Definition 1 (Hypergraph).

Hypergraph is a pair $G = (V, E)$ where V is set of elements called *vertices* or *nodes* and $E \subseteq \{e \subset V \mid |e| \geq 2\}$ is set of elements called *hyperedges* or *edges*.

Definition 2 (Hitting Set).

Let (S, C) be a hypergraph. A set $H \subseteq S$ is a *hitting set* of (S, C) if and only if *H* has nonempty intersection with every element of *C*. In case the sizes of the elements of *C* are bounded from above by some fixed *d*, the problem is called *d-hitting set*.

Definition 3 (Hitting Set Problem).

Given hypergraph (*S*, *C*) and parameter *k*, decide if there is a hitting set *H* of (S, C) such that $|H| \leq k$.

Definition 4 (Crown decomposition).

Let *G* = (*V*, *E*) be a graph, then a (*H*, *I*, *M*) is crown decomposition of *G* if and only if the following holds:

- ► *I* is a non-empty independent set of *G*.
- \blacktriangleright *H* is *N_G*(*I*)
- \triangleright *M* is *H*-saturating matching of the (bipartite) graph $G_M = (V_M, E_M)$ where $V_M = I \cup H$ and $E = \{ \{u, v\} \mid u \in I \land v \in H \}.$

Lemma 5.

Graph G = (*V*, *E*) *has crown decomposition if and only if there is a non-empty independent set I of G such that* $|I| > |N_G(I)|$.

Proof.

⇒: Immediate.

 \Leftarrow : Using Hall's Marriage Theorem.

There is an algorithm that for given graph *G* and its independent set *I* such that $|I| \geq |N_G(I)|$ finds, in polynomial time, crown decomposition (H', I', M) of G such that $H' \subseteq N_G(I),\,I' \subseteq I.$ We will refer to this algorithm as Construct-Crown.

Definition 6 (Crown decomposition for hypergraphs).

Let $G = (V, E)$ be a hypergraph, then (H, I, M) is crown decomposition of *G* if and only if the following holds:

- ► *I* is an independent set of *G*.
- ^I *H* = {*J* ⊂ *V* | ∃*x* ∈ *I* . *J* ∪ {*x*} ∈ *C*}.
- \blacktriangleright *M* is matching of the (bipartite) graph $G_M = (V_M, G_M)$ where

$$
\blacktriangleright \; V_M = I \cup H
$$

- \blacktriangleright $E_M = \{(x, J) \mid x \in I \wedge J \in H \wedge (\{x\} \cup J) \in C\}.$
- ► Every element of *H* is matched under *M*.

Lemma 7.

Let (*S*, *C*, *k*) *be an instance of 3HS and let* (*H*, *I*, *M*) *be a crown of* (*S*, *C*)*. Then* (*S*, *C*, *k*) *is equivalent to the instance* $(S - I, (C - E(I)) \cup H, k)$.

Proof.

Let *A* be a solution for 3HS instance (*S*, *C*, *k*). Let *B* ⊆ *H* be a set that contains exactly the edges of *H* with nonempty intersection with *A*. Then for every pair $\{x, y\}$ from $(H - B)$ there is an edge $\{\{x, y\}, z\} \in M$ where $z \in A \cap I$ is used to cover the edge ${x, y, z} \in C$. Replacing *z* by any element of ${x, y}$ produces another hitting set *A'* such that $|A'| \leq |A|$.

Lemma 8 (High-Degree rule 3HS).

If x ∈ *S has more than k edges whose pairwise intersection is* {*x*}*, then:*

- \blacktriangleright *Add x to any potential solution for* (S, C, k) *.*
- \triangleright *Remove elements of E(x) from the instance and decrease k by 1.*

Proof.

Soundness of the rule is obvious.

To verify that the condition holds for some vertex *x* is to find a matching *M* of the simple graph obtained by deleting *x* from *E*(*x*) such that $|M| > k$. This can be done in polynomial time. If the high degree rule does not apply to any vertex of 3HS instance (S, C, k) , we shall say that (S, C, k) is **reduced**.

Definition 9 (Weakly related edges).

Let (S, C, k) be a 3HS instance. Two distinct elements e_1, e_2 of C are *weakly related edges* if and only if $|e_1 \cap e_2| \leq 1$. Set $W \subseteq C$ is maximal collection of weakly related edges if every edge of *C* is either in *W* or there is some $e' \in W$ such that $|e \cap e'| \geq 2$.

Lemma 10.

Let (*S*, *C*, *k*) *be a reduced yes instance of 3HS and let W be a collection of weakly related edges of* (S, C) *, then* $|W| \leq k^2$ *.*

Proof.

There is some set *A* ⊆ *S* such that it covers all the edges in *W* and $|A| < k$. Since the instance is reduced, by the high-degree rule, every vertex of *A* belongs to at most *k* edges of *W*.

We can construct *maximal* set *W* of weakly related edges by a simple greedy approach, starting with (any) singleton set and filing it with elements of *C* as long as there is one that satisfies the condition. We will construct *W* while reducing the instance (using the high-degree rule) at the same time.

Lemma 11 (Crown properties).

Let (*S*, *C*, *k*) *be reduced yes instance of 3HS and let W be a maximal set of weakly related edges of* (S, C) , $I = \{x \in S \mid x \notin V(W)\}$ and *H* = {{*x*, *y*} | ∃*e* ∈ *W* . {*x*, *y*} ⊂ *e*}*. WLOG assume that W contains all edges of C of size less than 3.*

- 1. *I is an independent set.*
- 2. $|S-I|$ ≤ 2 k^2 + k .
- 3. *Every edge e of size three that contains element x* ∈ *I consists of x and a pair from H.*
- $4.$ $|H| \leq 3k^2$.

Crown properties.

- 1. Assume that there is an edge *e* containing two elements of *I*, such an edge could be added to *W* (by definition of *I*), which contradicts the maximality of *W*.
- 2. The vertices from *S* − *I* are exactly the vertices that are contained in some edge from *W*. We know that there is some solution *A* (of size at most *k*) that covers all elements of *W*. Since the instance is reduced, every element *x* of *A* belongs to at most *k* elements of *W*. This gives us at most 2*k* vertices of *V*(*W*) per one vertex of *A*. Thus $S - I$ contains at most $2k^2 + k$ vertices.

Crown properties.

- 3. Assume that $e = \{x, y, z\}$ such that $\{x, y\} \notin H$, thus intersection of *e* with any element of *W* would contain at most one element, which would contradict the maximality of *W*.
- 4. Each edge of size (at most) three gives rise to (at most) three (unique) elements of *H*.

Consider the simple bipartite graph $G_{I,H} = (H \cup I, E_I)$ where edges of *E*_I are simple edges connecting an element $x \in I$ to an element {*y*, *z*} ∈ *H* if {*x*, *y*, *z*} ∈ *C*. By Lemma [5,](#page-2-1) we can apply Construct-Crown to find crown (H', I', M) for $G_{I,H}$. It is easy to see that this crown is also crown for the original hypergraph.

Algorithm 1 Kernelization of 3HS

while *C* contains singleton set {*x*} **do**

Add *x* to *A*

Delete all edges that contain *x* from *C*

Decrement *k*

end while

Reduce the instance and construct *W* of the reduced instance

if $|W| > k^2$ then

Return **false**

end if

$$
\begin{aligned}\n\text{if } |I| &\geq |H| \text{ then} \\
(H', I', M) &\leftarrow \text{Construct-Crown}(G_{I, H}) \\
S &\leftarrow S - I' \\
C &\leftarrow (C - E(I')) \cup H'\n\end{aligned}
$$

end if

Return the (possibly) new instance.

Theorem 12.

There is a polynomial time algorithm that, for an arbitrary input instance (*S*, *C*, *k*) *of 3HS, either determines that the instance does not have a solution or computes a kernel whose order is bounded from above by* $5k^2 + k$.

Proof.

$|I| < |H|$ we have $|S| = |S - I| + |I| \leq 2k^2 + k + 3k^2 = 5k^2 + k$. $|I| \geq |H|$:

- 1. $|I I'| \leq |H H'|$.
- 2. No edges of *W* were removed from the instance and *W* is still maximal.

Definition 13 (Subedge).

Let $G = (S, C)$ be a hypergraph. Set $e \subseteq S$ is subedge of G if and only if (∃*e'* ∈ *C* . *e* ⊆ *e'*). We say that subedge *e* is *j*-subedge if and only if $|e|=i$.

Lemma 14 (High-degree rule for dHS).

If e ⊂ *S is a* (*d* − 2) *subedge and e is the pairwise intersection of more than k edges, then delete all elements of C that contain e as a subset and add e to C.*

Proof.

Soundness of the rule is obvious.

Definition 15 (Reduced instance).

If the high-degree rule can not be applied to a *d*HS instance (*S*, *C*, *k*), we shall say that (*S*, *C*, *k*) is **reduced**.

Verifying that (*d* − 2)-subedge satisfies the condition of the high-degree rule is equivalent to solving the maximum matching problem in the (simple) graph given by edges $E_e = \{e' \mid e \cup e' \in C\}.$ Thus it can be verified in polynomial time.

Definition 16 (Weakly related edges).

Two edges are weakly related if their intersection is not larger than (*d* − 2) and if neither one of them is a subset of the other.

Lemma 17.

Let A be a solution of reduced instance (*S*, *C*, *k*) *of dHS, and let W be maximal set of weakly related edges. Denote by W^e the set of edges of W that properly contain e. If e is* (*d* − 2)*-subedge then, by the high-degree rule,* $|W_{\alpha}| \leq k$.

Algorithm 2 High-occurence rule

for $i = d - 2 \rightarrow 1$ **do for** each *i*-subedge *e* of *W* **do** $|W_e| > k^{d-1-i}$ then Delete (from *C* and *W*) all edges containing *e* Add *e* to *W* (and thus *C*) **end if end for end for**

Soundness of the high-occurence rule.

By induction on *i*:

- 1. Base follows directly from high-degree rule (since the instance is reduced).
- 2. Assuming that *i*-th iteration is correct, we will show that every (*i* − 1)-subsedge *e* such that |*We*| > *k ^d*−*ⁱ* has non-empty intersection with any solution *A*.

Lemma 18.

Let (*S*, *C*, *k*) *be a reduced yes instance of dHS and let W be a maximal set of weakly related edges given by the high-occurrence rule. Then* $|W| \leq k^{d-1}$.

Proof.

Every 1-subedge occurs in at most *k ^d*−² edges. The elements of some solution of size (at most) *k* form (at most) *k* singleton subedges. Every element of *W* has to be covered by one of these subedges, thus the number of edges in *W* can not be greater than *k d*−1 .

Lemma 19 (Crown properties).

Let (*S*, *C*, *k*) *be our yes instance of dHS after applying the high-degree and high-occurrence rule and let W be the resulting set of weakly related edges of the instance. Let* $I = \{x \in S \mid x \notin V(W)\}\$ *and H is a set of* (*d* − 1)*-subedges of W. Then:*

- 1. *I is an independent set.*
- 2. $|S-I|$ ≤ $(d-1)k^{d-1}$ + k .
- 3. *Every edge e of size d that contains element x* ∈ *I consists of x and* (*d* − 1)*-subedge from H.*
- 4. |*H*| ≤ *dkd*−¹ *.*

Proof.

Analogous to the *3HS* case.

As was the case for *3HS*, we can find the crown of *GH*,*^I* using the Construct-Crown algorithm. The resulting algorithm for *dHS* kernelization follows the same pattern as the one for *3HS*.