1-FVS F of size bounded by k. The computational path P can be described by the algorithm in
Figure 2.

We remark that in case 1 in the algorithm FindingFVS, the leaf w in G[V1] can have at most one
neighbor u in G[V1], which by our assumption has degree at least 3. Therefore, after removing w, the
degree of u is at least 2.

Lemma 2.2 If none of Rule 1 and Rule 2 is applicable on an instance (G;V1, V2; k) of disjoint-fvs,
and |V1| > 2k + l − τ , then there is no V1-FVS of size bounded by k in G, where l is the number of
connected components in G[V2] and τ is the number of connected components in G[V1].

Proof. There are only two cases in Algorithm FindingFVS, namely:
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Algorithm FindingFVS(G,V1, V2, k)
input: an instance (G; V1, V2; k) of disjoint-fvs.
output: a V1-FVS F of size bounded by k in G.

1 F = ∅;
2 while |V1| > 0 do
3 pick a leaf w in G[V1];
4 case 1: \\ w is in the objective V1-FVS F .
5 add w to F and remove w from V1; k = k − 1;
6 if the neighbor u of w in G[V1] becomes degree-2 then apply Rule 2 on u;

7 case 2: \\ w is not in the objective V1-FVS F .
8 move w from V1 to V2.

Figure 2: The computational path P that finds the V1-FVS F of size bounded by k in G

case 1. w ∈ F : w is removed. If the degree of the neighbor u is larger than 3 before the removal of w,
w will be the only vertex deleted at this step. If the degree of u is equal to 3, then after removing
w, u becomes of degree 2, and is moved from V1 to V2 by Rule 2. The degree of any other vertex
in V1 keeps unchanged. Here we consider four subcases based on the other two neighbors v1 and v2
of u other than w:

1.1 v1 and v2 are in the same tree in G[V2]: u is added to F , and k decreases by 1.

1.2 v1 and v2 are in different trees in G[V2]: u is moved to V2, and l decreases by 1.

1.3 v1 and v2 are in V1: u is moved to V2 and becomes a single-vertex tree in G[V2], which increases
l by 1. Moreover, moving u from V1 to V2 splits v1 and v2 into different trees in G[V1], and
therefore increases τ by 1.

1.4 v1 is in V1, and v2 is in V2: u is moved to V2, with no any other influence.

case 2. w 6∈ F : w is moved to V2, which decreases l by at least 1. No other vertex in V1 is impacted by
this.

For case 1, one or two vertices are removed from V1, with k decreased by 1 or 2. For case 2, exactly
one vertex is removed with l decreased by 1. Case 1 can only occur at most k times, since the output
V1-FVS F has its size bounded by k, and each step of case 1 can remove at most 2 vertices from V1. The
second case removes exactly 1 vertex from V1. However, the number of times case 2 is executed is more
complicated because the subcase 1.3 might increase l, so case 2 might happen more than l times. If we
assume subcase 1.3 happens x times, then we can bound case 2 to no more than l + x times. The total
number of vertices removed from this process is at most 2 ∗ k + 1 ∗ (l + x) = 2k + l+ x.

Note that subcase 1.3 also increases τ , which will counteract the influence by increasing of l. We
observe that in each step at most two vertices are removed from G1, and then to remove a whole tree
from G1, the last step removes 1 or 2 vertices:

• A trivial tree in G1, i.e. a single vertex u with degree at least 3. If u is in F , i.e. case 1, it removes
only one vertex from V1 with k decreased by 1. Otherwise, it is in case 2, which moves u from V1

to V2 and removes one vertex from V1 but decreases the number l of trees in G[V2] by at least 2.
In both cases, the total number loses at least 1.

• Both vertices, say u1 and u2, have to be leaves, so we can pick any of them, w.l.o.g., u1. Here we
ignore the case u1 6∈ F , namely, because it is not the final step. So u1 ∈ F , and the disposal of u2

becomes very subtle, namely, they can only be subcases 1.1 or 1.2,

1.1 two vertices are removed from V1 with k decreased by 2: the total number loses 2;

1.2 one vertex is removed from V1 with l decreased by at least 2: the total number loses at least
1.
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From the above analysis, whatever the situation is, at the final step of each tree, the total number
loses at least 1. We know there are τ + x of such steps, where τ is the number of trees in the original
induced subgraph G[V1], and x is the number of trees created by subcase 1.3. So the bound becomes
2k + l + x− (τ + x) = 2k + l − τ .

If |G1| > 2k + l − τ , after 2k + l − τ vertices have been disposed of, let v be a leaf still left in G[V1].
Then G[V2] has already become a single connected component, and adding any new vertex with more
than two neighbors in V2 will incur cycles, so v cannot be put into G2. But the V1-FVS F already has k
vertices, and v cannot be added to F . So it must be a “no” instance.

Note that for those disjoint-fvs instances we will meet in Section 4, we always have |V2| = k + 1,
this is exactly the characteristic of the iterative compression teechnique. Also by the simple fact that
l ≤ |V2| and τ > 0, we have 2k+ l− τ ≤ 3k, so the kernel size is also bounded by 3k. With more careful
analysis, we can further improve the kernel size to 3k− τ − ρ(V1), where ρ(V1) is the size of a maximum
matching of the subgraph induced by the vertex set V ′

1 that consists of all vertices in V1 of degree larger
than 3. The detailed analysis for this fact is given in a complete version of the current paper.

3 A polynomial time solvable case for disjoint-fvs

In this section we consider a special class of instances for the disjoint-fvs problem. This approach is
closely related to the classical study on graph maximum genus embeddings [4, 13]. However, the study
on graph maximum genus embeddings that is related to our approach is based on general spanning trees
of a graph, while our approach must be restricted to only spanning trees that are constrained by the
vertex partition (V1, V2) of an instance (G;V1, V2; k) of disjoint-fvs. We start with the following simple
lemma.

Lemma 3.1 Let G be a graph and let S be a subset of vertices in G such that the induced subgraph G[S]
is a forest. Then there is a spanning tree in G that contains the entire induced subgraph G[S], and can
be constructed in time O(mα(n)), where α(n) is the inverse of Ackermann function [7].

Proof. The lemma can be proved based on a process that is similar to the well-known Kruskal’s
algorithm for constructing a minimum spanning tree for a given graphG [7], which runs in time O(mα(n))
if we do not have to sort the edges. Starting from a structure G0 that initially consists of the forest G[S]
and all vertices in G − S, we repeatedly insert each of the remaining edges (in an arbitrary order) into
the structure G0 as long as the edge does not create a cycle. The resulting structure of this process must
be a spanning tree that contains the forest G[S].

Let (G;V1, V2; k) be an instance for the disjoint-fvs problem, recall that (V1, V2) is a partition of the
vertex set of the graph G such that both induced subgraphs G[V1] and G[V2] are forests. By Lemma 3.1,
there is a spanning tree T of the graph G that contains the entire induced subgraphG[V2]. Call a spanning
tree that contains the induced subgraph G[V2] a TG[V2]-tree.

Let T be a TG[V2]-tree of the graph G. By the construction, every edge in G− T has at least one end
in V1. Two edges in G− T are V1-adjacent if they have a common end in V1. A V1-adjacency matching
in G − T is a partition of the edges in G − T into groups of one or two edges, called 1-groups and 2-
groups, respectively, such that two edges in the same 2-group are V1-adjacent. A maximum V1-adjacency
matching in G− T is a V1-adjacency matching in G− T that maximizes the number of 2-groups.

Definition Let (G;V1, V2; k) be an instance of disjoint-fvs. The V1-adjacency matching number
µ(G, T ) of a TG[V2]-tree T in G is the number of 2-groups in a maximum V1-adjacency matching in G−T .
The V1-adjacency matching number µ(G) of the graph G is the largest µ(G, T ) over all TG[V2]-trees T in
G.

An instance (G;V1, V2; k) of disjoint-fvs is 3-regularV1
if every vertex in the vertex set V1 has degree

exactly 3. Let fV1
(G) be the size of a minimum V1-FVS for G. Let β(G) be the Betti number of the
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graph G that is the total number of edges in G− T for any spanning tree T in G (or equivalently, β(G)
is the number of fundamental cycles in G) [13]. The following lemma is a nontrivial generalization of a
result in [18] (the result in [18] is a special case for Lemma 3.2 in which all vertices in the set V2 have
degree 2).

Lemma 3.2 For any 3-regularV1
instance (G;V1, V2; k) of disjoint-fvs, fV1

(G) = β(G)− µ(G). More-
over, a minimum V1-FVS can be constructed in linear time from a TG[V2]-tree whose V1-adjacency match-
ing number is µ(G).

Proof. Let T be a TG[V2]-tree such that there is a V1-adjacency matching M in G − T that contains
µ(G) 2-groups. Let U be the set of edges that are in the 1-groups in M . We construct a V1-FVS F as
follows: (1) for each edge e in U , arbitrarily pick an end of e that is in V1 and include it in F ; and (2) for
each 2-group of two V1-adjacent edges e1 and e1 in M , pick the vertex in V1 that is a common end of e1 and
e2 and include it in F . Note that every cycle in the graph G must contain at least one edge in G−T , while
every edge in G−T has at least one end in F . Therefore, F is an FVS. By the above construction, F is a
V1-FVS. The number of vertices in F is equal to |U |+µ(G). Since |U | = |G−T |−2µ(G) = β(G)−2µ(G),
we have |F | = β(G) − µ(G). This concludes that

fV1
(G) ≤ β(G) − µ(G). (1)

Now consider the other direction. Let F be a V1-FVS such that |F | = fV1
(G). Since G−F is a forest,

by Lemma 3.1, there is a spanning tree T in G that contains the entire induced subgraph G − F . We
construct a V1-adjacency matching in G−T and show that it contains at least β(G)−|F | 2-groups. Since
T contains G − F , each of the edges in G − T has at least one end in F . Let E2 be the set of edges in
G− T that have their both ends in F , and let E1 be the set of edges in G− T that have exactly one end
in F .

Claim. Each end of an edge in E2 is shared by exactly one edge in E1. In particular, no two
edges in E2 share a common end.

To see this, let u be an end of an edge [u, v] in E2, where both u and v are in F . Let e1 and e2 be the
other two edges incident to u (note that u has degree 3). If u is not shared by an edge in E1, then either
both e1 and e2 are in T or one of e1 and e2 is in E2. If both e1 and e2 are in T , then, since every edge in
G − T (including [u, v]) has at least one end in F \ {u}, the set F \ {u} would make a smaller V1-FVS.
Similarly, if the edge e1 = [u,w] is in E2, where w is also in F , then again F \ {u} would make a smaller
V1-FVS (note that u has degree 3 and that [u, v] and [u,w] are the only edges in G− T that are incident
to u). Therefore, both cases would contradict the assumption that F is a minimum V1-FVS. This proves
the claim.

Suppose that there are m2 vertices in F that are incident to two edges in G − T . Thus, each of the
rest |F | −m2 vertices in F is incident to at most one edge in G − T . By counting the total number of
incidencies between the vertices in F and edges in G− T , we get

2|E2|+ (β(G) − |E2|) ≤ 2m2 + (|F | −m2),

or equivalently,
m2 − |E2| ≥ β(G) − |F |. (2)

Now we construct a V1-adjacency matching in G− T , as follows. For each edge e in E2, by the above
claim, we can make a 2-group that consists of e and an edge in E1 that shares an end with e. Besides
the ends of the edges in E2, there are m2 − 2|E2| vertices in F that are incident to two edges in E1. For
each v of these vertices, we make a 2-group that consists of the two edges in E1 that are incident to v.
Note that this construction of 2-groups never re-uses any edges in G − T more than once. Therefore,
the construction gives |E2|+ (m2 − 2|E2|) = m2 − |E2| disjoint 2-groups. We then make each of the rest
edges in G−T a 1-group. This gives a V1-adjacency matching in G−T that has m2 − |E2| 2-groups. By
Inequality (2) and by definition, we have

µ(G) ≥ µ(G, T ) ≥ m2 − |E2| ≥ β(G)− |F | = β(G) − fV1
(G). (3)
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Combining (1) and (3), we conclude with fV1
(G) = β(G)−µ(G). The first paragraph also illustrates how

to construct a minimum V1-FVS from a TG[V2]-tree whose V1-adjacency matching number is µ(G).

By Lemma 3.2, in order to construct a minimum V1-FVS for a 3-regularV1
instance (G;V1, V2, k)

of disjoint-fvs, we only need to construct a TG[V2]-tree in the graph G whose V1-adjacency matching
number is µ(G). The construction of an unconstrained maximum adjacency matching in terms of general
spanning trees has been considered by Furst, Gross and McGeoch in their study of graph maximum
genus embeddings [13]. We follow a similar approach, based on cographic matroid parity, to construct
a TG[V2]-tree in G whose V1-adjacency matching number is µ(G). We start with a quick review on the
related concepts in matroid theory. More detailed discussion on matroid theory can be found in [19].

A matroid is a pair (E,ℑ), where E is a finite set and ℑ is a collection of subsets of E that satisfies
the following properties:

(1) If A ∈ ℑ and B ⊆ A, then B ∈ ℑ;

(2) If A,B ∈ ℑ and |A| > |B|, then there is an element a ∈ A−B such that B ∪ {a} ∈ ℑ.

The matroid parity problem is stated as follows: given a matroid (E,ℑ) and a perfect pairing {[a1, a1],
[a2, a2], . . . , [an, an]} of the elements in the set E, find a largest subset P in ℑ such that for all i, 1 ≤ i ≤ n,
either both ai and ai are in P , or neither of ai and ai is in P .

Each connected graph G is associated with a cographic matroid (EG,ℑG), where EG is the edge set
of G, and an edge set S is in ℑG if and only if G− S is connected. It is well-known that matroid parity
problem for cographic matroids can be solved in polynomial time [19]. The fastest known algorithm for
cographic matroid parity problem is by Gabow and Stallmann [14], which runs in time O(mn log6 n).

In the following, we explain how to reduce our problem to the cographic matroid parity problem. Let
(G;V1, V2; k) be a 3-regularV1

instance of the disjoint-fvs problem. Without loss of generality, we make
the following assumptions: (1) the graph G is connected (otherwise, we simply work on each connected
component of G); and (2) for each vertex v in V1, there is at most one edge from v to a connected
component in G[V2] (otherwise, we can directly include v in the objective V1-FVS).

Recall that two edges are V1-adjacent if they share a common end in V1. For an edge e in G, denote
by dV1

(e) the number of edges in G that are V1-adjacent to e (note that an edge can be V1-adjacent to
the edge e from either end of e).

We construct a labeled subdivision G2 of the graph G as follows.

1. shrink each connected component of G[V2] into a single vertex; let the resulting graph be G1;

2. assign each edge in G1 a distinguished label;

3. for each edge labeled e0 in G1, suppose that the edges V1-adjacent to e0 are labeled by e1, e2, . . .,
ed (the order is arbitrary), where d = dV1

(e0); subdivide e0 into d segment edges by inserting d− 1
degree-2 vertices in e0, and label the segment edges by (e0e1), (e0e2), . . ., (e0ed). Let the resulting
graph be G2. The segment edges (e0e1), (e0e2), . . ., (e0ed) in G2 are said to be from the edge e0 in
G1.

There are a number of interesting properties for the graphs constructed above. First, each of the edges
in the graph G1 corresponds uniquely to an edge in G that has at least one end in V1. Thus, without
creating any confusion, we will simply say that the edge is in the graph G or in the graph G1. Second,
because of the assumptions we made on the graph G, the graph G1 is a simple and connected graph.
In consequence, the graph G2 is also a simple and connected graph. Finally, because each edge in G1

corresponds to an edge in G that has at least one end in V1, and because each vertex in V1 has degree 3,
every edge in G1 is subdivided into at least two segment edges in G2.

Now in the labeled subdivision graph G2, pair the segment edge labeled (e0ei) with the segment edge
labeled (eie0) for all segment edges (note that (e0ei) is a segment edge from the edge e0 in G1 and that
(eie0) is a segment edge from the edge ei in G1). By the above remarks, this is a perfect pairing P of
the edges in G2. Now with this edge pairing P in G2, and with the cographic matroid (EG2

,ℑG2
) for the

graph G2, we call Gabow and Stallmann’s algorithm [14] for the cographic matroid parity problem. The
algorithm produces a maximum edge subset P in ℑG2

that, for each segment edge (e0ei) in G2, either
contains both (e0ei) and (eie0), or contains neither of (e0ei) and (eie0).
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Lemma 3.3 From the edge subset P in ℑG2
constructed above, a TG[V2]-tree for the graph G whose V1-

adjacency matching number is µ(G) can be constructed in time O(mα(n)), where n and m are the number
of vertices and the number of edges, respectively, of the graph G.

Proof. Let the edge subset P consist of the edge pairs {[(e1e
′
1), (e

′
1e1)], . . . , [(ehe

′

h), (e
′

heh)]}. Since
P ∈ ℑG2

, G2 − P is connected. Thus, for each edge ei in G1, there is at most one segment edge in P
that is from ei. Therefore, the edge subset P corresponds to a edge subset P ′ of exactly 2h edges in
G1 (thus exactly 2h edges in G): P ′ = {e1, e

′
1; . . . , eh, e

′

h}, where for 1 ≤ i ≤ h, the edges ei and e′1 are
V1-adjacent. Since G2−P is connected, it is easy to verify that the graph G1−P ′ (thus the graph G−P ′)
is also connected. Also note that the graph G− P ′ contains the induced subgraph G[V2]. Therefore, by
Lemma 3.1, we can construct, in time O(mα(n)), a TG[V2]-tree T1 for the graph G from G− P ′. Now if
we make each pair [ei, e

′
i] a 2-group for 1 ≤ i ≤ h, and make each of the rest edges in G− T1 a 1-group,

we get a V1-adjacency matching with h 2-groups in G− T1.
To complete the proof of the lemma, we only need to show that h = µ(G). For this, it suffices to show

that no TG[V2]-tree can have a V1-adjacency matching with more than h 2-groups. Let T2 be a TG[V2]-tree
with q 2-groups [e1, e

′
1], . . ., [eq, e

′
q] 2-groups in G−T2. Since T2 is entirely contained in G−∪q

i=1{ei, e
′
i},

G − ∪q
i=1{ei, e

′
i} is connected. In consequence, the graph G1 − ∪q

i=1{ei, e
′
i} is also connected. From

this, it is easy to verify that the graph G2 −∪q
i=1{(eie

′
i), (e

′
iei)} is connected. Therefore, the edge subset

{(e1e
′
1), (e

′
1e1); . . . , (eqe

′
q), (e

′
qeq)} is in ℑG2

. Now since P is the the solution of the matroid parity problem
for the cographic matroid (EG2

,ℑG2
) and since P consists of h edge pairs, we must have h ≥ g. This

completes the proof of the lemma.

Now we are ready to present our main result in this section.

Theorem 3.4 There is an O(n2 log6 n) time algorithm that on a 3-regularV1
instance (G;V1, V2; k) of

the disjoint-fvs problem, either constructs a V1-FVS of size bounded by k, if such a V1-FVS exists, or
reports correctly that no such a V1-FVS exists.

Proof. For the 3-regularV1
instance (G;V1, V2; k) of disjoint-fvs, we first construct the graph G1 in

linear time by shrinking each connected component of G[V2] into a single vertex. Note that since each
vertex in V1 has degree 3, the total number of edges in G1 is bounded by 3|V1|. From the graph G1,
we construct the labeled subdivision graph G2. Again since each vertex in V1 has degree 3, each edge
in G1 is subdivided into at most 4 segment edges in G2. Therefore, the number n2 of vertices and the
number m2 of edges in G2 are both bounded by O(|V1|) = O(n). From the graph G2, we apply Gabow
and Stallmann’s algorithm [14] on the cographic matroid (EG2

,ℑG2
) that produces the edge subset P in

ℑG2
in time O(m2n2 log

6 n2) = O(n2 log6 n). By Lemma 3.3, from the edge subset P , we can construct
in time O(mα(n)) a TG[V2]-tree T for the graph G whose V1-adjacency matching number is µ(G). Finally,
by Lemma 3.2, from the TG[V2]-tree T , we can construct a minimum V1-FVS F in linear time. Now the
solution to the 3-regularV1

instance (G;V1, V2; k) of disjoint-fvs can be trivially derived by comparing
the size of F and the parameter k. Summarizing all these steps gives the proof of the theorem.

Combining Theorem 3.4 and Lemma 2.1, we have

Corollary 3.5 There is an O(n2 log6 n) time algorithm that on an instance (G;V1, V2; k) of disjoint-
fvs where all vertices in V1 have degree bounded by 3, either constructs a V1-FVS of size bounded by k,
if such an FVS exists, or reports correctly that no such a V1-FVS exists.

We remark this special structure is the best we can expect, in the sense that the disjoint-fvs problem
becomes NP-hard when maximum degree in V1 is no less than 4.

4 An improved algorithm for disjoint-fvs

Now we are ready for the general disjoint-fvs problem. Let (G;V1, V2; k) be an instance of disjoint-
fvs, for which we are looking for a V1-FVS of size k. Observe that certain structures in the input graph
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G can be easily processed and then removed from G. For example,the graph G cannot contain self-loops
(i.e., edges whose both ends are on the same vertices) because by definition, both induced subgraphs
G[V1] and G[V2] are forests. Moreover, if two vertices v and w are connected by multiple edges, then
exactly one of v and w is in V1 and the other is in V2 (this is again because the induced subgraphs
G[V1] and G[V2] are forests). Thus, in this case, we can directly include the vertex in V1 in the objective
V1-FVS. Therefore, for a given input graph G, we always first apply a preprocessing that applies the
above operations and remove all self-loops and multiple edges in the graph G. In consequence, we can
assume, without loss of generality., that the input graph G contains neither self-loops nor multiple edges.

A vertex v ∈ V1 is a nice V1-vertex if v is of degree 3 in G and all its neighbours are in V2. Let p be
the number of nice V1-vertices in G, and let l be the number of connected components in the induced
subgraph G[V2]. The measure m = k + l

2 − p will be used in the analysis of our algorithm.

Lemma 4.1 If the measure m is bounded by 0, then there is no V1-FVS of size bounded by k in G. If all
vertices in V1 are nice V1-vertices, then a minimum V1-FVS in G can be constructed in polynomial time.

Proof. Suppose that m = k + l
2 − p ≤ 0, and that there is a V1-FVS F of size of k′ ≤ k. Let S

be the set of any p − k′ nice V1-vertices that are not in F . The subgraph G′ induced by V2 ∪ S must
be a forest because F is an FVS and is disjoint with V2 ∪ S. On the other hand, the subgraph G′ can
be constructed from the induced subgraph G[V2] and the p − k′ discrete vertices in S, by adding the
3(p−k′) edges that are incident to the vertices in S. Since k′ ≤ k, we have p−k′ ≥ p−k ≥ l

2 . This gives
3(p− k′) = 2(p− k′) + (p− k′) ≥ l + (p− k′). This contradicts the fact that G′ is a forest – in order to
keep G′ a forest, we can add at most l + (p− k′)− 1 edges to the structure that consists of the induced
subgraph G[V2] of l connected components and the p−k′ discrete vertices in S. This contradiction proves
the first part of the lemma.

To prove the second part of the lemma, observe that when all vertices in V1 are nice V1-vertices,
(G;V1, V2; k) is a 3-regularV1

instance for disjoint-fvs. By Theorem 3.4, there is a polynomial time
algorithm that constructs a minimum V1-FVS in G for 3-regularV1

instances of disjoint-fvs.

The algorithm Feedback(G, V1 , V2, k), for the disjoint-fvs problem is given in Figure 3. We first
discuss the correctness of the algorithm. The correctness of step 1 and step 2 of the algorithm is obvious.
By lemma 4.1, step 3 is correct. Step 4 is correct by Rule 1 in section 2. After step 4, each vertex in V1

has degree at least 2 in G.
If the vertex w has two neighbors in V2 that belong to the same tree T in the induced subgraph G[V2],

then the tree T plus the vertex w contains at least one cycle. Since we are searching for a V1-FVS, the
only way to break the cycles in T ∪{w} is to include the vertex w in the objective V1-FVS. Moreover, the
objective V1-FVS of size at most k exists in G if and only if the remaining graph G−w has a V1-FVS of
size at most k − 1 in the subset V1 \ {w}. Therefore, step 5 correctly handles this case. After this step,
all vertices in V1 has at most one neighbor in a tree in G[V2].

Because of step 5, a degree-2 vertex at step 6 cannot have both its neighbors in the same tree in G[V2].
By Lemma 2.1, step 6 correctly handles this case. After step 6, all vertices in V1 have degree at least 3.

A vertex w ∈ V1 is either in or not in the objective V1-FVS. If w is in the objective V1-FVS, then we
should be able to find a V1-FVS F1 in the graph G − w such that |F1| ≤ k − 1 and F1 ⊆ V1 \ {w}. On
the other hand, if w is not in the objective V1-FVS, then the objective V1-FVS for G must be contained
in the subset V1 \ {w}. Also note that in this case, the induced subgraph G[V2 ∪ {w}] is still a forest
since no two neighbors of w in V2 belong to the same tree in G[V2]. Therefore, step 7 handles this case
correctly. After step 7, every leaf w in G[V1] that is not a nice V1-vertex has exactly two neighbors in V2.

The vertex y in step 8 is either in or not in the objective V1-FVS . If y is in the objective V1-FVS,
then we should be able to find a V1-FVS F1 in the graph G− y such that |F1| ≤ k− 1 and F1 ⊆ V1 \ {w}.
After removing y from the graph G, the vertex w becomes degree-2 and both of its neighbors are in V2

(note that step 7 is not applicable to w). Therefore, by Lemma 2.1, the vertex w can be moved from V1

to V2 (again note that G[V2 ∪ {w}] is a forest). On the other hand, if y is not in the objective V1-FVS,
then the objective FVS for G must be contained in the subset V1 \ {y}. Also note that in this case,
the subgraph G[V2 ∪ {y}] is a forest since no two neighbors of y in V2 belong to the same tree in G[V2].
Therefore, step 8 handles this case correctly, and after step 8, the following conditions hold:
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Algorithm Feedback(G,V1, V2, k)
input: an instance (G; V1, V2; k) of disjoint-fvs.
output: a V1-FVS F of size bounded by k in G if such a V1-FVS exists, or ‘No’ otherwise.

1 if (k < 0) or (k = 0 and G is not a forest) then return ‘No’;
2 if k ≥ 0 and G is a forest then return ∅;

let l be the number of connected components in G[V2],
and let p be the number of nice V1-vertices;

3 if p > k + l

2
then return ‘No’;

if p = |V1| then solve the problem in polynomial time;
4 if a vertex w ∈ V1 has degree not larger than 1 then

return Feedback(G − w,V1 \ {w}, V2, k);
5 if a vertex w ∈ V1 has two neighbors in the same tree in G[V2] then

F1 = Feedback(G − w,V1 \ {w}, V2, k − 1);
if F1=‘No’ then return ‘No’ else return F1 ∪ {w}

6 if a vertex w ∈ V1 has degree 2 then
return Feedback(G, V1 \ {w}, V2 ∪ {w}, k);

7 if a leaf w in G[V1] is not a nice V1-vertex and has ≥ 3 neighbors in V2

F1 = Feedback(G− w,V1 − {w}, V2, k − 1);
7.1 if F1 6= ‘No’ then return F1 ∪ {w}
7.2 else return Feedback(G, V1 \ {w}, V2 ∪ {w}, k);
8 if the neighbor y ∈ V1 of a leaf w in G[V1] has at least one neighbor in V2

F1 = Feedback(G− y, V1 \ {w, y}, V2 ∪ {w}, k − 1);
8.1 if F1 6=‘No’ then return F1 ∪ {y}
8.2 else return Feedback(G, V1 \ {y}, V2 ∪ {y}, k);
9 pick a lowest leaf w1 in any tree T in G[V1];

let w1, · · · , wt be the children of w in T ;
F1 = Feedback(G− w,V1 \ {w,w1}], V2 ∪ {w1}, k − 1);

9.1 if F1 6=‘No’ then return F1 ∪ {w}
9.2 else return Feedback(G, V1 \ {w}, V2 ∪ {w}, k).

Figure 3: Algorithm for disjoint-fvs

1. k > 0 and G is not a forest (by steps 1 and 2);
2. p ≤ k + l

2 and not all vertices of V1 are nice vertices (by step 3);
3. any vertex in V1 has degree at least 3 in G (by steps 4-6);
4. any leaf in G[V1] is either a nice V1-vertex, or has exactly two neighbors in V2 (by step 7); and
5. for any leaf w in G[V1], the neighbor y ∈ V1 of w has no neighbors in V2 (by step 8).
By condition 4, any tree of single vertex in G[V1] is a nice V1-vertex. By condition 5, there is no tree

of two vertices in G[V1]. For a tree T with at least three vertices in G[V1], fix any internal vertex of T as
the root. Then we can find a lowest leaf w1 of T in polynomial time. Since the tree T has at least three
vertices, the vertex w1 must have a parent w in T which is in G[V1].

Vertex w is either in or not in the objective V1-FVS. If w is in the objective V1-FVS, then we should
find a V1-FVS F1 in the graph G−w such that F1 ⊆ V1 \ {w} and |F1| ≤ k− 1. Note that after removing
w, the leaf w1 becomes degree-2, and by Lemma 2.1, it is valid to move w1 from V1 to V2 since the two
neighbors of w1 in V2 are not in the same tree in G[V2]. On the other hand, if w is not in the objective
V1-FVS, then the objective V1-FVS must be in V1 \ {w}. In summary, step 9 handles this case correctly.

Now we are ready to present the following theorem.

Theorem 4.2 The algorithm Feedback(G, V1 , V2, k) correctly solves the disjoint-fvs problem. The
running time of the algorithm is O(2k+l/2n2), where n is the number of vertices in G, and l is the
number of connected components in the induced subgraph G[V2].

Proof. The correctness of the algorithm has been verified by the above discussion. Now we consider
the complexity of the algorithm. The recursive execution of the algorithm can be described as a search
tree T . We first count the number of leaves in the search tree T . Note that only steps 7, 8 and 9 of
the algorithm correspond to branches in the search tree T . Let T (m) be the number of leaves in the
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search tree T for the algorithm Feedback(G, V1 , V2, k) when m = k + l/2− p, where l is the number of
connected components (i.e., trees) in the forest G[V2], and p is the number of nice V1-vertices.

The branch of step 7.1 has that k′ = k − 1, l′ = l and p′ ≥ p. Thus we have m′ = k′ + l′/2 − p′ ≤
k − 1 + l/2− p = m− 1. The branch of step 7.2 has that k′′ = k, l′′ ≤ l − 2 and p′′ = p. Thus we have
m′′ = k′′ + l′′/2− p′′ ≤ m− 1. Thus, for step 7, the recurrence is T (m) ≤ 2T (m− 1).

The branch of step 8.1 has that k′ = k− 1, l′ = l− 1 and p′ ≥ p. Thus we have m′ = k′ + l′/2− p′ ≤
k − 1 + (l − 1)/2 − p = m − 1.5. The branch of step 8.2 has that k′′ = k, l′′ = l and p′′ = p + 1.
Thus we have m′′ = k′′ + l′′/2 − p′′ = k + l/2 − (p + 1) = m − 1. Thus, for step 8, the recurrence is
T (m) ≤ T (m− 1.5) + T (m− 1).

The branch of step 9.1 has that k′ = k− 1, l′ = l− 1 and p′ ≥ p. Thus we have m′ = k′ + l′/2− p′ ≤
k − 1 + (l − 1)/2 − p = m − 1.5. the branch of step 9.2 has that k′′ = k, l′′ = l + 1 because of w, and
p′′ ≥ p+ 2 because w has at least two children which are leaves. Thus we have m′′ = k′′ + l′′/2− p′′ ≤
k + (l + 1)/2− (p+ 2) = m− 1.5. Thus, for step 8, the recurrence is T (m) ≤ 2T (m− 1.5).

The worst case happens at step 7. From the recurrence of step 7, we have T (m) ≤ 2m. Moreover,
steps 1-3 just return an answer; step 4 does not increase measure m since vertex w is not a nice vertex;
and step 5 also does not increase m since k decreases by 1 and p decreases by at most 1. Step 6 may
increase measure m by 0.5 since l may increase by 1. However, we can simply just bypass vertex w in
step 6, instead of putting it into V2. If we bypass w, then measure m does not change. In lemma 2.1,
we did not bypass w because it is easier to analyze the kernel in section 2 by putting w into V2. Since
m = k + l/2 − p ≤ k + l/2, and it is easy to verify that the computation time along each path in the
search tree T is bounded by O(n2), we conclude that the algorithm Feedback(G, V1 , V2, k) solves the
disjoint fvs problem in time O(2k+l/2n2). This completes the proof of the lemma.

5 Concluding result: an improved algorithm for fvs

The results presented in previous sections lead to an improved algorithm for the general fvs problem.
Following the idea of iterative compression proposed by Reed et al. [23], we formulate the following
problem:

fvs reduction: given a graph G and an FVS F of size k+1 for G, either construct an FVS
of size at most k for G, or report that no such an FVS exists.

Lemma 5.1 The fvs reduction problem on an n-vertex graph G can be solved in time O(3.83kn2).

Proof. The proof goes similar to that for Lemma 2 in [3]. Let G be a graph and let Fk+1 be an FVS
of size k + 1 in G. For each j, 0 ≤ j ≤ k, we enumerate each subset Fk−j of k − j vertices in Fk+1, and
assume that Fk−j is the intersection of Fk+1 and the objective FVS Fk. Therefore, constructing the FVS
Fk of size k in the graph G is equivalent to constructing the FVS Fk−Fk−j of size j in the graph G−Fk−j ,
which, by Theorem 4.2 (note that l ≤ j + 1), can be constructed in time O(2j+(j+1)/2n2) = O(2.83jn2).
Applying this procedure for every integer j (0 ≤ j ≤ k) and all subsets of size k−j in Fk+1 will successfully
find an FVS of size k in the graph G, if such an FVS exists. This algorithm solves fvs reduction in
time

∑k
j=0

(

k+1
k−j

)

· O(2.83jn2) = O(3.83kn2).

Finally, by combining Lemma 5.1 with iterative compression [5], we obtain the main result of this
paper.

Theorem 5.2 The fvs problem on an n-vertex graph is solvable in time O(3.83kkn2).

The proof of Theorem 5.2 is exactly similar to that of Theorem 3 in [5], with the complexity O(5kn2)
for solving the fvs reduction problem being replaced by O(3.83kn2), as given in Lemma 5.1.
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