Bidimensionality: An Overview

Tomáš Vejpustek

June 19, 2013

Outline

Bidimensionality works with:

- $r \times r$ grids
- bounded treewidth (tw)
- *H*-minor-free graphs

Bidimensionality theory includes:

- graph structural results
- framework for FPT algorithms
- polynomial-time approximation schemes (PTAS)

- *w*-tree-decomposition is FPT
- allows nice dynamic FPT algorithms
- many problems are FPT on bounded tw
- r × r grid = typical graph of tw(r) (cops and robber game)

Courcelle's (meta)theorem

Let φ be a MSOL formula and G be a graph with $\mathbf{tw}(G) \leq w$. Then in time $f(|\varphi|, w)\mathcal{O}(|V(G)|)$ it can be decided whether G satisfies φ .

Graph Minors

- 1. deleting vertices
- 2. deleting edges
- 3. contracting edges

Forbidden minor characterization

Each graph class closed on minors has a finite set of forbidden minors (\Leftarrow Robertson–Seymour theorem).

- non-constructive (some forbidden minors unknown)
- *H*-minor problem *O*(*n*³) for fixed *H* (superexponential w.r.t |*H*|)

- trees (triangle)
- planar graphs (K_5 and $K_{3,3}$)
- graphs embeddable on a fixed topological surface
- $\mathbf{tw}(G) \leq 3$
- many are easier for FPT algorithms

Bounded Genus Graph

Embeddable on a surface with bounded Euler genus (i.e. bounded number of *handles* and *cross-caps*).

Single-crossing Graph

Can be drawn on a plane with at most two edges crossing.

- every planar graph of $\mathbf{tw} \ge 6k 5$ has a $G_{k \times k}$ minor
- every graph of $\mathbf{tw} \geq 20^{2k^5}$ has a $G_{k \times k}$ minor

- every planar graph of $\mathbf{tw} \ge 6k 5$ has a $G_{k \times k}$ minor
- every graph of $\mathbf{tw} \geq 20^{2k^5}$ has a $G_{k \times k}$ minor

Theorem

For any fixed graph *H*, every *H*-minor-free graph of $\mathbf{tw} = k$ has a $G_{\Omega(k) \times \Omega(k)}$ minor.

- 1. *H*-minor-free graphs can be decomposed into a clicque sum of almost embeddable graphs (R.S.)
- 2. clicque sum does not increase $\textbf{tw} \rightarrow \textbf{component}$ with greatest tw
- 3. almost embeddable reduced to embeddable
- bounded genus has large grid (prior results – extended from planar)

Let G_1 and G_2 contain a k-clique W. $G_1 \oplus 1G_2$:

- 1. delete some or no edges from $\ensuremath{\mathcal{W}}$
- 2. attach $G_1 \setminus W$ to corresponding vertices
- 3. attach $G_2 \setminus W$ similarly

Let G_1 and G_2 contain a k-clique W. $G_1 \oplus 1G_2$:

- 1. delete some or no edges from $\ensuremath{\mathcal{W}}$
- 2. attach $G_1 \setminus W$ to corresponding vertices
- 3. attach $G_2 \setminus W$ similarly
- $\mathsf{tw}(G_1 \oplus G_2) \leq \max\{\mathsf{tw}(G_1), \mathsf{tw}(G_2)\}$
 - 1. $\mathsf{tw}(G_1) \ge \mathsf{tw}(W), \mathsf{tw}(G_2) \ge \mathsf{tw}(W)$
 - 2. W is in one bag in tree decompositions of G_1, G_2
 - 3. we can get tree decomposition of $G_1 \oplus G_2$ by joining them by a bag containing only W

Minor Bidimensionality

- A parameter P is g(r)-minor-BiD if it:
 - 1. is at least g(r) on $G_{r \times r}$
 - 2. does not increase when taking minors

Minor Bidimensionality

- A parameter P is g(r)-minor-BiD if it:
 - 1. is at least g(r) on $G_{r \times r}$
 - 2. does not increase when taking minors
 - Θ(r²)-minor-BiD size of: vertex cover, feedback vertex set, ...
 - not minor-BiD: dominating set, Hamiltonian path (removing edges)

Contraction Bidimensionality

Parameter P is g(r)-contraction-BiD if it:

- 1. is at least g(r) on $G_{r \times r}$ -like graph
- 2. does not increase when contracting edges

Contraction Bidimensionality

Parameter P is g(r)-contraction-BiD if it:

- 1. is at least g(r) on $G_{r \times r}$ -like graph
- 2. does not increase when contracting edges

Grid-like Graphs

planar partially triangulated $G_{r \times r}$ bounded-genus above + genus(G) additional edges apex-minor-free $G_{r \times r}$ + additional edges so that each vertex is incident to c noboundary vertex (depending on forbidden minor)

Contraction Bidimensionality

Parameter P is g(r)-contraction-BiD if it:

- 1. is at least g(r) on $G_{r \times r}$ -like graph
- 2. does not increase when contracting edges

Grid-like Graphs

planar partially triangulated $G_{r \times r}$ bounded-genus above + genus(G) additional edges apex-minor-free $G_{r \times r}$ + additional edges so that each vertex is incident to c noboundary vertex (depending on forbidden minor)

Dominating set $(\Theta(r^2))$, Hamiltonian path $(\Theta(r^2))$, ...

Let P be g(r)-minor bidimensional and G be H-minor-free for some H. Is $P(G) \ge k$?

- 1. G has a $G_{\mathsf{tw}(G) \times \mathsf{tw}(G)}$, so $P(G) \ge g(\mathsf{tw}(G))$
- 2. if $g(\mathbf{tw}(G)) \ge k$, return YES
- 3. otherwise, $\mathbf{tw}(G) \le k \implies$ use dynamic programming (or Courcelle's theorem)

Let P be g(r)-minor bidimensional and G be H-minor-free for some H. Is $P(G) \ge k$?

- 1. G has a $G_{\mathsf{tw}(G) \times \mathsf{tw}(G)}$, so $P(G) \ge g(\mathsf{tw}(G))$
- 2. if $g(\mathbf{tw}(G)) \ge k$, return YES
- 3. otherwise, $\mathbf{tw}(G) \le k \implies$ use dynamic programming (or Courcelle's theorem)

Can we get subexponential FPTA (e.g. $\mathcal{O}(2^{\sqrt{k}})$)?

Parameter-Treewidth Bounds

Theorem

Let *P* be g(r)-BiD for the graph *G*. Then tw(*G*) = $O(g^{-1}(P(G)))$.

Parameter-Treewidth Bounds

Theorem

Let *P* be g(r)-BiD for the graph *G*. Then $\mathbf{tw}(G) = \mathcal{O}(g^{-1}(P(G))).$

Proof (minor-BiD): *G* has a $G_{\Omega(r) \times \Omega(r)}$ minor *R*. $P(R) \leq g(r) \geq g(\Omega(\mathbf{tw}(G)))$. Since *P* does not increase when taking minors, $P(G) \geq P(R)$, i.e. $P(G) \geq g(\Omega(\mathbf{tw}(G)))$ and $\mathbf{tw}(G) = \mathcal{O}(g^{-1}(P(G)))$.

Parameter-Treewidth Bounds

Theorem

Let *P* be g(r)-BiD for the graph *G*. Then $\mathbf{tw}(G) = \mathcal{O}(g^{-1}(P(G))).$

Proof (minor-BiD): *G* has a $G_{\Omega(r) \times \Omega(r)}$ minor *R*. $P(R) \le g(r) \ge g(\Omega(\mathbf{tw}(G)))$. Since *P* does not increase when taking minors, $P(G) \ge P(R)$, i.e. $P(G) \ge g(\Omega(\mathbf{tw}(G)))$ and $\mathbf{tw}(G) = \mathcal{O}(g^{-1}(P(G)))$. If $g(r) = \Theta(r^2)$ then $\mathbf{tw}(G) = \mathcal{O}(\sqrt{P(G)})$.

Theorem

Assume *P* is g(r)-BiD and can be computed in $h(w)n^{\mathcal{O}(1)}$. Then there is an algorithm that computes P(G) for a graph class corresponding to *P* which has the complexity of $(h(\mathcal{O}(g^{-1}(k))) + 2^{\mathcal{O}(g^{-1}(k))}) n^{\mathcal{O}(1)}$.

Theorem

Assume *P* is g(r)-BiD and can be computed in $h(w)n^{\mathcal{O}(1)}$. Then there is an algorithm that computes P(G) for a graph class corresponding to *P* which has the complexity of $(h(\mathcal{O}(g^{-1}(k))) + 2^{\mathcal{O}(g^{-1}(k))}) n^{\mathcal{O}(1)}$.

Notably when $g(r) = \Theta(r^2)$ and $h(w) = 2^{o(w^2)}$, this time is subexponential \implies subexponential algorithms for vertex cover, feedback vertex set, dominating set,...

Locally Bounded Tree-Width

$\forall v. \mathbf{tw}(G[N_r(v)]) \leq f(r)$

Theorem

Every apex-minor-free graph of diameter D has treewidth in $\mathcal{O}(D)$.

Diameter-bounded $\mathbf{tw} \approx$ locally-bounded \mathbf{tw} (neighbourhood is a minor)

Theorem

Every *H*-minor-free graph *G* has **tw** in $\mathcal{O}\left(\sqrt{|V(G)|}\right)$.

Theorem

Every *H*-minor-free graph *G* has **tw** in
$$O\left(\sqrt{|V(G)|}\right)$$
.

Proof: Number of vertices is r^2 -bidimensional.

Consequence: Every vertex-weighted *H*-minor free graph has a separator of size $\mathcal{O}\left(\sqrt{|V(G)|}\right)$, which separates into two parts with weight at most $\frac{2}{3}$ of $G \implies$ divide and conquer

Separation Property of Problems

- 1. can be solved for each connected component independently
- 2. there is a polynomial algorithm, which given a cut of the graph and optimal solutions for all connected components, computes solution for the whole graph which is not much greater
- 3. optimal solution of the whole graph is not much different from optimal solution of connected components from cut

```
(much pprox size of the cut)
```

PTAS for BiD problems

Theorem

When a BiD problem with separation property can be approximated with constant factor in polynomial time it has a PTAS (all on *H*-minor-free graphs).

PTAS for BiD problems

Theorem

When a BiD problem with separation property can be approximated with constant factor in polynomial time it has a PTAS (all on *H*-minor-free graphs).

- Recursively decompose graph into subgraphs, until approximate solutions are precise enough.
- When decomposing, approximate tree decomposition and choose one bag as a cut (which divides most evenly).
- Finally join solutions using separation property.

- find better bounds for grid minors in general graphs (lower bound $r^2 \log r$, conjecture r^3)
- generalize BiD (and resulting PTASs) for weighted problems

. . .

- Every *H*-minor-free graph of $\mathbf{tw} = w$ has $G_{\Omega(w) \times \Omega(w)}$ as a minor. This can be used:
 - prove that problem is FPT
 - find subexponential FPTAs
 - build PTASs

Erik D. Demaine and MohammadTaghi Hajiaghayi. The Bidimensionality Theory and Its Algorithmic Applications.

The Computer Journal, 51(3):292–302, 2008.