On Feedback Vertex Set: New Measure and New Structures *

YIXIN CAO JIANER CHEN

Yang Liu

Computer Science and Engineering Texas A&M University College Station, TX 77843-3112, USA {yixin,chen}@cse.tamu.edu Department of Computer Science University of Texas - Pan American Edinburg, TX 78539-2999, USA yliu@cs.panam.edu

Abstract

We study the parameterized complexity of the FEEDBACK VERTEX SET problem (FVS) on undirected graphs. We approach the problem by considering a variation of it, the DISJOINT FEEDBACK VERTEX SET problem (DISJOINT-FVS), which finds a disjoint feedback vertex set of size k when a feedback vertex set of a graph is given. We show that DISJOINT-FVS admits a small kernel, and can be solved in polynomial time when the graph has a special structure that is closely related to the maximum genus of the graph. We then propose a simple branch-and-search process on DISJOINT-FVS, and introduce a new branch-and-search measure. The branch-and-search process effectively reduces a given graph to a graph with the special structure, and the new measure more precisely evaluates the efficiency of the branch-and-search process. These algorithmic, combinatorial, and topological structural studies enable us to develop an $O(3.83^k kn^2)$ time parameterized algorithm for the general FVS problem, improving the previous best algorithm of time $O(5^k kn^2)$ for the problem.

1 Introduction

All graphs in our discussion are supposed to be undirected. A *feedback vertex set* (FVS) F in G is a set of vertices in G whose removal results in an acyclic graph. The problem of finding a minimum feedback vertex set in a graph is one of the classical NP-complete problems [17]. The history of the problem can be traced back to early '60s. For several decades, many different algorithmic approaches were tried on this problem, including approximation algorithms, linear programming, local search, polyhedral combinatorics, and probabilistic algorithms (see the survey [11]). There are also exact algorithms finding a minimum FVS in a graph of n vertices in time $\mathcal{O}(1.9053^n)$ [22] and in time $\mathcal{O}(1.7548^n)$ [12].

An important application of the FVS problem is *deadlock recovery* in operating systems [24], in which a deadlock is presented by a cycle in a *system resource-allocation graph* G. Therefore, in order to recover from deadlocks, we need to abort a set of processes in the system, i.e., to remove a set of vertices in the graph G, so that all cycles in G are broken. Equivalently, we need to find an FVS in G.

In a practical system resource-allocation graph G, it can be expected that the size k of the minimum FVS in G, i.e., the number of vertices in the FVS, is fairly small. This motivated the study of the parameterized version of the problem, which we will name FVS: given a graph G and a parameter k, either construct an FVS of size bounded by k in G or report no such an FVS exists. Parameterized algorithms for the FVS problem have been extensively investigated that find an FVS of k vertices in a graph of n vertices in time $f(k)n^{\mathcal{O}(1)}$ for a fixed function f (thus, the algorithms for FVS was given by Bodlaender [3] and by Downey and Fellows [9]. Since then a chain of dramatic improvements was obtained by different researchers (see Figure 1).

^{*}Supported in part by the US National Science Foundation under the Grants CCF-0830455 and CCF-0917288.

Authors	Complexity	Year
Bodlaender[3]		
Downey and Fellows [9]	$\mathcal{O}(17(k^4)!n^{\mathcal{O}(1)})$	1994
Downey and Fellows [10]	$\mathcal{O}((2k+1)^k n^2)$	1999
Raman et al.[21]	$\mathcal{O}(\max\{12^k, (4\log k)^k\}n^{2.376})$	2002
Kanj et al.[16]	$\mathcal{O}((2\log k + 2\log\log k + 18)^k n^2)$	2004
Raman et al.[20]	$\mathcal{O}((12\log k/\log\log k+6)^k n^{2.376})$	2006
Guo et al. $[15]$	$\mathcal{O}((37.7)^k n^2)$	2006
Dehne et al.[8]	$\mathcal{O}((10.6)^k n^3)$	2005
Chen et al.[5]	$\mathcal{O}(5^k k n^2)$	2008
This paper	$\mathcal{O}(3.83^k kn^2)$	2010

Figure 1: The history of parameterized algorithms for the unweighted FVS problem.

Randomized parameterized algorithms have also been studied for the problem. The best randomized parameterized algorithm for the problems is due to Becker et al. [2], which runs in time $\mathcal{O}(4^k k n^2)$.

The main result of the current paper is an algorithm that solves the FVS problem. The running time of our algorithm is $\mathcal{O}(3.83^k kn^2)$. This improves a long chain of results in parameterized algorithms for the problem. We remark that the running time of our (deterministic) algorithm is even faster than that of the previous best randomized algorithm for the problem as given in [2].

Our approach, as some of the previous ones, is to study a variation of the FVS problem, the DISJOINT FEEDBACK VERTEX SET problem (DISJOINT-FVS), which finds a disjoint feedback vertex set of size k in a graph G when a feedback vertex set of G is given. Our significant contribution to this research includes:

- 1. A new technique that produces a kernel of size 3k for the DISJOINT-FVS problem, and improves the previous best kernel of size 4k for the problem [8]. The new kernelization technique is based on a branch and search algorithm for the problem, which is, to our best knowledge, the first time used in the literature of kernelization;
- 2. A polynomial time algorithm that solves the DISJOINT-FVS problem when the input graph has a special structure;
- 3. A branch and search process that effectively reduces an input instance of DISJOINT-FVS to an instance of the special structure as given in 2;
- 4. A new measure that more precisely evaluates the efficiency of the branch and search process in 3;
- 5. A new algorithm for the FVS problem that significantly improves previous algorithms for the problem.

2 DISJOINT-FVS and its kernel

We start with a precise definition of our problem.

DISJOINT-FVS. Given a graph G = (V, E), an FVS F in G, and a parameter k, either construct an FVS F' of size k in G such that $F' \subseteq V \setminus F$, or report that no such an FVS exists.

Let $V_1 = V \setminus F$. Since F is an FVS, the subgraph induced by V_1 must be a forest. Moreover, if the subgraph induced by F is not a forest, then it is impossible to have an FVS F' in G such that $F' \subseteq V \setminus F$. Therefore, an instance of DISJOINT-FVS can be written as $(G; V_1, V_2; k)$, and consists of a partition (V_1, V_2) of the vertex set of the graph G and a parameter k such that both V_1 and V_2 induce forests (where $V_2 = F$). We will call an FVS entirely contained in V_1 a V_1 -FVS. Thus, the instance $(G; V_1, V_2; k)$ of DISJOINT-FVS is looking for a V_1 -FVS of size k in the graph G.

Given an instance $(G; V_1, V_2; k)$ of DISJOINT-FVS, we apply the following two simple rules:

Rule 1. Remove all degree-0 vertices; and remove all degree-1 vertices;

Rule 2. For a degree-2 vertex v in V_1 ,

- if the two neighbors of v are in the same connected component of $G[V_2]$, then include v into the objective V_1 -FVS, $G = G \setminus v$, and k = k - 1; • otherwise, move v from V_1 to V_2 : $V_1 = V_1 \setminus \{v\}, V_2 = V_2 \cup \{v\}.$

Note that the second case in Rule 2 includes the case where one or both neighbors of v are not in V_2 . The correctness of Rule 1 is trivial: no degree-0 or degree-1 vertices can be contained in any cycle. On the other hand, although Rule 2 is also easy to verify for the general FVS problem [5] (because any cycle containing a degree-2 vertex v must also contain the two neighbors of v), it is much less obvious for the DISJOINT-FVS problem – the two neighbors of a degree-2 vertex v in V_1 may not be in V_1 and cannot be included in the objective V_1 -FVS. For this, we have the following lemma.

Lemma 2.1 Rule 2 is safe.

PROOF. If the two neighbors of the degree-2 vertex v in V_1 are contained in the same connected component in $G[V_2]$, then v and some vertices in V_2 form a cycle. Therefore, in order to break this cycle, the vertex v must be contained in the objective V_1 -FVS. This justifies the first case for Rule 2.

Now consider the second case for Rule 2. We only need to show that if the graph G has a V_1 -FVS of size k, then G has a V_1 -FVS of size at most k that does not contain the degree-2 vertex v. Let F be a V₁-FVS of size k that contains v. If one u_1 of the neighbors of v is in V_1 , then the set $(F \setminus v) \cup \{u_1\}$ will be a V_1 -FVS of size bounded by k that does not contain the vertex v. Thus, we can assume that the two neighbors u_1 and u_2 of v are in two different connected components in $G[V_2]$. Since $G \setminus F$ is acyclic, there is either no path or a unique path in $G \setminus F$ between u_1 and u_2 . If there is no path between u_1 and u_2 in $G \setminus F$, then adding v to $G \setminus F$ does not create any cycle. Therefore, in this case, the set $F' = F \setminus v$ is a V_1 -FVS of size k-1 that does not contain v. If there is a unique path P between u_1 and u_2 in $G \setminus F$, then the path P must contain at least one vertex w in V_1 (since u_1 and u_2 are in different connected components in $G[V_2]$). Every cycle C in $(G \setminus F) \cup \{v\}$ must contain v, thus, also contain u_1 and u_2 . Therefore, the partial path $C \setminus v$ from u_1 to u_2 in C must be the unique path P between u_1 and u_2 in $G \setminus F$, which contains the vertex w. This shows that w must be contained in all cycles in $(G \setminus F) \cup \{v\}$. In consequence, the set $F' = (F \setminus v) \cup \{w\}$ is a V_1 -FVS of size bounded by k that does not contain v.

Note that the second case of Rule 2 cannot be applied *simultaneously* on more than one vertex in V_1 . For example, let v_1 and v_2 be two degree-2 vertices in V_1 that are both adjacent to two vertices u_1 and u_2 in V_2 . Then it is obvious that we cannot move both v_1 and v_2 to V_2 . In fact, if we first apply the second case of Rule 2 on v_1 , then the first case of Rule 2 will become applicable on the vertex v_2 .

We show that the simple Rules 1-2 reduce an instance $(G; V_1, V_2; k)$ of DISJOINT-FVS to a small kernel.

Our kernelization algorithm is based on an algorithm proposed in [5], which can be described as follows: on a given instance $(G; V_1, V_2; k)$ of DISJOINT-FVS, keep all vertices in V_1 of degree at least 3 (whenever a vertices in V_1 becomes degree less than 3, applying Rules 1-2 on the vertex), and repeatedly branch on a leaf in the induced subgraph $G[V_1]$. In particular, if the graph G has a V_1 -FVS of size bounded by k, then at least one \mathcal{P} of the computational paths in the branching program will return a V₁-FVS F of size bounded by k. The computational path \mathcal{P} can be described by the algorithm in Figure 2.

We remark that in case 1 in the algorithm **FindingFVS**, the leaf w in $G[V_1]$ can have at most one neighbor u in $G[V_1]$, which by our assumption has degree at least 3. Therefore, after removing w, the degree of u is at least 2.

Lemma 2.2 If none of Rule 1 and Rule 2 is applicable on an instance $(G; V_1, V_2; k)$ of DISJOINT-FVS. and $|V_1| > 2k + l - \tau$, then there is no V_1 -FVS of size bounded by k in G, where l is the number of connected components in $G[V_2]$ and τ is the number of connected components in $G[V_1]$.

Proof. There are only two cases in Algorithm **FindingFVS**, namely:

```
Algorithm Finding FVS(G, V_1, V_2, k)
INPUT: an instance (G; V_1, V_2; k) of DISJOINT-FVS.
OUTPUT: a V_1-FVS F of size bounded by k in G.
1
     F = \emptyset;
     while |V_1| > 0 do
\mathbf{2}
3
         pick a leaf w in G[V_1];
         case 1: \setminus w is in the objective V_1-FVS F.
4
             add w to F and remove w from V_1; k = k - 1;
5
\mathbf{6}
             if the neighbor u of w in G[V_1] becomes degree-2 then apply Rule 2 on u;
7
         case 2: \setminus w is not in the objective V_1-FVS F.
8
             move w from V_1 to V_2.
```

Figure 2: The computational path \mathcal{P} that finds the V₁-FVS F of size bounded by k in G

- **case 1.** $w \in F$: w is removed. If the degree of the neighbor u is larger than 3 before the removal of w, w will be the only vertex deleted at this step. If the degree of u is equal to 3, then after removing w, u becomes of degree 2, and is moved from V_1 to V_2 by Rule 2. The degree of any other vertex in V_1 keeps unchanged. Here we consider four subcases based on the other two neighbors v_1 and v_2 of u other than w:
 - 1.1 v_1 and v_2 are in the same tree in $G[V_2]$: u is added to F, and k decreases by 1.
 - 1.2 v_1 and v_2 are in different trees in $G[V_2]$: u is moved to V_2 , and l decreases by 1.
 - 1.3 v_1 and v_2 are in V_1 : u is moved to V_2 and becomes a single-vertex tree in $G[V_2]$, which increases l by 1. Moreover, moving u from V_1 to V_2 splits v_1 and v_2 into different trees in $G[V_1]$, and therefore increases τ by 1.
 - 1.4 v_1 is in V_1 , and v_2 is in V_2 : u is moved to V_2 , with no any other influence.
- case 2. $w \notin F$: w is moved to V_2 , which decreases l by at least 1. No other vertex in V_1 is impacted by this.

For case 1, one or two vertices are removed from V_1 , with k decreased by 1 or 2. For case 2, exactly one vertex is removed with l decreased by 1. Case 1 can only occur at most k times, since the output V_1 -FVS F has its size bounded by k, and each step of case 1 can remove at most 2 vertices from V_1 . The second case removes exactly 1 vertex from V_1 . However, the number of times case 2 is executed is more complicated because the subcase 1.3 might increase l, so case 2 might happen more than l times. If we assume subcase 1.3 happens x times, then we can bound case 2 to no more than l + x times. The total number of vertices removed from this process is at most 2 * k + 1 * (l + x) = 2k + l + x.

Note that subcase 1.3 also increases τ , which will counteract the influence by increasing of l. We observe that in each step at most two vertices are removed from G_1 , and then to remove a whole tree from G_1 , the last step removes 1 or 2 vertices:

- A trivial tree in G_1 , *i.e.* a single vertex u with degree at least 3. If u is in F, *i.e.* case 1, it removes only one vertex from V_1 with k decreased by 1. Otherwise, it is in case 2, which moves u from V_1 to V_2 and removes one vertex from V_1 but decreases the number l of trees in $G[V_2]$ by at least 2. In both cases, the total number loses at least 1.
- Both vertices, say u_1 and u_2 , have to be leaves, so we can pick any of them, w.l.o.g., u_1 . Here we ignore the case $u_1 \notin F$, namely, because it is not the final step. So $u_1 \in F$, and the disposal of u_2 becomes very subtle, namely, they can only be subcases 1.1 or 1.2,
 - 1.1 two vertices are removed from V_1 with k decreased by 2: the total number loses 2;
 - 1.2 one vertex is removed from V_1 with l decreased by at least 2: the total number loses at least 1.

From the above analysis, whatever the situation is, at the final step of each tree, the total number loses at least 1. We know there are $\tau + x$ of such steps, where τ is the number of trees in the original induced subgraph $G[V_1]$, and x is the number of trees created by subcase 1.3. So the bound becomes $2k + l + x - (\tau + x) = 2k + l - \tau$.

If $|G_1| > 2k + l - \tau$, after $2k + l - \tau$ vertices have been disposed of, let v be a leaf still left in $G[V_1]$. Then $G[V_2]$ has already become a single connected component, and adding any new vertex with more than two neighbors in V_2 will incur cycles, so v cannot be put into G_2 . But the V_1 -FVS F already has k vertices, and v cannot be added to F. So it must be a "no" instance.

Note that for those DISJOINT-FVS instances we will meet in Section 4, we always have $|V_2| = k + 1$, this is exactly the characteristic of the iterative compression teechnique. Also by the simple fact that $l \leq |V_2|$ and $\tau > 0$, we have $2k + l - \tau \leq 3k$, so the kernel size is also bounded by 3k. With more careful analysis, we can further improve the kernel size to $3k - \tau - \rho(V_1)$, where $\rho(V_1)$ is the size of a maximum matching of the subgraph induced by the vertex set V'_1 that consists of all vertices in V_1 of degree larger than 3. The detailed analysis for this fact is given in a complete version of the current paper.

3 A polynomial time solvable case for DISJOINT-FVS

In this section we consider a special class of instances for the DISJOINT-FVS problem. This approach is closely related to the classical study on graph maximum genus embeddings [4, 13]. However, the study on graph maximum genus embeddings that is related to our approach is based on general spanning trees of a graph, while our approach must be restricted to only spanning trees that are constrained by the vertex partition (V_1, V_2) of an instance $(G; V_1, V_2; k)$ of DISJOINT-FVS. We start with the following simple lemma.

Lemma 3.1 Let G be a graph and let S be a subset of vertices in G such that the induced subgraph G[S] is a forest. Then there is a spanning tree in G that contains the entire induced subgraph G[S], and can be constructed in time $O(m\alpha(n))$, where $\alpha(n)$ is the inverse of Ackermann function [7].

PROOF. The lemma can be proved based on a process that is similar to the well-known Kruskal's algorithm for constructing a minimum spanning tree for a given graph G [7], which runs in time $O(m\alpha(n))$ if we do not have to sort the edges. Starting from a structure G_0 that initially consists of the forest G[S] and all vertices in G - S, we repeatedly insert each of the remaining edges (in an arbitrary order) into the structure G_0 as long as the edge does not create a cycle. The resulting structure of this process must be a spanning tree that contains the forest G[S].

Let $(G; V_1, V_2; k)$ be an instance for the DISJOINT-FVS problem, recall that (V_1, V_2) is a partition of the vertex set of the graph G such that both induced subgraphs $G[V_1]$ and $G[V_2]$ are forests. By Lemma 3.1, there is a spanning tree T of the graph G that contains the entire induced subgraph $G[V_2]$. Call a spanning tree that contains the induced subgraph $G[V_2]$ a $T_{G[V_2]}$ -tree.

Let T be a $T_{G[V_2]}$ -tree of the graph G. By the construction, every edge in G - T has at least one end in V_1 . Two edges in G - T are V_1 -adjacent if they have a common end in V_1 . A V_1 -adjacency matching in G - T is a partition of the edges in G - T into groups of one or two edges, called 1-groups and 2groups, respectively, such that two edges in the same 2-group are V_1 -adjacent. A maximum V_1 -adjacency matching in G - T is a V_1 -adjacency matching in G - T that maximizes the number of 2-groups.

Definition Let $(G; V_1, V_2; k)$ be an instance of DISJOINT-FVS. The V_1 -adjacency matching number $\mu(G, T)$ of a $T_{G[V_2]}$ -tree T in G is the number of 2-groups in a maximum V_1 -adjacency matching in G - T. The V_1 -adjacency matching number $\mu(G)$ of the graph G is the largest $\mu(G, T)$ over all $T_{G[V_2]}$ -trees T in G.

An instance $(G; V_1, V_2; k)$ of DISJOINT-FVS is 3-regular_{V1} if every vertex in the vertex set V_1 has degree exactly 3. Let $f_{V_1}(G)$ be the size of a minimum V_1 -FVS for G. Let $\beta(G)$ be the Betti number of the graph G that is the total number of edges in G - T for any spanning tree T in G (or equivalently, $\beta(G)$ is the number of *fundamental cycles* in G) [13]. The following lemma is a nontrivial generalization of a result in [18] (the result in [18] is a special case for Lemma 3.2 in which all vertices in the set V_2 have degree 2).

Lemma 3.2 For any 3-regular_{V1} instance $(G; V_1, V_2; k)$ of DISJOINT-FVS, $f_{V_1}(G) = \beta(G) - \mu(G)$. Moreover, a minimum V_1 -FVS can be constructed in linear time from a $T_{G[V_2]}$ -tree whose V_1 -adjacency matching number is $\mu(G)$.

PROOF. Let T be a $T_{G[V_2]}$ -tree such that there is a V_1 -adjacency matching M in G - T that contains $\mu(G)$ 2-groups. Let U be the set of edges that are in the 1-groups in M. We construct a V_1 -FVS F as follows: (1) for each edge e in U, arbitrarily pick an end of e that is in V_1 and include it in F; and (2) for each 2-group of two V_1 -adjacent edges e_1 and e_1 in M, pick the vertex in V_1 that is a common end of e_1 and e_2 and include it in F. Note that every cycle in the graph G must contain at least one edge in G - T, while every edge in G - T has at least one end in F. Therefore, F is an FVS. By the above construction, F is a V_1 -FVS. The number of vertices in F is equal to $|U| + \mu(G)$. Since $|U| = |G - T| - 2\mu(G) = \beta(G) - 2\mu(G)$, we have $|F| = \beta(G) - \mu(G)$. This concludes that

$$f_{V_1}(G) \le \beta(G) - \mu(G). \tag{1}$$

Now consider the other direction. Let F be a V_1 -FVS such that $|F| = f_{V_1}(G)$. Since G - F is a forest, by Lemma 3.1, there is a spanning tree T in G that contains the entire induced subgraph G - F. We construct a V_1 -adjacency matching in G - T and show that it contains at least $\beta(G) - |F|$ 2-groups. Since T contains G - F, each of the edges in G - T has at least one end in F. Let E_2 be the set of edges in G - T that have their both ends in F, and let E_1 be the set of edges in G - T that have exactly one end in F.

Claim. Each end of an edge in E_2 is shared by exactly one edge in E_1 . In particular, no two edges in E_2 share a common end.

To see this, let u be an end of an edge [u, v] in E_2 , where both u and v are in F. Let e_1 and e_2 be the other two edges incident to u (note that u has degree 3). If u is not shared by an edge in E_1 , then either both e_1 and e_2 are in T or one of e_1 and e_2 is in E_2 . If both e_1 and e_2 are in T, then, since every edge in G - T (including [u, v]) has at least one end in $F \setminus \{u\}$, the set $F \setminus \{u\}$ would make a smaller V_1 -FVS. Similarly, if the edge $e_1 = [u, w]$ is in E_2 , where w is also in F, then again $F \setminus \{u\}$ would make a smaller V_1 -FVS (note that u has degree 3 and that [u, v] and [u, w] are the only edges in G - T that are incident to u). Therefore, both cases would contradict the assumption that F is a minimum V_1 -FVS. This proves the claim.

Suppose that there are m_2 vertices in F that are incident to two edges in G - T. Thus, each of the rest $|F| - m_2$ vertices in F is incident to at most one edge in G - T. By counting the total number of incidencies between the vertices in F and edges in G - T, we get

$$2|E_2| + (\beta(G) - |E_2|) \le 2m_2 + (|F| - m_2),$$

or equivalently,

$$m_2 - |E_2| \ge \beta(G) - |F|.$$
 (2)

Now we construct a V_1 -adjacency matching in G - T, as follows. For each edge e in E_2 , by the above claim, we can make a 2-group that consists of e and an edge in E_1 that shares an end with e. Besides the ends of the edges in E_2 , there are $m_2 - 2|E_2|$ vertices in F that are incident to two edges in E_1 . For each v of these vertices, we make a 2-group that consists of the two edges in E_1 that are incident to v. Note that this construction of 2-groups never re-uses any edges in G - T more than once. Therefore, the construction gives $|E_2| + (m_2 - 2|E_2|) = m_2 - |E_2|$ disjoint 2-groups. We then make each of the rest edges in G - T a 1-group. This gives a V_1 -adjacency matching in G - T that has $m_2 - |E_2|$ 2-groups. By Inequality (2) and by definition, we have

$$\mu(G) \ge \mu(G, T) \ge m_2 - |E_2| \ge \beta(G) - |F| = \beta(G) - f_{V_1}(G).$$
(3)

Combining (1) and (3), we conclude with $f_{V_1}(G) = \beta(G) - \mu(G)$. The first paragraph also illustrates how to construct a minimum V_1 -FVS from a $T_{G[V_2]}$ -tree whose V_1 -adjacency matching number is $\mu(G)$.

By Lemma 3.2, in order to construct a minimum V_1 -FVS for a 3-regular_{V1} instance $(G; V_1, V_2, k)$ of DISJOINT-FVS, we only need to construct a $T_{G[V_2]}$ -tree in the graph G whose V_1 -adjacency matching number is $\mu(G)$. The construction of an unconstrained maximum adjacency matching in terms of general spanning trees has been considered by Furst, Gross and McGeoch in their study of graph maximum genus embeddings [13]. We follow a similar approach, based on cographic matroid parity, to construct a $T_{G[V_2]}$ -tree in G whose V_1 -adjacency matching number is $\mu(G)$. We start with a quick review on the related concepts in matroid theory. More detailed discussion on matroid theory can be found in [19].

A matroid is a pair (E, \Im) , where E is a finite set and \Im is a collection of subsets of E that satisfies the following properties:

(1) If $A \in \mathfrak{S}$ and $B \subseteq A$, then $B \in \mathfrak{S}$;

(2) If $A, B \in \mathfrak{S}$ and |A| > |B|, then there is an element $a \in A - B$ such that $B \cup \{a\} \in \mathfrak{S}$.

The matroid parity problem is stated as follows: given a matroid (E, \Im) and a perfect pairing $\{[a_1, \overline{a}_1], [a_2, \overline{a}_2], \ldots, [a_n, \overline{a}_n]\}$ of the elements in the set E, find a largest subset P in \Im such that for all $i, 1 \leq i \leq n$, either both a_i and \overline{a}_i are in P, or neither of a_i and \overline{a}_i is in P.

Each connected graph G is associated with a cographic matroid (E_G, \mathfrak{F}_G) , where E_G is the edge set of G, and an edge set S is in \mathfrak{F}_G if and only if G - S is connected. It is well-known that matroid parity problem for cographic matroids can be solved in polynomial time [19]. The fastest known algorithm for cographic matroid parity problem is by Gabow and Stallmann [14], which runs in time $\mathcal{O}(mn \log^6 n)$.

In the following, we explain how to reduce our problem to the cographic matroid parity problem. Let $(G; V_1, V_2; k)$ be a 3-regular_{V1} instance of the DISJOINT-FVS problem. Without loss of generality, we make the following assumptions: (1) the graph G is connected (otherwise, we simply work on each connected component of G); and (2) for each vertex v in V_1 , there is at most one edge from v to a connected component in $G[V_2]$ (otherwise, we can directly include v in the objective V_1 -FVS).

Recall that two edges are V_1 -adjacent if they share a common end in V_1 . For an edge e in G, denote by $d_{V_1}(e)$ the number of edges in G that are V_1 -adjacent to e (note that an edge can be V_1 -adjacent to the edge e from either end of e).

We construct a *labeled subdivision* G_2 of the graph G as follows.

- 1. shrink each connected component of $G[V_2]$ into a single vertex; let the resulting graph be G_1 ;
- 2. assign each edge in G_1 a distinguished label;
- 3. for each edge labeled e_0 in G_1 , suppose that the edges V_1 -adjacent to e_0 are labeled by e_1, e_2, \ldots , e_d (the order is arbitrary), where $d = d_{V_1}(e_0)$; subdivide e_0 into d segment edges by inserting d-1 degree-2 vertices in e_0 , and label the segment edges by $(e_0e_1), (e_0e_2), \ldots, (e_0e_d)$. Let the resulting graph be G_2 . The segment edges $(e_0e_1), (e_0e_2), \ldots, (e_0e_d)$ in G_2 are said to be from the edge e_0 in G_1 .

There are a number of interesting properties for the graphs constructed above. First, each of the edges in the graph G_1 corresponds uniquely to an edge in G that has at least one end in V_1 . Thus, without creating any confusion, we will simply say that the edge is in the graph G or in the graph G_1 . Second, because of the assumptions we made on the graph G, the graph G_1 is a simple and connected graph. In consequence, the graph G_2 is also a simple and connected graph. Finally, because each edge in G_1 corresponds to an edge in G that has at least one end in V_1 , and because each vertex in V_1 has degree 3, every edge in G_1 is subdivided into at least two segment edges in G_2 .

Now in the labeled subdivision graph G_2 , pair the segment edge labeled (e_0e_i) with the segment edge labeled (e_ie_0) for all segment edges (note that (e_0e_i) is a segment edge from the edge e_0 in G_1 and that (e_ie_0) is a segment edge from the edge e_i in G_1). By the above remarks, this is a perfect pairing \mathcal{P} of the edges in G_2 . Now with this edge pairing \mathcal{P} in G_2 , and with the cographic matroid $(E_{G_2}, \mathfrak{F}_{G_2})$ for the graph G_2 , we call Gabow and Stallmann's algorithm [14] for the cographic matroid parity problem. The algorithm produces a maximum edge subset P in \mathfrak{F}_{G_2} that, for each segment edge (e_0e_i) in G_2 , either contains both (e_0e_i) and (e_ie_0) , or contains neither of (e_0e_i) and (e_ie_0) . **Lemma 3.3** From the edge subset P in \Im_{G_2} constructed above, a $T_{G[V_2]}$ -tree for the graph G whose V_1 adjacency matching number is $\mu(G)$ can be constructed in time $O(m\alpha(n))$, where n and m are the number
of vertices and the number of edges, respectively, of the graph G.

PROOF. Let the edge subset P consist of the edge pairs $\{[(e_1e'_1), (e'_1e_1)], \ldots, [(e_he'_h), (e'_he_h)]\}$. Since $P \in \mathfrak{F}_{G_2}, G_2 - P$ is connected. Thus, for each edge e_i in G_1 , there is at most one segment edge in P that is from e_i . Therefore, the edge subset P corresponds to a edge subset P' of exactly 2h edges in G_1 (thus exactly 2h edges in G): $P' = \{e_1, e'_1; \ldots, e_h, e'_h\}$, where for $1 \leq i \leq h$, the edges e_i and e'_1 are V_1 -adjacent. Since $G_2 - P$ is connected, it is easy to verify that the graph $G_1 - P'$ (thus the graph G - P') is also connected. Also note that the graph G - P' contains the induced subgraph $G[V_2]$. Therefore, by Lemma 3.1, we can construct, in time $O(m\alpha(n))$, a $T_{G[V_2]}$ -tree T_1 for the graph G from G - P'. Now if we make each pair $[e_i, e'_i]$ a 2-group for $1 \leq i \leq h$, and make each of the rest edges in $G - T_1$ a 1-group, we get a V_1 -adjacency matching with h 2-groups in $G - T_1$.

To complete the proof of the lemma, we only need to show that $h = \mu(G)$. For this, it suffices to show that no $T_{G[V_2]}$ -tree can have a V_1 -adjacency matching with more than h 2-groups. Let T_2 be a $T_{G[V_2]}$ -tree with q 2-groups $[e_1, e'_1], \ldots, [e_q, e'_q]$ 2-groups in $G - T_2$. Since T_2 is entirely contained in $G - \bigcup_{i=1}^q \{e_i, e'_i\}$, $G - \bigcup_{i=1}^q \{e_i, e'_i\}$ is connected. In consequence, the graph $G_1 - \bigcup_{i=1}^q \{e_i, e'_i\}$ is also connected. From this, it is easy to verify that the graph $G_2 - \bigcup_{i=1}^q \{(e_ie'_i), (e'_ie_i)\}$ is connected. Therefore, the edge subset $\{(e_1e'_1), (e'_1e_1); \ldots, (e_qe'_q), (e'_qe_q)\}$ is in \Im_{G_2} . Now since P is the the solution of the matroid parity problem for the cographic matroid (E_{G_2}, \Im_{G_2}) and since P consists of h edge pairs, we must have $h \ge g$. This completes the proof of the lemma.

Now we are ready to present our main result in this section.

Theorem 3.4 There is an $\mathcal{O}(n^2 \log^6 n)$ time algorithm that on a 3-regular_{V1} instance $(G; V_1, V_2; k)$ of the DISJOINT-FVS problem, either constructs a V₁-FVS of size bounded by k, if such a V₁-FVS exists, or reports correctly that no such a V₁-FVS exists.

PROOF. For the 3-regular_{V1} instance $(G; V_1, V_2; k)$ of DISJOINT-FVS, we first construct the graph G_1 in linear time by shrinking each connected component of $G[V_2]$ into a single vertex. Note that since each vertex in V_1 has degree 3, the total number of edges in G_1 is bounded by $3|V_1|$. From the graph G_1 , we construct the labeled subdivision graph G_2 . Again since each vertex in V_1 has degree 3, each edge in G_1 is subdivided into at most 4 segment edges in G_2 . Therefore, the number n_2 of vertices and the number m_2 of edges in G_2 are both bounded by $\mathcal{O}(|V_1|) = \mathcal{O}(n)$. From the graph G_2 , we apply Gabow and Stallmann's algorithm [14] on the cographic matroid (E_{G_2}, \Im_{G_2}) that produces the edge subset P in \Im_{G_2} in time $\mathcal{O}(m_2 n_2 \log^6 n_2) = \mathcal{O}(n^2 \log^6 n)$. By Lemma 3.3, from the edge subset P, we can construct in time $\mathcal{O}(m\alpha(n))$ a $T_{G[V_2]}$ -tree T for the graph G whose V_1 -adjacency matching number is $\mu(G)$. Finally, by Lemma 3.2, from the $T_{G[V_2]}$ -tree T, we can construct a minimum V_1 -FVS F in linear time. Now the solution to the 3-regular_{V_1} instance $(G; V_1, V_2; k)$ of DISJOINT-FVS can be trivially derived by comparing the size of F and the parameter k. Summarizing all these steps gives the proof of the theorem.

Combining Theorem 3.4 and Lemma 2.1, we have

Corollary 3.5 There is an $\mathcal{O}(n^2 \log^6 n)$ time algorithm that on an instance $(G; V_1, V_2; k)$ of DISJOINT-FVS where all vertices in V_1 have degree bounded by 3, either constructs a V_1 -FVS of size bounded by k, if such an FVS exists, or reports correctly that no such a V_1 -FVS exists.

We remark this special structure is the best we can expect, in the sense that the DISJOINT-FVS problem becomes NP-hard when maximum degree in V_1 is no less than 4.

4 An improved algorithm for DISJOINT-FVS

Now we are ready for the general DISJOINT-FVS problem. Let $(G; V_1, V_2; k)$ be an instance of DISJOINT-FVS, for which we are looking for a V_1 -FVS of size k. Observe that certain structures in the input graph

G can be easily processed and then removed from G. For example, the graph G cannot contain self-loops (i.e., edges whose both ends are on the same vertices) because by definition, both induced subgraphs $G[V_1]$ and $G[V_2]$ are forests. Moreover, if two vertices v and w are connected by multiple edges, then exactly one of v and w is in V_1 and the other is in V_2 (this is again because the induced subgraphs $G[V_1]$ and $G[V_2]$ are forests). Thus, in this case, we can directly include the vertex in V_1 in the objective V_1 -FVS. Therefore, for a given input graph G, we always first apply a preprocessing that applies the above operations and remove all self-loops and multiple edges in the graph G. In consequence, we can assume, without loss of generality., that the input graph G contains neither self-loops nor multiple edges.

A vertex $v \in V_1$ is a *nice* V_1 -vertex if v is of degree 3 in G and all its neighbours are in V_2 . Let p be the number of nice V_1 -vertices in G, and let l be the number of connected components in the induced subgraph $G[V_2]$. The measure $m = k + \frac{l}{2} - p$ will be used in the analysis of our algorithm.

Lemma 4.1 If the measure m is bounded by 0, then there is no V_1 -FVS of size bounded by k in G. If all vertices in V_1 are nice V_1 -vertices, then a minimum V_1 -FVS in G can be constructed in polynomial time.

PROOF. Suppose that $m = k + \frac{l}{2} - p \leq 0$, and that there is a V_1 -FVS F of size of $k' \leq k$. Let S be the set of any p - k' nice V_1 -vertices that are not in F. The subgraph G' induced by $V_2 \cup S$ must be a forest because F is an FVS and is disjoint with $V_2 \cup S$. On the other hand, the subgraph G' can be constructed from the induced subgraph $G[V_2]$ and the p - k' discrete vertices in S, by adding the 3(p-k') edges that are incident to the vertices in S. Since $k' \leq k$, we have $p - k' \geq p - k \geq \frac{l}{2}$. This gives $3(p-k') = 2(p-k') + (p-k') \geq l + (p-k')$. This contradicts the fact that G' is a forest – in order to keep G' a forest, we can add at most l + (p - k') - 1 edges to the structure that consists of the induced subgraph $G[V_2]$ of l connected components and the p-k' discrete vertices in S. This contradiction proves the first part of the lemma.

To prove the second part of the lemma, observe that when all vertices in V_1 are nice V_1 -vertices, $(G; V_1, V_2; k)$ is a 3-regular $_{V_1}$ instance for DISJOINT-FVS. By Theorem 3.4, there is a polynomial time algorithm that constructs a minimum V_1 -FVS in G for 3-regular $_{V_1}$ instances of DISJOINT-FVS.

The algorithm $\mathbf{Feedback}(G, V_1, V_2, k)$, for the DISJOINT-FVS problem is given in Figure 3. We first discuss the correctness of the algorithm. The correctness of step 1 and step 2 of the algorithm is obvious. By lemma 4.1, step 3 is correct. Step 4 is correct by Rule 1 in section 2. After step 4, each vertex in V_1 has degree at least 2 in G.

If the vertex w has two neighbors in V_2 that belong to the same tree T in the induced subgraph $G[V_2]$, then the tree T plus the vertex w contains at least one cycle. Since we are searching for a V_1 -FVS, the only way to break the cycles in $T \cup \{w\}$ is to include the vertex w in the objective V_1 -FVS. Moreover, the objective V_1 -FVS of size at most k exists in G if and only if the remaining graph G - w has a V_1 -FVS of size at most k - 1 in the subset $V_1 \setminus \{w\}$. Therefore, step 5 correctly handles this case. After this step, all vertices in V_1 has at most one neighbor in a tree in $G[V_2]$.

Because of step 5, a degree-2 vertex at step 6 cannot have both its neighbors in the same tree in $G[V_2]$. By Lemma 2.1, step 6 correctly handles this case. After step 6, all vertices in V_1 have degree at least 3.

A vertex $w \in V_1$ is either in or not in the objective V_1 -FVS. If w is in the objective V_1 -FVS, then we should be able to find a V_1 -FVS F_1 in the graph G - w such that $|F_1| \leq k - 1$ and $F_1 \subseteq V_1 \setminus \{w\}$. On the other hand, if w is not in the objective V_1 -FVS, then the objective V_1 -FVS for G must be contained in the subset $V_1 \setminus \{w\}$. Also note that in this case, the induced subgraph $G[V_2 \cup \{w\}]$ is still a forest since no two neighbors of w in V_2 belong to the same tree in $G[V_2]$. Therefore, step 7 handles this case correctly. After step 7, every leaf w in $G[V_1]$ that is not a nice V_1 -vertex has exactly two neighbors in V_2 .

The vertex y in step 8 is either in or not in the objective V_1 -FVS. If y is in the objective V_1 -FVS, then we should be able to find a V_1 -FVS F_1 in the graph G - y such that $|F_1| \leq k - 1$ and $F_1 \subseteq V_1 \setminus \{w\}$. After removing y from the graph G, the vertex w becomes degree-2 and both of its neighbors are in V_2 (note that step 7 is not applicable to w). Therefore, by Lemma 2.1, the vertex w can be moved from V_1 to V_2 (again note that $G[V_2 \cup \{w\}]$ is a forest). On the other hand, if y is not in the objective V_1 -FVS, then the objective FVS for G must be contained in the subset $V_1 \setminus \{y\}$. Also note that in this case, the subgraph $G[V_2 \cup \{y\}]$ is a forest since no two neighbors of y in V_2 belong to the same tree in $G[V_2]$. Therefore, step 8 handles this case correctly, and after step 8, the following conditions hold:

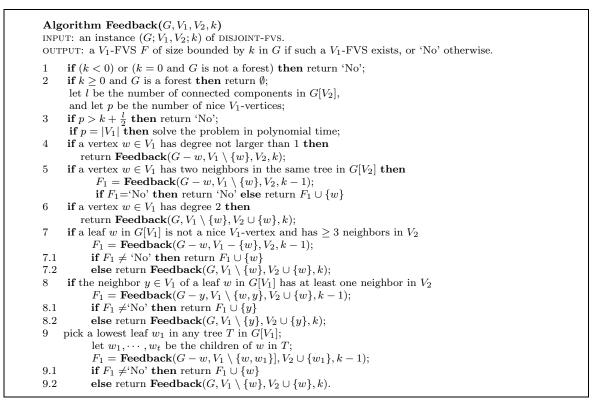


Figure 3: Algorithm for DISJOINT-FVS

- 1. k > 0 and G is not a forest (by steps 1 and 2);
- 2. $p \leq k + \frac{l}{2}$ and not all vertices of V_1 are nice vertices (by step 3);
- 3. any vertex in V_1 has degree at least 3 in G (by steps 4-6);
- 4. any leaf in $G[V_1]$ is either a nice V_1 -vertex, or has exactly two neighbors in V_2 (by step 7); and
- 5. for any leaf w in $G[V_1]$, the neighbor $y \in V_1$ of w has no neighbors in V_2 (by step 8).

By condition 4, any tree of single vertex in $G[V_1]$ is a nice V_1 -vertex. By condition 5, there is no tree of two vertices in $G[V_1]$. For a tree T with at least three vertices in $G[V_1]$, fix any internal vertex of T as the root. Then we can find a *lowest leaf* w_1 of T in polynomial time. Since the tree T has at least three vertices, the vertex w_1 must have a parent w in T which is in $G[V_1]$.

Vertex w is either in or not in the objective V_1 -FVS. If w is in the objective V_1 -FVS, then we should find a V_1 -FVS F_1 in the graph G - w such that $F_1 \subseteq V_1 \setminus \{w\}$ and $|F_1| \leq k - 1$. Note that after removing w, the leaf w_1 becomes degree-2, and by Lemma 2.1, it is valid to move w_1 from V_1 to V_2 since the two neighbors of w_1 in V_2 are not in the same tree in $G[V_2]$. On the other hand, if w is not in the objective V_1 -FVS, then the objective V_1 -FVS must be in $V_1 \setminus \{w\}$. In summary, step 9 handles this case correctly.

Now we are ready to present the following theorem.

Theorem 4.2 The algorithm **Feedback** (G, V_1, V_2, k) correctly solves the DISJOINT-FVS problem. The running time of the algorithm is $\mathcal{O}(2^{k+l/2}n^2)$, where n is the number of vertices in G, and l is the number of connected components in the induced subgraph $G[V_2]$.

PROOF. The correctness of the algorithm has been verified by the above discussion. Now we consider the complexity of the algorithm. The recursive execution of the algorithm can be described as a search tree \mathcal{T} . We first count the number of leaves in the search tree \mathcal{T} . Note that only steps 7, 8 and 9 of the algorithm correspond to branches in the search tree \mathcal{T} . Let T(m) be the number of leaves in the search tree \mathcal{T} for the algorithm **Feedback** (G, V_1, V_2, k) when m = k + l/2 - p, where l is the number of connected components (i.e., trees) in the forest $G[V_2]$, and p is the number of nice V_1 -vertices.

The branch of step 7.1 has that k' = k - 1, l' = l and $p' \ge p$. Thus we have $m' = k' + l'/2 - p' \le k - 1 + l/2 - p = m - 1$. The branch of step 7.2 has that k'' = k, $l'' \le l - 2$ and p'' = p. Thus we have $m'' = k'' + l''/2 - p'' \le m - 1$. Thus, for step 7, the recurrence is $T(m) \le 2T(m - 1)$.

The branch of step 8.1 has that k' = k - 1, l' = l - 1 and $p' \ge p$. Thus we have $m' = k' + l'/2 - p' \le k - 1 + (l - 1)/2 - p = m - 1.5$. The branch of step 8.2 has that k'' = k, l'' = l and p'' = p + 1. Thus we have m'' = k'' + l''/2 - p'' = k + l/2 - (p + 1) = m - 1. Thus, for step 8, the recurrence is $T(m) \le T(m - 1.5) + T(m - 1)$.

The branch of step 9.1 has that k' = k - 1, l' = l - 1 and $p' \ge p$. Thus we have $m' = k' + l'/2 - p' \le k - 1 + (l - 1)/2 - p = m - 1.5$. the branch of step 9.2 has that k'' = k, l'' = l + 1 because of w, and $p'' \ge p + 2$ because w has at least two children which are leaves. Thus we have $m'' = k'' + l''/2 - p'' \le k + (l + 1)/2 - (p + 2) = m - 1.5$. Thus, for step 8, the recurrence is $T(m) \le 2T(m - 1.5)$.

The worst case happens at step 7. From the recurrence of step 7, we have $T(m) \leq 2^m$. Moreover, steps 1-3 just return an answer; step 4 does not increase measure m since vertex w is not a nice vertex; and step 5 also does not increase m since k decreases by 1 and p decreases by at most 1. Step 6 may increase measure m by 0.5 since l may increase by 1. However, we can simply just bypass vertex w in step 6, instead of putting it into V_2 . If we bypass w, then measure m does not change. In lemma 2.1, we did not bypass w because it is easier to analyze the kernel in section 2 by putting w into V_2 . Since $m = k + l/2 - p \leq k + l/2$, and it is easy to verify that the computation time along each path in the search tree \mathcal{T} is bounded by $O(n^2)$, we conclude that the algorithm **Feedback** (G, V_1, V_2, k) solves the DISJOINT FVS problem in time $O(2^{k+l/2}n^2)$. This completes the proof of the lemma.

5 Concluding result: an improved algorithm for FVS

The results presented in previous sections lead to an improved algorithm for the general FVS problem. Following the idea of *iterative compression* proposed by Reed et al. [23], we formulate the following problem:

FVS REDUCTION: given a graph G and an FVS F of size k + 1 for G, either construct an FVS of size at most k for G, or report that no such an FVS exists.

Lemma 5.1 The FVS REDUCTION problem on an n-vertex graph G can be solved in time $\mathcal{O}(3.83^k n^2)$.

PROOF. The proof goes similar to that for Lemma 2 in [3]. Let G be a graph and let F_{k+1} be an FVS of size k + 1 in G. For each j, $0 \le j \le k$, we enumerate each subset F_{k-j} of k - j vertices in F_{k+1} , and assume that F_{k-j} is the intersection of F_{k+1} and the objective FVS F_k . Therefore, constructing the FVS F_k of size k in the graph G is equivalent to constructing the FVS $F_k - F_{k-j}$ of size j in the graph $G - F_{k-j}$, which, by Theorem 4.2 (note that $l \le j + 1$), can be constructed in time $\mathcal{O}(2^{j+(j+1)/2}n^2) = \mathcal{O}(2.83^jn^2)$. Applying this procedure for every integer j ($0 \le j \le k$) and all subsets of size k-j in F_{k+1} will successfully find an FVS of size k in the graph G, if such an FVS exists. This algorithm solves FVS REDUCTION in time $\sum_{j=0}^{k} {k+1 \choose k-j} \cdot \mathcal{O}(2.83^jn^2) = \mathcal{O}(3.83^kn^2)$.

Finally, by combining Lemma 5.1 with iterative compression [5], we obtain the main result of this paper.

Theorem 5.2 The FVS problem on an n-vertex graph is solvable in time $\mathcal{O}(3.83^k kn^2)$.

The proof of Theorem 5.2 is exactly similar to that of Theorem 3 in [5], with the complexity $\mathcal{O}(5^k n^2)$ for solving the FVS REDUCTION problem being replaced by $\mathcal{O}(3.83^k n^2)$, as given in Lemma 5.1.

References

- Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)
- [2] Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset problem. J. Artif. Intell. Res. 12, 219–234 (2000)
- [3] Bodlaender, H.: On disjoint cycles. Int. J. Found. Comput. Sci. 5(1), 59–68 (1994)
- [4] Chen, J.: Minimum and maximum imbeddings. In: Gross, J., Yellen, J.(eds.) The Handbook of Graph Theory, pp.625–641, CRC Press (2003)
- [5] Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for the feedback vertex set problems. *Journal of Computer and System Sciences* 74, 1188–1198 (2008)
- [6] Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum node multiway cut problem. *Algorithmica* 55, 1–13 (2009)
- [7] Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company (2001)
- [8] Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.: An O(2^{O(k)}n³) fpt algorithm for the undirected feedback vertex set problem. In: COCOON, LNCS, vol. 3595, pp. 859–869. Springer (2005)
- [9] Downey, R., Fellows, M.: Fixed parameter tractability and completeness. In: Complexity Theory: Current Research, pp. 191–225. Cambridge University Press (1992)
- [10] Downey, R., Fellows, M.: Parameterized Complexity. Springer-Verlag, New York (1999)
- [11] Festa, P., Pardalos, P., Resende, M.: Feedback set problems. In: Handbook of Combinatorial Optimization, Supplement Vol. A, pp. 209–258. Kluwer Acad. Publ., Dordrecht (1999)
- [12] Fomin, F., Gaspers, S., Pyatkin, A.: Finding a minimum feedback vertex set in time O(1.7548ⁿ).
 In: IWPEC, LNCS vol. 4169, pp. 184–191. Springer (2006)
- [13] Furst, M., Gross, J., McGeoch, L.: Finding a maximum-genus graph imbedding. Journal of the ACM, 35(3): 523-534 (1988)
- [14] Gabow, H., Stallmann, M.: Efficient algorithms for graphic matroid intersection and parity. In: Automata, Languages and Programming: 12th Colloquium, LNCS vol. 194, pp. 210–220, Springer-Verlag (1985)
- [15] Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006)
- [16] Kanj, I., Pelsmajer, M., Schaefer, M.: Parameterized algorithms for feedback vertex set. In: *IWPEC*, LNCS vol. 3162, pp. 235–247. Springer (2004)
- [17] Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)
- [18] Li, D., Liu, Y.: A polynomial algorithm for finding the minimul feedback vertex set of a 3-regular simple graph. Acta Mathematica Scientia 19(4), 375-381 (1999)
- [19] Lovász, L.: The matroid matching problem. In: Algebraic Methods in Graph Theory, Colloquia Mathematica Societatis János Bolyai, Szeged (Hungary) (1978)

- [20] Raman, V., Saurabh, S., Subramanian, C.: Faster fixed parameter tractable algorithms for finding feedback vertex sets. ACM Trans. Algorithms 2(3), 403–415 (2006)
- [21] Raman, V., Saurabh, S., Subramanian, C.: Faster fixed parameter tractable algorithms for undirected feedback vertex set. In: ISAAC 2002, LNCS vol. 2518, pp. 241–248. Springer (2002)
- [22] Razgon, I.: Exact computation of maximum induced forest. In: *SWAT*, LNCS, vol. 4059, pp. 160–171. Springer (2006)
- [23] Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)
- [24] Silberschatz, A., Galvin, P.: Operating System Concepts, 4th edition. Addison-Wesley (1994)