
ar
X

iv
:1

10
7.

30
68

v2
  [

cs
.D

S]
  6

 O
ct

 2
01

1
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The Odd Cycle Transversal problem (OCT) asks whether a given graph can be
made bipartite by deleting at most k of its vertices. In a breakthrough result Reed, Smith,
and Vetta (Operations Research Letters, 2004) gave a O(4kkmn) time algorithm for it, the
first algorithm with polynomial runtime of uniform degree for every fixed k. It is known
that this implies a polynomial-time compression algorithm that turns OCT instances into
equivalent instances of size at most O(4k), a so-called kernelization. Since then the existence
of a polynomial kernel for OCT, i.e., a kernelization with size bounded polynomially in k,
has turned into one of the main open questions in the study of kernelization. Despite the
impressive progress in the area, including the recent development of lower bound techniques
(Bodlaender et al., ICALP 2008; Fortnow and Santhanam, STOC 2008) and meta-results
on kernelizations for graph problems on planar and other sparse graph classes (Bodlaender
et al., FOCS 2009; Fomin et al., SODA 2010), the existence of a polynomial kernel for OCT
has remained open, even when the input is restricted to be planar.

This work provides the first (randomized) polynomial kernelization for OCT. We intro-

duce a novel kernelization approach based on matroid theory, where we encode all relevant

information about a problem instance into a matroid with a representation of size polyno-

mial in k. For OCT, the matroid is built to allow us to simulate the computation of the

iterative compression step of the algorithm of Reed, Smith, and Vetta, applied (for only

one round) to an approximate odd cycle transversal which it is aiming to shrink to size k.

The process is randomized with one-sided error exponentially small in k, where the result

can contain false positives but no false negatives, and the size guarantee is cubic in the size

of the approximate solution. Combined with an O(
√
logn)-approximation (Agarwal et al.,

STOC 2005), we get a reduction of the instance to size O(k4.5), implying a randomized

polynomial kernelization. Interestingly, the known lower bound techniques can be seen to

exclude randomized kernels that produce no false negatives, as in fact they exclude even

co-nondeterministic kernels (Dell and van Melkebeek, STOC 2010). Therefore, our result

also implies that deterministic kernels for OCT cannot be excluded by the known machinery.

1 Introduction

One of the most successful (and natural) applications of parameterized complexity is the study
of combinatorially hard problems for the case that one seeks a small solution. Such a problem
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is fixed-parameter tractable (FPT) if it can be checked in time f(k)nc whether an instance of
size n has a solution of size at most (or at least) k. When k is not too large, such an algorithm
can be considered efficient. This can be especially important for minimization problems where
the solution size corresponds to a real-world cost.

Curiously, for any decidable problem, having an FPT algorithm is known to coincide with
having a polynomial-time data reduction algorithm that reduces any instance to an equivalent
instance with size bounded by some function of k, a so-called kernelization.1 However, the
kernel size bound implied is the same function f(k) as occurs in the running time bound, which
for non-trivial parameters will almost certainly be exponential in k unless P = NP.

A more useful notion of efficient data reduction is polynomial kernels, i.e., kernelizations with
kernel size bounded polynomially in the parameter. For many problems, this can be achieved
by a direct study of kernelization, e.g., the classic reduction of Vertex Cover to 2k ver-
tices [50, 16], or the recent reduction of Feedback Vertex Set to sizeO(k2) by Thomassé [57],
improving on work by Burrage et al. [13] and Bodlaender [7]. Having small (polynomial) ker-
nels provides a formalization of efficient data reduction, and additionally, producing them often
requires significant insight into the combinatorial structure of a problem.

Accordingly, the search for more and better kernelizations has evolved into a main branch
of parameterized complexity (in fact, the opinion has been raised that kernelization is what
fixed-parameter tractability is really about [22]). In particular, the existence of a polynomial
kernelization for a problem is seen as a significant threshold, comparable to the existence of an
FPT algorithm in the first place. Recent seminal work of Bodlaender et al. [8] and Fortnow and
Santhanam [27] enforced the importance of this threshold by providing techniques to show that
certain problems do not admit polynomial kernels unless NP ⊆ coNP/poly and the polynomial
hierarchy collapses to its third level (see also Harnik and Naor [35] for a related question).
Furthermore, a paper by Dell and van Melkebeek [19] was the first work to provide lower
bounds for the degree of a polynomial kernelization; among other things, their work implies
an O(k2) lower bound for Feedback Vertex Set and Odd Cycle Transversal. Another
recent focus has been meta kernelizations, i.e., meta-level results that provide kernelizations for
a large range of problems, under restrictions on the input [9, 26] ; see below.

Still, for all this work, some problems have so far resisted classification with respect to exis-
tence of polynomial kernels. Among these, emerging as the most important and most frequently
raised questions – e.g., the two problems singled out as having the highest importance at the
recent workshop on kernelization, WorKer 2010 – is the existence of polynomial kernelizations
for the problems Odd Cycle Transversal (OCT) and Directed Feedback Vertex Set

(DFVS). Both problems are also open even in the restricted case of planar graphs [10]. In this
paper, we focus on OCT, where the question was first raised in [33]; see also the recent survey
on lower bounds for kernelization by Misra et al. [48].

The Odd Cycle Transversal problem. The Odd Cycle Transversal problem asks whether
a given graph G can be made bipartite by deleting at most k of its vertices. Together with
natural variants such as Edge Bipartization, the edge deletion version, and Balanced Sub-

graph, the problem of removing odd-parity cycles in signed graphs, this problem has numerous
applications (see, e.g., [37, 38]), and has received significant research attention [55, 33, 24, 31,
37, 44, 38, 40]. With respect to parameterized and exact computation the breakthrough re-

1Indeed, running the algorithm for nc+1 steps will either solve the instance, or allow the conclusion that f(k)nc >

nc+1 and consequently that n is bounded by f(k). The converse, a kernelization implying an FPT algorithm
for any decidable problem, can be easily verified, although here the bound gets worse.
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sult was the O(4kkmn) time algorithm by Reed, Smith, and Vetta [55].2 This was the first
occurrence of the technique now called iterative compression. (Note that this is entirely dis-
tinct from the notion of instance compression, which has been used as a term to generalize
kernelization; see related work below.) This technique also led to the first FPT algorithm for
Directed Feedback Vertex Set by Chen et al. [18] and Almost 2-SAT by Razgon and
O’Sullivan [54], and has become an important tool in parameterized complexity; see the survey
by Guo et al. [34]. For Edge Bipartization, an O(2km2) time algorithm exists due to Guo
et al. [33]. The best known approximation result for OCT is O(

√
log n) due to Agarwal et

al. [1], improving on earlier results with a ratio of O(log n) [29]. For Edge Bipartization

there is also an O(logOPT)-approximation by Avidor and Langberg [4]. Under the unique
games conjecture, neither problem can have a constant-factor approximation [41].

What makes OCT special? The OCT problem belongs to the class of graph modification
problems, i.e., finding a minimum number of modifications of vertices and/or edges in a given
graph to achieve a given property (like bipartiteness). If the target property is sparse (e.g.,
being a forest for Feedback Vertex Set), or if it can be defined by a constant number of
forbidden structures (e.g., induced paths on three vertices for Cluster Editing), then many
such problems are known to have a polynomial kernel, although the kernelization is by no means
always easy. On the other hand, only few polynomial kernels are known for target properties
that do not have either characteristic. One candidate is deleting at most k arcs to remove all
directed cycles from a tournament3, but here it suffices to consider the directed triangles [5].
Also, Chordal Completion has a polynomial kernel [49], but here, a large obstacle is helpful
in that a chordless cycle of length t requires at least t − 2 edges to be added. No such useful
exception exists for OCT.

Additionally, there are involved meta-results for graph problems restricted to sparse inputs
like planar, bounded genus, and H-minor free graphs [9, 26]. However, it can be easily seen
that OCT is neither compact nor quasi-compact ([9]), as YES-instances do not have bounded
treewidth (take an arbitrarily large grid graph and add a few edges that cause odd cycles);
similarly it is not minor bidimensional ([26]) as the cost on a grid is zero. Thus, even for planar
inputs, it is not covered by any known meta-result. Generally, similar statements as the above
can be made about DFVS.

Our work. In this paper, we give a randomized polynomial kernelization for OCT, for unre-
stricted input. The kernel takes the form of a compression of the instance into a polynomial-sized
matrix (with bounded entry lengths), such that the independent sets of columns in the matrix
reveal whether the instance is positive or negative. By the NP-completeness of OCT, this then
implies a randomized polynomial kernel. The result is produced by combining the iterative
compression step of Reed, Smith, and Vetta [55] (in a suitable variant) with the theory of lin-
early represented matroids, specifically the class called gammoids [53]. We observe that, given
a graph G and a set of terminals X, a single gammoid can be used to produce a matroid that
encodes the flow from S to T in G − R for arbitrary S, T,R ⊆ X, and show (using results of
Marx [46]) how to produce a matrix representing this matroid, of total size cubic in |X| and log-
arithmic in |G|, in randomized polynomial time. Having access to this information is sufficient
to simulate the algorithm of [55]. Here, X is an initial approximate solution to the problem.
To get this initial set X, we use the O(

√
log n)-approximation of Agarwal et al. [1] to produce

2Hüffner [36] observed that the analysis could be improved to yield O(3kkmn).
3A directed graph is a tournament if for every pair of its vertices, exactly one of the two possible arcs is present.
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an O(
√
OPT)-approximation, giving an O(k4.5)-size randomized polynomial compression and

completing the kernelization. This approach of applying matroid theory to kernelization is a
new tool in the field, and should prove useful for several future kernelization results as well.
This is also one of very few randomized polynomial kernelizations (we are aware only of Harnik
and Naor’s probabilistic compression for Subset Sum [35]). Our result also implies an Õ(k3)
compression for the Tanglegram Layout problem from computational biology [23] via the
reduction given in [6]; a polynomial kernel for this problem was left open in [6].

Related work. Generally, not much is known yet about excluding polynomial kernels for graph
modification problems, compared to the wide range of problems that belong to this class. Al-
though a few kernelization lower-bounds [20, 42, 19, 32] and FPT infeasibility results [43] exist,
for many problems in this class, including Odd Cycle Transversal and Directed Feed-

back Vertex Set, the question of polynomial kernels is open. Another related set of problems
is graph separation problems; here as well, there are many FPT problems where the existence
of polynomial kernels is unknown, such as Multiway Cut [45, 17] and Multicut [12, 47].

Kernels for OCT for non-standard parameters are studied by Jansen and Kratsch [39]; a
polynomial kernel is obtained for the case that one is given an OCT instance (G, k) as well as a
set X such that G−X is both bipartite and bounded treewidth, with parameter |X|. The paper
also contains related lower bounds (e.g., if G−X is treewidth 2 but not necessarily bipartite).

Harnik and Naor [35] raised the question of compression of NP instances with respect to the
witness size (e.g., size O(k log n) for specifying a subset of size k). As they note, polynomial
kernelization with the witness size as parameter is equivalent to their notion of deterministic
compression. See Fortnow and Santhanam [27] for further discussion comparing the approaches
(and note also that the factor of log n can be absorbed into k if a problem is FPT with running

time 2k
O(1)

nc). Both Harnik and Naor [35] and Fortnow and Santhanam [27] also give notions
of probabilistic compression; the one we use is closer to [27], though we restrict ourselves to
one-sided error (see Section 2). However, as there are almost no further examples of randomized
polynomial kernelization or compression, there will be plenty of time for settling notation later.
In related work, compressions are instead called bikernels [3] or generalized kernelizations [8].

Connections between parameterized complexity and matroid theory have previously been
studied by Marx [46], including a self-contained description of representation tools and issues
for matroids. For more on matroid theory and algorithmic aspects see Oxley [52] as well as
Schrijver [56].

2 Preliminaries

2.1 Parameterized complexity and kernelization

We use the following standard notation from parameterized complexity, for more background
on this area we refer the reader to [21, 25, 51]. A parameterized problem over alphabet Σ
is a language Q ⊆ Σ∗ × N; the second component of instances (x, k) ∈ Σ∗ × N is called the
parameter. A kernelization (or kernel) of Q is a polynomial-time computable mapping K :
Σ∗ × N → Σ∗ × N : (x, k) 7→ (x′, k′) such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q and
with |x′|, k′ ≤ h(k) where h is a computable function; h is called the size of the kernel. A
kernelization is a polynomial kernelization if the size h(k) is polynomially bounded.

We use the term (parameterized) compression of Q (into Q′) to denote the relaxed variant
where K is allowed to map to a different language Q′ (also called bikernel [3] or generalized
kernelization [8]). When Q′ is in NP and Q with parameter coded in unary is NP-complete then,
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using the implicit Karp reduction, a polynomial compression of Q into Q′ implies a polynomial
kernelization for Q [11].

We define a natural randomized version of kernelization with one-sided error, corresponding
to the complexity class coRP (variants for RP and BPP could be defined similarly). Our notion
of polynomial coRP-compression is essentially equivalent to that of probabilistic compression
in [27], except for our one-sided error, and that [27] defines the parameter to be given in unary.

Definition 1 (coRP-kernelization). Let Q ⊆ Σ∗ × N. A randomized polynomial-time algo-
rithm K with inputs and outputs in Σ∗ × N is a randomized kernelization without false nega-
tives, or coRP-kernelization, for Q if there is a computable function h : N → N such that for
all (x, k) ∈ Σ∗ × N:

1. if (x, k) ∈ Q then prob[K((x, k)) ∈ Q] = 1,

2. if (x, k) /∈ Q then prob[K((x, k)) /∈ Q] ≥ 1
2 , and

3. the size of x′ and the value of k′ are bounded by h(k), where (x′, k′) := K((x, k)).

The notions of coRP-compression and polynomial coRP-compression are defined in the natural
way.

Note that unlike algorithms for BPP, RP, or coRP we cannot use majority, disjunction,
or conjunction over the outputs of N independent runs to boost the success probability, since
kernelizations and compressions typically do not solve instances. Harnik and Naor [35] observed
that a similar effect may be attained by making a combined instance from the result of N
independent runs of the compression (e.g., in our setting, creating an output which is to be
interpreted as ((x1, k1) ∈ Q) ∧ . . . ∧ ((xt, kt) ∈ Q)). Strictly speaking, this approach gives a
compression, but it can again be turned into a kernelization by the argument via the Karp
reduction.

2.2 Matroids

Matroids are interesting combinatorial structures, generalizing the notion of independence from
linear algebra, while also drawing from graph theory. There is an extensive theory of matroids,
as well as several important algorithmic results; see Oxley [52] and Schrijver [56].

A matroid is a pair M = (E,I), where E is the ground set and I ⊆ 2E a collection of
independent sets, such that: (i) ∅ ∈ I; (ii) if I1 ⊆ I2 and I2 ∈ I, then I1 ∈ I; and (iii)
if I1, I2 ∈ I and |I2| > |I1|, then there exists some x ∈ (I2 \ I1) such that I1 ∪ {x} ∈ I. A
set I ⊆ E is independent if I ∈ I, and dependent otherwise. A set B ∈ I is a basis of M if no
superset of B is independent; a matroid may equivalently be defined by its set of bases (among
other variants). Let B be the set of bases of M , and B∗ = {E \B : B ∈ B}. Then B∗ is the set
of bases of a matroid M∗, called the dual of M . Note that (M∗)∗ = M .

Let A be a matrix over a field F and E be the set of columns of A. Let I be the set of all
sets X ⊆ E of columns that are linearly independent over F (as vectors). Then (E,I) defines
a matroid M , and we say that A represents M . A matroid is representable (over a field F) if
there is a matrix (over F) that represents it. A matroid representable over some field is called
linear. In this work, we will concern ourselves only with linear matroids. From a representation
of M , one can easily get a representation of M∗ over the same field.

Finally, we defineminors of a matroid. For a matroid M = (E,I) and a set T ⊆ E, deleting T
results in a matroid M \T = (E\T,I ′) where I ′ = {I ∈ I : I ⊆ E\T}. Contracting T results in
a matroid M/T = (M∗ \T )∗; if T ∈ I, then the independent sets of M/T are the sets X ⊆ E \T
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such that X ∪ T ∈ I. A minor of a matroid M is any matroid produced from M by deletions
and contractions. Both operations can be performed with preserved representation.

3 Polynomial encoding of terminal cuts using gammoids

The basic situation that is handled in this section is the following. Let D = (V,A) be a directed
graph, and let X ⊆ V be a set of terminals. We want to reduce the graph to a size polynomial
in |X| and log |V |, while preserving the size of a minimum vertex cut (S, T ) for all sets S, T ⊆ X.
Here, a vertex cut is understood as being allowed to delete vertices of S or T as well as other
vertices of V ; thus the min-cut sizes are bounded by |X|. As an extension, we will also require
that we may specify any set R ⊆ X as removed, i.e., we want to have also the cuts (S, T )
in D −R.

Clearly, this question is closely connected to the search for polynomial kernels for FPT cut
problems. However, a direct combinatorial reduction to achieve this, e.g., via edge contractions
and vertex deletions or other direct simplifications on the graph, seems difficult. It is not even
clear whether there always exists a graph of the required size, where every minimum (S, T )-cut
for S, T ⊆ X has the same cardinality as in D − R. Instead, we here solve the question by
introducing the use of matroids and matroid representations to the field of kernelization.

Let us recall a few helpful definitions. For S, T ⊆ V , the set T is linked to S if there exist |T |
vertex-disjoint paths from S to T , where also the end points of the paths must be disjoint. The
sets S and T do not need to be disjoint; a vertex is linked to itself by a path of length zero.
By the cut-flow duality, it is clear that being able to find the linked subsets of X will suffice
to answer all questions about cuts (S, T ) in D. Perfect [53] showed, given any D = (V,A)
and S ⊆ V , that the subsets of T which are linked to S in D form a matroid (D,S), of a class
now called gammoids (see [52, 56]). Marx [46] gave a randomized polynomial-time procedure
for finding a representation of this matroid.

Theorem 1 ([53, 46]). Let D = (V,A) be a directed graph, and let S ⊆ V . The subsets T ⊆ V
which are linked to S form the independent sets of a matroid over V . Furthermore, a represen-
tation of this matroid can be obtained in randomized polynomial time with one-sided error.

Here, one-sided error means that dependent (non-linked) sets are preserved, but independent
(linked) sets in the graph may not be, i.e., if the procedure returns a matrix A, then there
may be some subsets of T which are linked to S but which are not independent in the matroid
represented by A. However, the risk of this can be made arbitrarily small.

It remains for us only to bound the bit-length of the entries of the matrix (which would
otherwise be polynomial in |V |). This is easily done by standard methods.

Corollary 1. Let D = (V,A) be a directed graph, ǫ > 0 a given real, and let S and T be pos-
sibly overlapping subsets of V . Let M be the gammoid formed by subsets of T linked to S.
A representation of M as an |S| × |T | matrix over the rationals with entries of bit-length
O(min(|T |, |S| log |T |) + log(1/ǫ) + log |V |) can be computed in randomized polynomial time
with one-sided error at most ǫ.

Proof. Theorem 1 can be made to return an |S|× |V | matrix over the rationals, with arbitrarily
small one-sided error ǫ′ > 0 and individual entries being integers of bit-length polynomial in |V |
and log 1/ǫ′. Let ǫ′ = ǫ/2, and let A be the matrix returned, with columns not in T removed.
To reduce the length of the entries, we take all entries in A modulo a sufficiently large random
prime p. We argue that the matrix A′ produced this way satisfies all conditions.
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Consider an independent column set in A. Since independence corresponds to a square
submatrix with non-zero determinant, we see that A and A′ differ in this aspect only if p
divides said determinant. The number of distinct prime factors in a number is bounded by
the bit-length, which for our determinants is polynomially bounded in |V |+ log 1/ǫ. Since the
number of maximal independent sets in M is bounded by both |T ||S| and by 2|T |, the total
number of distinct primes is bounded as t = min(|T ||S|, 2|T |)(|V |+log 1/ǫ)O(1). Thus, if we pick
a random prime from a set of size at least t′ = (2/ǫ) · t, the total risk of failure is bounded by ǫ.
By the Prime Number Theorem, primes of bit length O(log(t′ log t′)) = O(log t + log 1/ǫ) are
sufficient for this, which matches the statement of the corollary. By the AKS primality testing
algorithm [2], finding a random prime can be done with high probability by repeated uniform
sampling, and if this fails we may pick an arbitrary fixed prime. It can be seen that errors
throughout are one-sided.

The following proposition extends the available gammoid structure to allow any subset S
of the terminals as sources (i.e., without fixing it in advance), and to support also deletion of
terminals. This will be our interface for using Corollary 1 in the Odd Cycle Transversal

kernelization. The argument is straightforward and works as well for a given directed graph.

Proposition 1. Let G = (V,E) be an undirected graph, let X ⊆ V be a set of terminals,
and let X ′ := {v′ | v ∈ X} be a set of new vertices. There is a polynomial-time construction
of a directed graph D = (V ∪ X ′, A) such that I ⊆ X ∪ X ′ is an independent set of the
gammoid (D,X ′) if and only if T is linked to S in G−R where

• S contains all vertices v ∈ X with v, v′ /∈ I,

• T contains all vertices v ∈ X with v, v′ ∈ I, and

• R contains all vertices v ∈ X with v ∈ I but v′ /∈ I.

Proof. The arc set A of the digraph D is defined as follows: For any two adjacent vertices u, v ∈
V add (u, v) and (v, u) to A. Then add an arc (v′, v) for all v ∈ X (and corresponding v′ ∈ X ′).

We consider first any independent set I ⊆ X ∪ X ′ of the gammoid (D,X ′). There are |I|
vertex-disjoint directed paths from X ′ to I in D; fix any such packing P of directed paths. By
the structure of D all paths of P are either of form (u′) with u′ ∈ X ′, or of form (u′, u, . . . , v)
(possibly with u = v) and containing no vertices of X ′ \ {u′}. Let P = (u′, u, . . . , v) ∈ P
with u′ ∈ X ′ and v ∈ T , i.e., with v, v′ ∈ I. Clearly, u′ 6= v′ since (v′) ∈ P is the unique directed
path from X ′ to v′ and must be contained in P as v′ ∈ I (and using vertex-disjointness). Since u
and u′ are on P , no other path of P can end in u or u′, thus u, u′ /∈ I and hence u ∈ S. Finally,
no vertex p ∈ R can be on P since, by p ∈ I, that requires another path of P to end in p. Now,
the subpath (u, . . . , v) contained in D − X ′ corresponds to an undirected path from S to T
in G−R, and all those paths are vertex-disjoint.

Now, let P be a set of |T | vertex-disjoint paths from S to T in G−R. We construct a set P ′

of directed vertex-disjoints paths from X ′ to I in the digraph D where I is obtained according
to the statement of the proposition. For each path (u, . . . , v) ∈ P we add the path (u′, u, . . . , v)
to P ′. Clearly, those paths exist in D and they are vertex-disjoint. We also require paths ending
in the vertices of I \T . This includes vertices r ∈ R and vertices v′ with v /∈ S ∪R. It is easy to
see that adding paths (r′, r) and (v′), respectively, for all those vertices yields the required path
packing P ′ (key fact: in the initial |T | paths we only used v′ when v ∈ S, and vertices r ∈ R
were unused). Thus I is an independent set of the gammoid (D,X ′).
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Since it appears a very useful form, e.g., for obtaining polynomial kernels for other cut
problems, we explicitly state the combination of Proposition 1 and Corollary 1 as a corollary.

Corollary 2. Let G = (V,E) be an undirected graph, X ⊆ V a set of terminals, and ǫ a positive
real. There is a randomized polynomial-time algorithm computing an |X| × 2|X| matrix with
integer entries of bit length O(|X|+log |V |+log 1/ǫ), such that with probability at least (1−ǫ) any
set of columns I ⊆ X ∪X ′ is independent in M if T is linked to S in G−R, where S, T,R ⊆ X
are defined as in Proposition 1. The error is one-sided: the number of disjoint paths as indicated
by independence is a lower bound on the true value in G.

4 A randomized polynomial kernel for odd cycle transversal

In this section, using the results presented in the previous section, we will give our randomized
polynomial kernelization for Odd Cycle Transversal. We will start by a presentation of
the FPT algorithm of Reed, Smith, and Vetta [55], as understanding this algorithm is critical
to understanding the kernelization. This is presented in Section 4.1. Then we present the
kernelization in Section 4.2, and finally discuss the relation with lower bounds in Section 4.3.

4.1 The Reed-Smith-Vetta algorithm

The FPT algorithm of Reed, Smith, and Vetta [55] solves Odd Cycle Transversal by a
recursive approach: Solve the problem for G − v, where v is an arbitrary vertex. If it returns
a solution Xv of size at most k, then X := Xv ∪ {v} is a solution of size at most k + 1 for G,
and the following compression version of the problem is solved. Otherwise (G − v, k) is NO,
thus (G, k) must be NO.

Input: A graph G = (V,E), an integer k, and a bipartization set X of size k + 1.
Parameter: k.
Question: Is there a bipartization set Y for G such that |Y | ≤ k?

The compression routine in the Reed-Smith-Vetta algorithm consists of trying exhaustively
all ways of how the set X could interact with a smaller solution Y , each coming down to a
maximum flow computation. Concretely, we create a graph G′ = (V ′, E′) from G and X in the
following way: let S1 ∪ S2 be a bipartition of G − X. Let V ′ = V − X ∪ {x1, x2 : x ∈ X},
where x1 and x2 are new vertices. Connect x1 to all neighbors of x in S2 and x2 to all neighbors
of x in S1. By subdividing edges, we may assume that there are no edges inside X. Note
that G′ is bipartite with partitions S1 ∪ {x1 : x ∈ X} and S2 ∪ {x2 : x ∈ X}. For U ⊆ X,
let X ′(U) := {x1, x2 : x ∈ U}, and let X ′ = X ′(X).

The algorithm searches for cuts through X ′ in G′. For a subset U ⊆ X, let a pair (S, T )
of disjoint subsets of X ′ be a valid split of U if for every x ∈ U we have |{x1, x2} ∩ S| =
|{x1, x2} ∩ T | = 1 and for every x ∈ (X \ U) we have |{x1, x2} ∩ S| = |{x1, x2} ∩ T | = 0. The
following lemma is a direct consequence of [55].

Lemma 1 ([55]). Let G = (V,E) be a graph and let X ⊆ V such that G−X is bipartite. Let G′

be constructed from G and X as above. Let δ(H,S, T ) denote the minimum size of an (S, T )
vertex cut in H. The minimum size of Y ⊆ V such that G− Y is bipartite equals the minimum
of |X \ U |+ δ(G′ −X ′(X \ U), S, T ) over all subsets U of X and all valid splits (S, T ) of U .

Clearly, given this result, one can find an optimal bipartization set for G by looping over
the 3|X| options for U , S, and T . In particular, one is not limited to using X of size k + 1 but,

8



sacrificing runtime, a single run of the iterative compression routine on G and an approximate
solution X for G suffices. In the next subsection, this setting will be used to give a polynomial
kernelization of Odd Cycle Transversal.

For proofs of Lemma 1, see [55] or one of the presentations subsequently given by other
authors [37, 44]. For variation, we will now sketch an alternative approach to showing the
result.

Instead of a graph, we view the OCT instance as a 2-SAT formula F containing only con-
straints (x = y) and (x 6= y). Clearly, for any graph G, if we replace every edge {u, v} in G
by a constraint (u 6= v), then we get a formula F over V which is satisfiable if and only if G is
bipartite, and this holds for every induced subgraph of G as well. Thus, the problem reduces to
deleting k variables Z of F and their incident constraints such that the remaining formula F−Z
is satisfiable.

Now, observe that we can negate a variable v in F by changing (u = v)-constraints to (u 6= v)-
constraints and vice versa. This does not affect the satisfiability of F − Y for any variable
set Y . Thus, negate variables in F so that F −X is satisfied by the all-zero assignment. We
now observe that the only remaining disequality constraints (x 6= y) of F are incident to X.
By deleting or assigning every x ∈ X, we create smaller formulas F ′ containing only equality
constraints (u = v) and assignments (u = 0) or (u = 1). This trivially reduces to a vertex cut
problem in a graph, which would conclude the proof of the FPT result.

To get from here to the construction of G′ above, consider the effects of splitting variables x ∈
X in F into distinct variables x and ¬x representing its literals, and replace constraints (x 6= y)
by (¬x = y). Clearly, in any assignment we must require (x 6= ¬x). Applying all this to the
bipartition S1 ∪ S2 of G−X will show the equivalence of the result.

4.2 Kernelization

Now, we give the kernelization. We begin by describing a compression procedure for OCT,
by applying the matroid tools of Section 3 to Lemma 1 above. The result is a randomized
polynomial-time compression procedure with one-sided error, consisting of the following steps.
Let an instance (G, k) of OCT and an error parameter ǫ > 0 be given.

1. If k ≤ log n, run the Reed-Smith-Vetta algorithm in time O(3kkmn) = nO(1) (polynomial
in n) and return a constant-size YES- or NO-instance accordingly.

2. Otherwise, if k > log n, let X be an approximate solution of ratio O(
√
log n) = O(k1/2),

provided by an algorithm due to Agarwal et al. [1]. Unless |X| = O(k3/2), answer NO as
there cannot be a solution of size at most k. (If |X| ≤ k then answer YES.)

3. Create the auxiliary graph G′ from G and X, as in Section 4.1. Let X ′ = {x1, x2 | x ∈ X}.

4. Apply Corollary 2 to G′ with terminal setX ′ and error parameter ǫ/2, creating a matrix A.

5. Output (A, k) as a polynomial-sized compression.

The total coding size of the matrix A is cubic in |X| (up to factors logarithmic in 1/ǫ). By the
size guarantee in Step 2, we get an O(k4.5)-sized compression for OCT. Note that (A, k) may
be interpreted as an instance of an (artificial) decision problem (implicitly defined in the proof
of Lemma 2). Clearly, this problem is in NP, allowing us to reduce back to OCT to complete
the kernelization (using the implicit Karp reduction as discussed in Section 2.1).

For Edge Bipartization, we may replace Steps 1 and 2 by the O(log OPT)-approximation
of Avidor and Langberg [4], followed by an easy reduction from Edge Bipartization to
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OCT, for a compression of size Õ(k3). It is an interesting question whether a polylog(OPT)-
approximation is possible for OCT, as this would give us a Õ(k3)-sized compression for OCT.

Now we give our central compression result.

Lemma 2. Let (G, k) be an instance of OCT, X a bipartization set for G, and ǫ > 0 be given.
Then there is a randomized compression of (G, k) to size O(|X|2(|X|+ log 1/ǫ)) with one-sided
error, producing no false negatives. The error probability is bounded by ǫ, and the running time
is polynomial in |G| and log 1/ǫ.

Proof. The algorithm proceeds as Steps 3-5 of the kernelization algorithm, creating first an
auxiliary graph G′ with a terminal set X ′ of size 2|X|, and then invoking Corollary 2 on G′, X ′,
and ǫ/2. Let the resulting matrix be A; our compression output is then (A, k). The running
time and output size are given by Corollary 2; we only have to argue that (A, k) contains
all the information needed to decide the status of the OCT instance (G, k). By Step 2, we
assume |X| > k.

Recall the definition X ′(U) = {x1, x2 : x ∈ U} for U ⊆ X. By Lemma 1, we need for
all U ⊆ X the minimum (S, T ) vertex cut size in G′ − X ′(X \ U), where S and T range over
all valid splits of U . Clearly, if the minimum (S, T ) vertex cut size in G′ −R is λ then there is
a set T ′ ⊆ T of size λ such that T ′ is linked to S in G′ − R, i.e., such that there are λ = |T ′|
vertex disjoint paths from S to T ′ in G′ − R (using cut-flow duality). This can be obtained
from the matrix A by testing independence of all sets I which correspond (as in Corollary 2) to
choices S, T ′, R with T ′ ⊆ T and R = X ′(X \U). Note that whether an (S, T )-cut may delete S
and T makes no difference for the algorithm using Lemma 1.

The behavior and one-sidedness of the error also follows from Corollary 2.

With the previously described algorithm and the approximation results we get the following.

Theorem 2. There is a randomized O(k4.5)-compression for Odd Cycle Transversal and
a randomized Õ(k3)-compression for Edge Bipartization, with one-sided error with no false
negatives and failure probability exponentially small in k.

The target problems of the compressions are constrained minimization problems over the
rank of a matroid. We omit the precise definitions, but it should be clear that the problems
can be made well-defined, and that they are in NP. As discussed in Section 2.1, using NP-
completeness of Odd Cycle Transversal and Edge Bipartization, we get the following
polynomial coRP-kernelization results.

Corollary 3. Odd Cycle Transversal, Edge Bipartization, Balanced Subgraph,
and Tanglegram Layout (see [6]) have polynomial coRP-kernelizations.

4.3 A Note on Lower Bounds

Finally, we remark that although kernelizations and kernelization lower bounds are usually
expressed in terms of deterministic results, the type of randomized kernelizations we produce
here (i.e., one-sided error with no false negatives) does in fact fit within the lower bounds
framework of Bodlaender et al. [8] and Fortnow and Santhanam [27], as the proofs implicitly
exclude also co-nondeterministic kernels. Since our coRP kernelization is a special case of this,
our tools cannot be used to escape the lower bounds. Dell and van Melkebeek [19] noted the
connection to co-nondeterministic kernels, and brought it further by giving lower bounds in
terms of the amount of communication needed to solve a problem in an oracle setting, where a
polynomially bounded but co-nondeterministic player communicates with an computationally
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unbounded oracle.4 They provide concrete lower bounds for various problems, among others
implying the following.

Theorem 3 ([19]). Let ǫ > 0. No co-nondeterministic kernel or compression for OCT can
achieve a total size of O(k2−ǫ) unless NP ⊆ coNP/poly and the polynomial hierarchy collapses.

It seems difficult to go below an O(k3) bound using our methods. Thus, we leave it as an open
question whether the upper or the lower bound on the total compression size can be improved
for Odd Cycle Transversal and Edge Bipartization.

5 Conclusion

We have presented randomized polynomial kernelizations for Odd Cycle Transversal and
Edge Bipartization. The key contribution is the introduction of matroids into kerneliza-
tion, by encoding the compression step of the Reed-Smith-Vetta algorithm for Odd Cycle

Transversal [55], by means of a matroid. This leads to a compression of the problem into
size O(k4.5) for Odd Cycle Transversal and Õ(k3) for Edge Bipartization, which is eas-
ily turned into a kernelization by back-reductions to the original problems. The kernelization
has one-sided error, producing no false negatives, and the failure rate can be made exponen-
tially small in k at only a constant factor cost to the size. While this essentially settles the
question about existence of polynomial kernels, the more practical result seems to be the output
of the compression. Not only is compression to any set the more robust notion (cf. [19]); the
target problem is native in one of the most well-studied areas of mathematics and computer
science. The compression may also point the way for where to look for direct, combinatorial
kernelizations for the problem.

It is interesting that the results of Fortnow and Santhanam [27] can be seen to exclude also
co-nondeterministic compressions [19]. Thus, our technique is not a way of avoiding the lower
bounds given by [8, 27], but a way of settling problems for which neither such lower bounds nor
a polynomial kernelization or compression are known.

We close with some open problems. It is still interesting whether there exist deterministic
polynomial kernelizations for Odd Cycle Transversal and Edge Bipartization, either as
a derandomization of our methods, or (which would have independent interest) as a properly
combinatorial kernelization. Additionally, for both problems, there is the question of the correct
size bound. We note that a O(polylog(OPT))-approximation for OCT, which is consistent with
approximation theory lower bounds, would improve our result to Õ(k3), but this still leaves a
gap to the O(k2−ǫ) lower bound given by Dell and van Melkebeek [19]. Finally, existence of
(randomized) polynomial kernels is an exciting question for several related problems, including
Directed Feedback Vertex Set, Multiway Cut, and Edge and Vertex Multicut.
The robust way in which the introduction of matroids into kernelization helped to settle the
question for Odd Cycle Transversal gives reason to believe that it will play a key role for
some of these problems as well.
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[38] F. Hüffner, N. Betzler, and R. Niedermeier. Separator-based data reduction for signed
graph balancing. J. Comb. Optim., 20(4):335–360, 2010.

[39] B. Jansen and S. Kratsch. Vertex and edge bipartization with nonstandard parameters:
Upper and lower bounds for kernelization, 2011. Unpublished manuscript.

[40] K. Kawarabayashi and B. A. Reed. An (almost) linear time algorithm for odd cycles
transversal. In Charikar [14], pages 365–378.

[41] S. Khot. On the power of unique 2-prover 1-round games. In IEEE Conference on Com-
putational Complexity, page 25, 2002.

[42] S. Kratsch and M. Wahlström. Two edge modification problems without polynomial ker-
nels. In Chen and Fomin [15], pages 264–275.

[43] D. Lokshtanov. Wheel-free deletion is W[2]-hard. In Grohe and Niedermeier [30], pages
141–147.

[44] D. Lokshtanov, S. Saurabh, and S. Sikdar. Simpler parameterized algorithm for OCT. In
J. Fiala, J. Kratochv́ıl, and M. Miller, editors, IWOCA, volume 5874 of Lecture Notes in
Computer Science, pages 380–384. Springer, 2009.

[45] D. Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–406,
2006.

[46] D. Marx. A parameterized view on matroid optimization problems. Theor. Comput. Sci.,
410(44):4471–4479, 2009.

[47] D. Marx and I. Razgon. Fixed-parameter tractability of multicut parameterized by the
size of the cutset. In Fortnow and Vadhan [28], pages 469–478.

[48] N. Misra, V. Raman, and S. Saurabh. Lower bounds on kernelization. Discrete Optimiza-
tion, 8(1):110–128, 2011.

[49] A. Natanzon, R. Shamir, and R. Sharan. A polynomial approximation algorithm for the
minimum fill-in problem. SIAM J. Comput., 30(4):1067–1079, 2000.

[50] G. Nemhauser and L. Trotter. Vertex packing: structural properties and algorithms. Math-
ematical Programming, 8:232–248, 1975.

14



[51] R. Niedermeier. Invitation to Fixed Parameter Algorithms (Oxford Lecture Series in Math-
ematics and Its Applications). Oxford University Press, USA, March 2006.

[52] J. Oxley. Matroid Theory. Oxford University Press, 2nd edition, 2011.

[53] H. Perfect. Applications of menger’s graph theorem. J. Math. Anal. Appl., 22:96–111,
1968.

[54] I. Razgon and B. O’Sullivan. Almost 2-SAT is fixed-parameter tractable. J. Comput. Syst.
Sci., 75(8):435–450, 2009.

[55] B. A. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Oper. Res. Lett.,
32(4):299–301, 2004.

[56] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
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