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Tomáš Vejpustek

June 19, 2013



Outline

Bidimensionality works with:

r × r grids

bounded treewidth (tw)

H-minor-free graphs

Bidimensionality theory includes:

graph structural results

framework for FPT algorithms

polynomial-time approximation schemes (PTAS)
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Bounded Treewidth

w -tree-decomposition is FPT

allows nice dynamic FPT algorithms

many problems are FPT on bounded tw

r × r grid = typical graph of tw(r)
(cops and robber game)

Courcelle’s (meta)theorem
Let ϕ be a MSOL formula and G be a graph with tw(G ) ≤ w . Then
in time f (|ϕ|,w)O(|V (G )|) it can be decided whether G satisfies ϕ.
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Graph Minors

1. deleting vertices

2. deleting edges

3. contracting edges

Forbidden minor characterization
Each graph class closed on minors has a finite set of
forbidden minors (⇐ Robertson–Seymour theorem).

non-constructive (some forbidden minors unknown)

H-minor problem O(n3) for fixed H
(superexponential w.r.t |H |)
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H-Minor-Free Graphs

trees (triangle)

planar graphs (K5 and K3,3)

graphs embeddable on a fixed topological surface

tw(G ) ≤ 3

many are easier for FPT algorithms
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Minor-Free Graphs Classification
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Minor-Free Graphs Classification

Bounded Genus Graph
Embeddable on a surface
with bounded Euler genus
(i.e. bounded number of
handles and cross-caps).
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Minor-Free Graphs Classification

Single-crossing Graph
Can be drawn on a plane
with at most two edges
crossing.
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Minor-Free Graphs Classification

Apex Graph
Planar after removing
a vertex (apex vertex).
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Large Grid Minors

every planar graph of tw ≥ 6k − 5 has a Gk×k minor

every graph of tw ≥ 202k
5

has a Gk×k minor

Theorem
For any fixed graph H , every H-minor-free graph of
tw = k has a GΩ(k)×Ω(k) minor.
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Proof Outline

1. H-minor-free graphs can be decomposed into
a clicque sum of almost embeddable graphs (R.S.)

2. clicque sum does not increase tw → component
with greatest tw

3. almost embeddable reduced to embeddable

4. bounded genus has large grid
(prior results – extended from planar)
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Clicque Sum

Let G1 and G2 contain a k-clique W . G1 ⊕ 1G2:

1. delete some or no edges from W

2. attach G1 \W to corresponding vertices

3. attach G2 \W similarly

tw(G1 ⊕ G2) ≤ max{tw(G1), tw(G2)}
1. tw(G1) ≥ tw(W ), tw(G2) ≥ tw(W )

2. W is in one bag in tree decompositions of G1,G2

3. we can get tree decomposition of G1 ⊕ G2 by joining
them by a bag containing only W
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Bidimensional Problems

Minor Bidimensionality
A parameter P is g(r)-minor-BiD if it:

1. is at least g(r) on Gr×r

2. does not increase when taking minors

Θ(r 2)-minor-BiD – size of: vertex cover, feedback
vertex set, . . .

not minor-BiD: dominating set, Hamiltonian path
(removing edges)
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Contraction Bidimensionality

Parameter P is g(r)-contraction-BiD if it:

1. is at least g(r) on Gr×r -like graph

2. does not increase when contracting edges

Grid-like Graphs
planar partially triangulated Gr×r

bounded-genus above + genus(G ) additional edges

apex-minor-free Gr×r + additional edges so that each
vertex is incident to c noboundary vertex
(depending on forbidden minor)

Dominating set (Θ(r 2)), Hamiltonian path (Θ(r 2)), . . .
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FPA Schema

Let P be g(r)-minor bidimensional and G be
H-minor-free for some H . Is P(G ) ≥ k?

1. G has a Gtw(G )×tw(G ), so P(G ) ≥ g(tw(G ))

2. if g(tw(G )) ≥ k , return YES

3. otherwise, tw(G ) ≤ k =⇒ use dynamic
programming (or Courcelle’s theorem)

Can we get subexponential FPTA (e.g. O(2
√
k))?
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Parameter-Treewidth Bounds

Theorem
Let P be g(r)-BiD for the graph G . Then
tw(G ) = O

(
g−1(P(G ))

)
.

Proof (minor-BiD): G has a GΩ(r)×Ω(r) minor R .
P(R) ≤ g(r) ≥ g(Ω(tw(G ))). Since P does not increase
when taking minors, P(G ) ≥ P(R), i.e.
P(G ) ≥ g(Ω(tw(G ))) and tw(G ) = O

(
g−1(P(G ))

)
.

If g(r) = Θ(r 2) then tw(G ) = O
(√

P(G )
)

.
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Subexponantial FPTAs

Theorem
Assume P is g(r)-BiD and can be computed in
h(w)nO(1). Then there is an algorithm that computes
P(G ) for a graph class corresponding to P which has the
complexity of

(
h(O(g−1(k))) + 2O(g

−1(k))
)
nO(1).

Notably when g(r) = Θ(r 2) and h(w) = 2o(w
2), this time

is subexponential =⇒ subexponential algorithms for
vertex cover, feedback vertex set, dominating set,. . .
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Locally Bounded Tree-Width

∀v . tw(G [Nr(v)]) ≤ f (r)

Theorem
Every apex-minor-free graph of diameter D has treewidth
in O(D).

Diameter-bounded tw ≈ locally-bounded tw
(neighbourhood is a minor)
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Separators

Theorem

Every H-minor-free graph G has tw in O
(√
|V (G )|

)
.

Proof: Number of vertices is r 2-bidimensional.

Consequence: Every vertex-weighted H-minor free

graph has a separator of size O
(√
|V (G )|

)
, which

separates into two parts with weight at most 2
3 of G

=⇒ divide and conquer
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Separation Property of Problems

1. can be solved for each connected component
independently

2. there is a polynomial algorithm, which given a cut
of the graph and optimal solutions for all connected
components, computes solution for the whole graph
which is not much greater

3. optimal solution of the whole graph is not much
different from optimal solution of connected
components from cut

(much ≈ size of the cut)
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PTAS for BiD problems

Theorem
When a BiD problem with separation property can be
approximated with constant factor in polynomial time it
has a PTAS (all on H-minor-free graphs).

Recursively decompose graph into subgraphs, until
approximate solutions are precise enough.

When decomposing, approximate tree
decomposition and choose one bag as a cut (which
divides most evenly).

Finally join solutions using separation property.
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Open Problems

find better bounds for grid minors in general graphs
(lower bound r 2 log r , conjecture r 3)

generalize BiD (and resulting PTASs) for weighted
problems
. . .
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Summary

Every H-minor-free graph of tw = w has GΩ(w)×Ω(w) as
a minor. This can be used:

prove that problem is FPT

find subexponential FPTAs

build PTASs
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