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Chapter 1

Introduction

1.1 A Research Area Called ‘Stringology’

In Theoretical Computer Science, sequences of characters are often referred to as strings.

The design of algorithms that processes and manipulates strings is one of the most active

subfield of general algorithmic research. Stringology has been the nickname of this new

area [14, 3]. It covers any, and various, kinds of problems related to strings and things

that can be regarded as or transformed into strings such as music data [13, 34], DNA and

protein data [20].

Natural language texts and biological sequences, like those electrically available via

WWW or from biological databases, can be arose as typical examples of vast strings

frequently utilized today. Since a huge, and growing, amount of string data is at present

stored and requires processing, once acceptable naive algorithms are no longer effective.

In the present information age, it directly causes neccessity to develop innovative string

processing algorithms, which must be correct and efficient both in time and space. That

is the reason why Stringology is one particular area that has been extremely active for

the last few decades.

String processing problems include a variaty of applications such as exact pattern

matching, approximate pattern matching, similarity measurement between two strings,

locating repetition in strings, string compression, pattern matching on compressed strings,

two-dimensional pattern matching, and so on. Among those, the most fundamental and

important problem is the first one, exact pattern matching on strings.

The exact pattern matching problem is formalized as follows: Given a text string w
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and a pattern string p, return “yes” if p occurs in w, and “no” otherwise. There are two

situations for the problem, namely, one that w is static and p is dynamic, or vice versa.

In the former case, it is appropriate to construct a data structure for w that serves as

indexes of w. Such a structure is called an index structure for the text string w. Let n

and m be the length of w and p, respectively. An index structure for w must support all

factors of w, where a factor of w is a string occuring within w. Unfortunately, the number

of factors of w is O(n2), although it is favorable to implement the structure with as little

memory space as possible, desirably with O(n) space.

1.2 Linear-Space Index Structures

In 1973, there was a ‘big bang’ in Stringology due to Weiner [58]. He succeeded to

introduce an index structure called a suffix tree, which only requires O(n) space. He

furthermore developed an algorithm to construct the suffix tree for a string w in O(n)

time. By means of the suffix tree of w, it is possible to solve the pattern matching problem

in O(n) preprocessing time and O(m) searching time. This result is very surprising and

its contribution is immeasurable. In fact, it is claimed that Knuth later on referred to

Weiner’s algorithm as ‘the algorithm of 1973’ [2]. Suffix trees are useful not only for the

above simple pattern matching problem but also for a ‘myriad’ [2] of other applications

represented by the problem to find the longest common factors of two strings in linear

time, and so on. It is claimed that Knuth had conjectured in 1970 that linear time solution

to this problem was impossible to achieve [36]. This fact also tells us that the invention

of suffix trees was truly revolutionary.

Following Weiner’s invention, McCreight in 1976 proposed a more space-economical

algorithm for the construction of suffix trees [43]. It has permitted us to save more memory

space on building suffix trees (in constant term).

However, both algorithms above mentioned have been thought to be considerably

complicated. It might have caused the delay of the spread of suffix trees, in spite of their

remarkable usefulness. More recently, this matter was settled in 1995 by Ukkonen’s suffix

tree construction algorithm [55]. Ukkonen’s algorithm is believed to be the conceptually

easiest to understand, and elegant [20, 18]. It has a certain helpful property called on-line,

i.e., it processes a given string from left to right, one by one, while constructing the suffix

tree for the string already scanned at each step, with no need to read the whole string
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beforehand. In addition, it allows us to construct the suffix tree for a set of strings in

time linear in the total length of the strings.

On the other hand, in 1985, Blumer et al. introduced counterpart of suffix trees, called

directed acyclic word graphs (DAWGs) [7]. The DAWG of a string w is known to be the

smallest automaton that accepts all suffixes of w [12]. One drawback of the suffix tree for

a string w is that the label of each edge needs to be implemented by a pair of integers

which respectively represent the beginning and ending positions of the label string in w.

It means that we have to store the input string w in order to keep the suffix tree with

linear space. Conversely, the label of any edge of the DAWG for w consists of a character,

not a string. Since there is no need to keep the input string w if the DAWG for w is once

completed, we can then delete w from main memory.

An algorithm to construct the DAWG of a given string was also proposed by Blumer

et al., which processes the string on-line, and runs in linear time [7]. In 1987 Blumer et al.

moreover gave an on-line algorithm that constructs the DAWG for a given set of strings,

running in time linear in the total length of strings [8].

A lot more space-economical index structure is a compact directed acyclic word graph

(CDAWG), introduced by Blumer et al. as well [8]. It has been shown that CDAWGs

require strictly smaller space than suffix trees and DAWGs, both theoretically and exper-

imentally. A typical biological sequence may be many millions of characters long. Thus it

is quite significant to reduce the constant term usually ignored due to the big-O notation

for the space and time complexity.

Blumer et al. gave an algorithm that constructs the CDAWG for a string w, by once

building the DAWG of w and then shrinking it into the corresponding CDAWG. The

CDAWG for a set of strings can also be built similarly. The drawback of this method is that

we have to construct the corresponding DAWG as an intermediate, which contains many

nodes and edges turning out to be redundant in the CDAWG. It was 1997 when the first

algorithm to directly construct the CDAWG of a given string was developed by Crochemore

and Vérin [16]. Their algorithm is based on McCreight’s suffix tree construction algorithm.

Thereby, their algorithm does not have the on-line property which can be useful in some

situations.

All the structures mentioned above are automata-oriented. Another idea to represent

all factors of a given string in a data structure is based on arrays. The first array of this

kind is the suffix array [41], followed by the suffix cactus [35], the compact suffix array [40],
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and the compressed suffix array [19, 47]. They are in general more space-economical than

those automata-oriented structures (in constant term), but they instead sacrifice searching

time. Namely, searching p in w by using an array takes O(m+ log n) time.

1.3 Our Contribution

In the following chapters, we report our contribution to Stringology. We have chosen the

automata-oriented index structures to work for, since we wish the situation where we can

find the occurrence of a pattern p in a text w as fast as possible, in O(m) searching time.

In Chapter 2.3, we define index structures basing on the equivalence classes on strings.

They are defined in common notations, thus give us a good ‘unified’ view on the structures

which reveals their insights and relationship among them.

In Chapter 3, we focus our attention on CDAWGs. An algorithm which constructs

CDAWGs in on-line manner had been a long-term missing piece, as remarked in Sec-

tion 1.2. In the chapter, we report the success of invention of an on-line algorithm that

constructs the CDAWG for a given string. We prove that the algorithm proposed runs in

linear time. Also, we show that the CDAWG for a set of strings can also be built by a

straightforward extension of the algorithm.

We dedicate Chapter 4 to the introduction of more surprising fact about the unified

view for the index structures. To be concrete, we introduce a generic algorithm that is

capable of constructing any of suffix tries, suffix trees, DAWGs, and CDAWGs. This saves

us a great deal of effort to implement distinct algorithms for all the index structures. In

addition, it gives us insight into their properties, what is common to and what is different

amongst them, from algorithmic point of view.

Chapter 5 is devoted to a report of an algorithm for the construction of the CDAWG

for a given trie that ‘compactly’ represents a set of strings. Since the trie for a set of

strings shares their common prefixes, the number of nodes in it is generally smaller than

the total length of the strings. The algorithm is a non-trivial extension of the one given

in Chapter 3. We establish that the algorithm performs in time linear in the number of

nodes in a given trie.

In Chapter6, we consider not only an index structure for a given string w, but also

that for the reversal of w, denoted by wrev. It is a well known property that the suffix

tree of w and the DAWG for wrev can share the same nodes [11]. Therefore, they can be
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represented together with, and can be seen as one structure. In the chapter, we introduce

an on-line algorithm which simultaneously constructs both the suffix tree of w and the

DAWG for wrev. Furthermore, the chapter is dedicated to the symmetric compact directed

acyclic word graph (SCDAWG) of w, which also supports both indexes of w and wrev [7].

We report that we developed an on-line algorithm which builds the SCDAWG for a given

string w in O(n) time.

In Chapter 7, a bidirectional on-line linear-time construction algorithm for suffix trees

is presented. As mentioned in Section 1.2, Ukkonen’s algorithm allows us to update an

input string by adding new strings at its right. Nevertheless, we cannot extend an input

string to the left direction in using his algorithm. The result to be reported in this chapter

means that we can extend an input string to both direction, without re-constructing the

suffix tree from scratch. Furthermore, we show the DAWG for w can also be constructed

in bidirectional on-line manner, and in linear time.

In Chapter 8, we consider the collection of DAWGs for all suffixes of a given string w.

It is called the naive all-suffixes directed acyclic word graph (naive ASDAWG) for w. It

is clear that the size of the naive ASDAWG for w is O(n2). We report that we succeeded

to develop a new structure, named the minimum all-suffixes directed acyclic word graph

(MASDAWG). The MASDAWG of w is the minimized version of the naive ASDAWG for

w. We prove its size is Θ(n) if the alphabet Σ is unary, and Θ(n2) otherwise. An on-line

algorithm that directly constructs the MASDAWG for w in time proportional to its size

is also given.

Given two sets of strings, it is a quite important problem in Knowledge Discovery

and Data Mining to find a rule which separates them. The accuracy of the separation

and the simplicity of the rule depend on what sort of pattern we adopt. There had been

algorithms in which substring patterns [48] and subsequence patterns [23] are utilized in

order to distinguish two given sets of strings. In Chapter 9, we report the work where we

extended the algorithms by applying episode patterns as rules. We succeeded to develop

a practical, efficient algorithm to find the best episode patterns to separate two sets of

strings. In [27], it is experimentally shown that the result of our work is superior to its

previous versions. Also, we in this chapter emphasize that MASDAWGs, introduced in

Chapter 8, are believed to be powerful ‘weapon’ to propose a new practical algorithm to

find a variable-length-don’t-care’s pattern (VLDC-pattern) that efficiently separates given

two sets of strings.
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Chapter 2

Preliminaries

2.0.1 Notation

Let Σ be a finite alphabet. An element of Σ∗ is called a string. Let x be a string such that

x = a1a2 · · ·an where n ≥ 1 and ai ∈ Σ for 1 ≤ i ≤ n. The length of x is n and denoted by

|x|, that is, |x| = n. If n = 0, x is said to be the empty string. It is denoted by ε, that is,

|ε| = 0. Let Σ+ = Σ∗ − {ε}. Let y be a string such that y = b1b2 · · · bm where m ≥ 1 and

bj ∈ Σ for 1 ≤ j ≤ m. Then, string a1a2 · · ·anb1b2 · · · bm is said to be the concatenation

of x and y, and denoted by x · y, or simply, by xy. For any string x ∈ Σ∗,

xε = εx = x.

Strings x, y, and z are said to be a prefix, factor, and suffix of string w = xyz,

respectively. The sets of prefixes, factors, and suffixes of a string w are denoted by

Prefix (w), Factor(w), and Suffix (w), respectively.

Let w be a string and |w| = n. The i-th character of w is denoted by w[i] for 1 ≤ i ≤ n,

and the factor of w that begins at position i and ends at position j is denoted by w[i : j]

for 1 ≤ i ≤ j ≤ n. For convenience, let w[i : j] = ε for j < i.

For a set S of strings w1, w2, . . . , w�, let |S| denote the cardinality of S, namely, |S| = �.

We denote by ‖S‖ the total length of strings in S, that is,

‖S‖ =
�∑

k=1

|wk|.

The sets of prefixes, factors, and suffixes of the strings in S are denoted by Prefix (S),

Factor(S), and Suffix (S), respectively.
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Definition 2.1 Let S = {w1, . . . , wk} where wi ∈ Σ∗ for 1 ≤ i ≤ k and k ≥ 1. We say

that S has the prefix property iff wi /∈Prefix (wj) for any 1≤ i 
=j≤ k.

2.0.2 Equivalence Relations on Strings

Let S ⊆ Σ∗. For any string u ∈ Σ∗, let Su−1 = {x | xu ∈ S} and u−1S = {x | ux ∈ S}.

Definition 2.2 Let S ⊆ Σ∗. The equivalence relations ≡L
S and ≡R

S on Σ
∗ are defined by

x ≡L
S y ⇔ Prefix (S)x−1 = Prefix (S)y−1,

x ≡R
S y ⇔ x−1Suffix (S) = y−1Suffix (S).

The equivalence class of a string x ∈ Σ∗ with respect to ≡L
S (resp. ≡R

S ) is denoted by

[x]L
S
(resp. [x]R

S
).

If S = {cocoa, cola}, [c]L
S
= {c, co}, [o]L

S
= {o}, [l]L

S
= {l, la}, [c]R

S
= {c}, [o]R

S
=

{o, co}, [l]R
S
= {l, ol, col}, and so on.

Note that all strings that are not in Factor(S) form one equivalence class under ≡L
S .

This equivalence class is called the degenerate class. All other classes are called non-

degenerate. It follows from the definition of ≡L
S that, if two strings x, y ∈ Factor(S) are in

the same equivalence class under ≡L
S , then either x is a prefix of y, or vice versa. Therefore,

each equivalence class in ≡L
S other than the degenerate class has a unique longest member.

A similar argument holds for ≡R
S .

Definition 2.3 For any string x ∈ Factor(S),
S−→x (resp.

S←−x ) denotes the unique longest
member of [x]L

S
(resp. [x]R

S
). We call

S−→x (resp.
S←−x ) the representative of [x]L

S
(resp. [x]R

S
).

For any string x ∈ Factor(S), there uniquely exist strings α and β such that
S←−x = αx

and
S−→x = xβ. In the running example,

S−→c = co,
S−→o = o,

S−→
l = la,

S←−c = c,
S←−o = co,

S←−
l = col.

Definition 2.4 For any string x ∈ Factor(S), let
S←→x be the string αxβ (α, β ∈ Σ∗) such

that
S←−x = αx and

S−→x = xβ.

What
S←→x = αxβ implies is that:

(1) Every time x occurs in w ∈ S, it is preceded by α and followed by β within w.

(2) α and β are the longest strings satisfying (1).
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In the running example,
S←→c = co and

S←→o = co,
S←→
l = cola.

Definition 2.5 Let x, y be arbitrary strings in Σ∗. We write x ≡S y if,

1. x, y ∈ Factor(S) and
S←→x =

S←→y , or

2. x /∈ Factor(S) and y /∈ Factor(S).

The equivalence class of a string x ∈ Σ∗ with respect to ≡S is denoted by [x]S.

For any string x ∈ Factor(S),
S←→x is the unique longest member of [x]S, and is called the

representative of [x]S.

Lemma 2.1 (Blumer et al. [8]) The equivalence relation ≡S is the transitive closure

of the relation ≡L
S ∪ ≡R

S .

It follows from the lemma above that

Corollary 2.1 For any string x ∈ Factor(S),

S←→x =

S−−→
(

S←−x ) =

S←−−
(

S−→x ).

The number of the strings in Factor(S) is O(‖S‖2). However, the number of strings x

such that x =
S−→x (or

S←−x ) is O(‖S‖). The following lemma gives tighter upper bounds.

Lemma 2.2 (Blumer et al. [8]) Assume that ‖S‖ > 1. The number of the non-degenerate

equivalence classes in ≡L
S (or ≡R

S ) is at most 2‖S‖−1. The number of the non-degenerate

equivalence classes in ≡S is at most ‖S‖+ |S|.

If S is a singleton {w} where w ∈ Σ∗, throughout this paper the notations defined for

S are written by using w instead of S, as,

≡L
w,≡R

w,≡w, [(·)]Lw, [(·)]Rw, [(·)]w,
w−→
(·),

w←−
(·),

w←→
(·) .
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2.1 Graphs and Trees

Let V be a finite set of nodes. Let E be a finite set of edges, namely, that of pairs of

nodes. Then G = (V,E) is said to be a directed graph.

In a directed graph G = (E, V ), the sequence of nodes u0, u1, . . . , un is called a path

if (ui−1, ui) ∈ E for each i (1 ≤ i ≤ n). The depth of the path is n. A path with u0 = un

is called a cycle. If G has no cycle, it is called a directed acyclic graph (DAG for short).

An edge (u, v) is said to be an out-going edge of u and an in-coming edge of v. The

number of in-coming (resp. out-going) edges of a node u is said to be the in-degree (resp.

out-degree) of u.

A directed graph T with the following properties is called a tree.

- There uniquely exists a node of in-degree 0 in T . It is called the root node.

- For any node u in T , there uniquely exists a path from the root node to u.

If (u, v) ∈ T , then u is said to be a parent node of v, and v is said to be a child node of

u. Any node in a tree other than the root node has its unique parent node. A node of

out-degree zero is called a leaf node. A node that is neither the root node nor a leaf node

is called an internal node. If there is a path from a node u to a node v, u is said to be an

ancestor of v, and v is said to be a descendant of u.

2.1.1 Tries

We here consider an edge-labeled tree T = (V,E) with E ⊆ V × Σ+ × V where the

second component of each edge represents its label. Let S be a set of strings. The tree

representing all strings in S is called the trie and denoted by Trie(S).

Definition 2.6 Trie(S) is the tree (V,E) such that

V = {x | x ∈ Prefix (S)},
E = {(x, a, xa) | x, xa ∈ Prefix (S) and a ∈ Σ}.

If S has the prefix property, each string in S is represented by a leaf node in Trie(S).

It is sometimes favorable if all strings are associated with leaf nodes. In such case, we

consider the set S ′ such that

S ′ = {wi$i | wi ∈ S and $i /∈ Σ for 1 ≤ i ≤ |S|}.
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For any set S of strings, S ′ has the prefix property. Hence every string in S ′ is represented

by a lead node in Trie(S ′).

2.2 Deterministic Finite State Automata

A deterministic finite automaton (DFA for short) is a quintuplet M = (Q,Σ, δ, q0, F ),

where;

Q is a non-empty set. Its elements are called states.

Σ is an alphabet.

δ is a function Q× Σ→ Q. It is called the state-transition function.

q0 ∈ Q is the initial state.

F is a subset of Q. Its elements are called accepting states.

We extend the state-transition function δ : Q×Σ→ Q to δ̂ : Q×Σ∗ → Q, as follows.
 δ̂(q, ε) = q (q ∈ Q)

δ̂(q, xa) = δ(δ̂(q, x), a) (q ∈ Q, a ∈ Σ, x ∈ Σ∗)

Let w be an arbitrary string in Σ∗. If δ̂(q0, w) ∈ F , we say that w is accepted by DFA M .

We can examine in O(|w|) time whether or not w is accepted by DFA M .

2.3 Index Structures for Text Strings

In this section, we recall four index structures, the suffix trie, the suffix tree, the directed

acyclic word graph (DAWG), and the compact directed acyclic word graph (CDAWG)

for a set S of strings, denoted by STrie(S), STree(S), DAWG(S), and CDAWG(S),

respectively. All these structures represent every string x ∈ Factor(S). We define them

as edge-labeled graphs (V,E) with E ⊆ V ×Σ+×V where the second component of each

edge represents its label.

We also define the suffix links of each index structure. Suffix links are kinds of failure

function often utilized for time-efficient construction of the index structures [58, 43, 55,

7, 8, 16].
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2.3.1 Suffix Tries

Definition 2.7 STrie(S) is the tree (V,E) such that

V = {x | x ∈ Factor(S)},
E = {(x, a, xa) | x, xa ∈ Factor(S) and a ∈ Σ},

and its suffix links are the set

F = {(ax, x) | x, ax ∈ Factor(S) and a ∈ Σ}.

Each string x ∈ Factor(S) has a one-to-one correspondence to a certain node in

STrie(S). The root node of STrie(S) corresponds to ε. If Suffix (S)− {ε} has the prefix
property, every string in Suffix(S)− {ε} is represented by a leaf node in STrie(S).

If |S| = 1, STrie(S) is also written as STrie(w) where S = {w}. STrie(coco) and
STrie(cocoa) are displayed in Figure 2.1 together with their suffix links.

oc

o

c

c

o

o

oc

o

c

c

o

o

a

a

a

a

a

Figure 2.1: STrie(coco) on the left, and STrie(cocoa) on the right. The solid arrows

represent the edges, while the dotted arrows denote the suffix links.

2.3.2 Suffix Trees

Definition 2.8 STree(S) is the tree (V,E) such that

V = {
S−→x | x ∈ Factor(S)},

E = {(
S−→x , aβ,

S−→xa) | x, xa ∈ Factor(S), a ∈ Σ, β ∈ Σ∗,
S−→xa = xaβ, and

S−→x 
=
S−→xa},

and its suffix links are the set

F = {(
S−→ax,

S−→x ) | x, ax ∈ Factor(S), a ∈ Σ, and
S−→ax = a ·

S−→x }.

11



The root node of STree(S) is associated with
S−→ε . If Suffix (S) − {ε} has the prefix

property, every string in Suffix (S) − {ε} is represented by a leaf node in STree(S). If

|S| = 1, STree(S) is also written as STree(w) where S = {w}.
The node set of STree(S) is a subset of that of STrie(S), as seen in the definitions. It

means that a string in Factor(S) might be represented on an edge in STree(S). In this

case, we say that the string is represented in an implicit node. Conversely, every string in

the node set V of STree(S) is said to be represented in an explicit node. For example, in

STree(coco) of Figure 2.2, string c is represented by an implicit node, while string co is

on an explicit node.

STree(S) can be seen as the compacted version of STrie(S) with “
S−→
(·) operation”.

See STrie(cocoa) in Figure 2.1 and STree(cocoa) in Figure 2.2. STree(cocoa) can be

obtained by removing any internal nodes of out-degree one in STrie(cocoa), and suffix

links associated with the removed nodes are also deleted. However, this approach cannot

derive STree(coco) from STrie(coco) (see Figure 2.1 and Figure 2.2). That is, even if a

node
S−→x is of out-degree one in STrie(S), it is not removed if

S−→x ∈ Suffix (S).

o
c

o

c

c

o

o

o
c
o

c

c

o

o

a

a
a

a

a

Figure 2.2: STree(coco) on the left, and STree(cocoa) on the right. The solid arrows

represent the edges, while the dotted arrows denote the suffix links.

Theorem 2.1 (McCreight [43]) Let STree(S) = (V,E). Assume ‖S‖ > 1. Then

|V | ≤ 2‖S‖+ |S| and |E| ≤ 2‖S‖+ |S| − 1.

12



2.3.3 DAWGs

Definition 2.9 DAWG(S) is the directed acyclic graph (V,E) such that

V = {[x]R
S
| x ∈ Factor(S)},

E = {([x]RS , a, [xa]RS ) | x, xa ∈ Factor(S) and a ∈ Σ},

and its suffix links are the set

F = {([ax]R
S
, [x]R

S
) | x, ax ∈ Factor(S), a ∈ Σ, and [ax]R

S

= [x]R

S
}.

The node [ε]RS is called the source node. A node of out-degree zero is called a sink

node of DAWG(S). If Suffix (S) − {ε} has the prefix property, then there exactly exist

‖S‖ sink nodes, each of which represents Suffix (w) for each w ∈ S. If |S| = 1, DAWG(S)

is also written as DAWG(w) where S = {w}.
We define the length of a node [x]R

S
by |

S←−x |. Suppose that
S←−x · a ∈ [y]R

S
for x, y ∈

Factor(S) and a ∈ Σ. If length([y]R
S
) = length([x]R

S
) + |a| = length([x]R

S
) + 1 (in other

words, if
S←−x · a =

S←−y ), the edge ([x]R
S
, a, [y]R

S
) is said to be solid. Otherwise, it is said to be

non-solid. For example, in DAWG(w) of Figure 2.3 where w = coco, edge ([c]Rw, o, [co]
R
w)

is solid, whereas edge ([ε]R
w
, o, [co]R

w
) is non-solid.

As seen in the definition, each node of DAWG(S) is a non-degenerate equivalence

class with respect to ≡R
S . One can see that nodes of STrie(cocoa) are ‘merged’ by the

equivalence class under ≡R
S . In this sense, DAWG(S) can be seen as the minimized version

of STrie(S) with “[(·)]R
S
operation”.

Suppose that ax is the shortest member of [ax]RS , for some character a ∈ Σ and string

x ∈ Factor(S). Then the suffix link of node [ax]R
S
in DAWG(S) points to the node [x]R

S

(for example, see nodes [oco]RS and [co]RS of DAWG(cocoa) in Figure 2.3).

Theorem 2.2 (Blumer et al. [8]) Let DAWG(S) = (V,E). Assume ‖S‖ > 1. Then

|V | ≤ 2‖S‖ − 1 and |E| ≤ 3‖S‖ − 3.

2.3.4 CDAWGs

Definition 2.10 CDAWG(S) is the directed acyclic graph (V,E) such that

V = {[
S−→x ]R

S
| x ∈ Factor(S)},

E = {([
S−→x ]RS , aβ, [

S−→xa]RS ) | x, xa ∈ Factor(S), a ∈ Σ, β ∈ Σ∗,
S−→xa = xaβ, and

S−→x 
=
S−→xa},

and its suffix links are the set

F = {([
S−→ax]RS , [

S−→x ]RS ) | x, ax ∈ Factor(S), a ∈ Σ,
S−→ax = a ·

S−→x , and [
S−→x ]RS 
= [

S−→ax]RS}.

13
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Figure 2.3: DAWG(coco) on the left, and DAWG(cocoa) on the right. The solid arrows

represent the edges, while the dotted arrows denote the suffix links.

The node [
S−→ε ]R

S
is called the source node. A node of out-degree zero is called a sink

node of CDAWG(S). If Suffix (S)− {ε} has the prefix property, then there exactly exist

‖S‖ sink nodes, each of which represents Suffix (w) for each w ∈ S. If |S| = 1, CDAWG(S)

is also written as CDAWG(w) where S = {w}.

We define the length of a node [
S−→x ]RS by

∣∣∣
S←−−

(
S−→x )

∣∣∣ = | S←→x |. Suppose that
S←→x · α ∈ [

S−→y ]RS

for x, y ∈ Factor(S) and α ∈ Σ∗. If length([
S−→y ]RS ) = length([

S−→x ]RS ) + |α| (in other words,

if
S←→x · α =

S←→y ), the edge ([
S−→x ]R

S
, α, [

S−→y ]R
S
) is said to be solid. Otherwise, it is non-solid.

In CDAWG(w) of Figure 2.4 where w = coco, edge ([
w−→ε ]Rw, co, [

w−→co]Rw) is solid, while edge
([

w−→ε ]R
w
, o, [

w−→co]R
w
) is non-solid.

It follows from the definition that CDAWG(S) is the minimization of STree(S) with

“[(·)]R
S
operation”. In fact, CDAWG(cocoa) in Figure 2.4 can be obtained by ‘merging’

the isomorphic subtrees in STree(cocoa). Similarly, CDAWG(S) can also be seen as the

compaction of DAWG(S) with “
S−→
(·) operation”, as seen in DAWG(cocoa) in Figure 2.3

and CDAWG(cocoa).

Suppose that ay =
S−→ax is the shortest member of [

S−→ax]R
S
for some character a ∈ Σ and

strings x, y ∈ Factor(S). Then the suffix link of node [
S−→ax]RS points to the node [y]RS , where

y =
S−→y .

Theorem 2.3 (Blumer et al. [8]) Let CDAWG(S) = (V,E). Assume ‖S‖ > 1. Then

|V | ≤ ‖S‖+ |S| and |E| ≤ 2‖S‖+ |S| − 1.

14
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Figure 2.4: CDAWG(coco) on the left, and CDAWG(cocoa) on the right. The solid

arrows represent the edges, while the dotted arrows denote the suffix links.

2.3.5 Suffix Trees Redefined

For any non-empty set S of strings, let STree ′(S) denote the tree obtained by removing

all internal nodes of out-degree one from STree(S). As seen in Figure 2.5, nodes
w−→co and

w−→o in STree(coco) are omitted in STree ′(coco) together with their suffix links. Ukkonen’s

suffix tree construction algorithm [55] builds STree ′(S), not STree(S). The following

preparation is necessary for the formal definition of STree ′(S).

We introduce a relation XS over Σ∗ such that

XS =
{
(x, xa)

∣∣x ∈ Factor(S) and a ∈ Σ is the unique character such that xa ∈ Factor(S)},
and let ≡′L

S be the equivalence closure of XS, i.e., the smallest superset of XS that is

symmetric, reflexive, and transitive. It can be readily shown that ≡L
S is a refinement of

≡′L
S , namely, every equivalence class under≡′L

S is a union of one or more equivalence classes

in ≡L
S . For a string x ∈ Factor(S), let

S
=⇒
x denote the longest string in the equivalence

class to which x belongs under the equivalence relation ≡′L
S .

Proposition 2.1 For any string x ∈ Σ∗,
S−→x is a prefix of

S
=⇒
x . If

S−→x 
=
S

=⇒
x , then

S−→x ∈
Suffix (S).

Proposition 2.2 If set Suffix (S) − {ε} satisfies the prefix property,
S

=⇒
x =

S−→x for any

string x ∈ Factor(S).

We are now ready to define STree ′(S).
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Definition 2.11 STree ′(S) is the tree (V,E) such that

V = {
S

=⇒
x | x ∈ Factor(S)},

E = {(
S

=⇒
x , aβ,

S
=⇒
xa) | x, xa ∈ Factor(S), a ∈ Σ, β ∈ Σ∗,

S
=⇒
xa = xaβ, and

S
=⇒
x 
=

S
=⇒
xa},

and its suffix links are the set

F = {(
S

=⇒
ax,

S
=⇒
x ) | x, ax ∈ Factor(S), a ∈ Σ, and

S
=⇒
ax = a ·

S
=⇒
x }.

This definition is the same as the one obtained by replacing “
S−→
(·) operation” with “

S
=⇒
(·)

operation” in Definition 2.8.

Corollary 2.2 If Suffix (S)− {ε} has the prefix property, STree ′(S) = STree(S).

As previously stated, Ukkonen’s algorithm constructs STree ′(S). Even in case the

set Suffix (S) − {ε} does not have the prefix property, STree ′(S ′) = STree(S ′) where

S ′ = {wi$i | wi ∈ S and $i /∈ Factor(S) for 1 ≤ i ≤ |S|}.

oc
o

c

c

o

o

o
c
o

c

c

o

o

a

a
a

a

a

Figure 2.5: STree ′(coco) on the left, and STree ′(cocoa) on the right. The solid arrows

represent the edges, while the dotted arrows denote the suffix links.

2.3.6 CDAWGs Redefined

Similarly to STree ′(S), for any non-empty set S of strings, CDAWG ′(S) has no internal

node of out-degree one. Our algorithm to be introduced in Section 3.4 and Section 3.5

constructs CDAWG ′(S).
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Definition 2.12 CDAWG ′(S) is the directed acyclic graph (V,E) such that

V = {[
S

=⇒
x ]R

S
| x ∈ Factor(S)},

E = {([
S

=⇒
x ]R

S
, aβ, [

S
=⇒
xa]R

S
) | x, xa ∈ Factor(S), a ∈ Σ, β ∈ Σ∗,

S
=⇒
xa = xaβ, and

S
=⇒
x 
=

S
=⇒
xa},

and its suffix links are the set

F = {([
S

=⇒
ax]R

S
, [

S
=⇒
x ]R

S
) | x, ax ∈ Factor(S), a ∈ Σ,

S
=⇒
ax = a ·

S
=⇒
x , and [

S
=⇒
x ]R

S

= [

S
=⇒
ax]R

S
}.

As in case of STree ′(S) and STree(S), the definition equals the one obtained by sub-

stituting “
S−→
(·) operation” with “

S
=⇒
(·) operation” in Definition 2.10.

Corollary 2.3 If Suffix (S)− {ε} has the prefix property, CDAWG ′(S) = CDAWG(S).

Even in case that Suffix (S)− {ε} does not have the prefix property, CDAWG ′(S ′) =

CDAWG(S ′) where S ′ = {wi$i | wi ∈ S and $i /∈ Factor(S) for 1 ≤ i ≤ |S|}.

o
c

o

c

o

c

o

o
c

o

c

o
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Figure 2.6: CDAWG ′(coco) on the left, and CDAWG ′(cocoa) on the right. The solid

arrows represent the edges, while the dotted arrows denote the suffix links.
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Chapter 3

On-Line Construction of Compact

Directed Acyclic Word Graphs

3.1 Introduction

Several different string problems, like those deriving from the analysis of biological se-

quences, can be efficiently solved by means of a suitable index structure. The most widely

known and studied structure of this kind seems to be the suffix tree [58, 43, 11, 55, 20, 38,

54], perhaps because there are a “myriad” [2] of applications for it. For any string w the

suffix tree of w requires only O(n) space and can be built in O(n) time, where n is the

length of w. Although its theoretical space complexity is linear, much attention has been

devoted to the reduction of the practical space requirement of the structure. This has

led to the introduction of more space-economical index structures, like suffix arrays [41],

suffix cacti [35], compact suffix arrays [40], compressed suffix arrays [19, 47], and so on.

Blumer et al. [7] introduced the directed acyclic word graph (DAWG) for a string,

which is the smallest finite state automaton to recognize all suffixes of the string [12].

DAWGs are also involved in several combinatorial algorithms on strings [14, 8, 24, 5, 56],

since they serve as indexes of the string, as well as other index structures such as suffix

tries and suffix trees.

In this work, we focus our attention on the compact directed acyclic word graph

(CDAWG) first introduced by Blumer et al. in [8]. Crochemore and Vérin displayed a

relationship among suffix tries, suffix trees, DAWGs, and CDAWGs [16]. Suffix trees

(resp. DAWGs) are the compacted (resp. minimized) version of suffix tries, as shown
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Figure 3.1: Relationship among the suffix trie, the suffix tree, the DAWG, and the

CDAWG for string cocoa.

in Figure 3.1. Similarly, CDAWGs can be obtained by either compacting DAWGs or

minimizing suffix trees.

Not only in theory as stated above, but also in practice, CDAWGs provide significant

reductions of the memory space required by suffix trees and DAWGs, as experimental re-

sults have shown in [8, 16]. In Bioinformatics a considerable amount of DNA sequences has

to be processed efficiently, both in space and time. Therefore, from a practical viewpoint,

CDAWGs could also play an important role in Bioinformatics.

The first algorithm to construct the CDAWG for a given string w was presented in [7].

It once builds the DAWG of w, then removes every node of out-degree one and modifies

its edges accordingly, so that the resulting structure becomes the CDAWG for w. It runs

in liner time, but its main drawback is the construction of the DAWG as an intermediate

structure, which takes larger space. A solution to this matter was provided by Crochemore

and Vérin [16]: a linear-time algorithm to construct the CDAWG for a string directly.

Their algorithm is based on McCreight’s suffix tree construction algorithm [43]. Both

algorithms are off-line, that is, the whole input string has to be known beforehand. Thus,

the structure (suffix tree or CDAWG) has to be rebuilt from scratch, if a new character

is added to the input string. Table 3.1 summarizes some properties of typical algorithms

to construct index structures. As seen there, a missing piece, which we have been looking

for, is an on-line algorithm for constructing CDAWGs.

In this chapter, we present a new linear-time algorithm to directly construct the
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Index Structure Algorithm linear time on-line multiple strings

suffix tries Ukkonen [55]
√ √

suffix trees
Weiner [58]

McCreight [43]
Ukkonen [55]

√
√
√ √ √

DAWGs
Blumer et al. [7]
Blumer et al. [8]

√
√

√
√ √

CDAWGs
Blumer et al. [8]

Crochemore and Vérin [16]

√
√

√

Table 3.1: The properties of algorithms for the construction of index structures.

CDAWG for a given string, which is based on Ukkonen’s suffix tree construction algo-

rithm [55]. Our algorithm is on-line: it processes the characters of the input string from

left to right, one by one, with no need to know the whole string beforehand. Our algo-

rithm would be more efficient than the one in [16], in the sense that our algorithm allows

us to update the input string. Furthermore, we show that the algorithm can be easily

applied to building the CDAWG for a set of strings. The CDAWG for a set of strings

can be constructed by the algorithm given in [8] which compacts the DAWG for the set.

However, the drawback of this approach is that, when a new string is added to the set,

the DAWG has to be built from scratch. Instead, our algorithm permits us the addition

of a new string to the set.

3.2 On-Line Construction of the Suffix Trie for a Sin-

gle String

The on-line CDAWG construction algorithm we will give later on is based on Ukkonen’s

on-line suffix tree construction algorithm [55]. Moreover, Ukkonen’s algorithm is based

on an intuitive on-line algorithm that constructs suffix tries. We firstly consider the case

that we are given a single string as an input for the algorithm.

For a string x ∈ Factor(w), let suf (x) denote the node reachable via the suffix link of

the node x. It derives from Definition 2.7 that suf (x) = y for some y ∈ Factor(w) such
that x = ay for some character a ∈ Σ. For the case that x = ε, let suf (ε) =⊥ where

⊥ is an auxiliary node called the bottom node. We suppose that there exists an edge

(⊥,Σ, ε), where the symbol Σ here means every character in the alphabet. Assuming that

the bottom node ⊥ corresponds to the inverse a−1 for any a ∈ Σ, the edge (⊥,Σ, ε) is
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consistently defined as well as other edges, since a−1 · a = ε. The auxiliary node ⊥ allows

us to formalize the algorithm avoiding the distinction between the empty suffix and other

non-empty suffixes (in other words, between the root node and other nodes). We leave

suf (⊥) undefined.
The algorithm reads a given string w ∈ Σ∗ from left to right, while building STrie(w[1 :

i]) for 1 ≤ i ≤ |w|. It is easy to construct STrie(w[1 : i+ 1]) by updating STrie(w[1 : i]).

What is necessary here is to insert suffixes of w[1 : i+ 1] into STrie(w[1 : i]).

Definition 3.1 For an arbitrary string u ∈ Σ∗ and an arbitrary character a ∈ Σ,
the longest repeated suffix (the LRS for short) of ua is the longest element of the set
Factor(u) ∩ Suffix (ua).

It is guaranteed that the LRS always exists for any string u ∈ Σ∗ since the empty string

ε belongs to the set Factor(u) ∩ Suffix (ua) for any character a ∈ Σ.

The suffixes of w[1 : i + 1] can be divided into the following two groups, by the LRS

of w[1 : i+ 1].

(1) Suffixes w[h : i+ 1] for 1 ≤ h ≤ j where w[j + 1 : i+ 1] is the LRS of w[1 : i+ 1].

(2) Suffixes w[h′ : i+ 1] for j + 1 ≤ h′ ≤ i+ 2.

The group (2) is empty in case the LRS of w[1 : i+ 1] = ε, that is, in case j + 1 = i+ 2.

There is no need to newly insert any suffixes in the group (2), simply because they

have already been represented in STree ′(w[1 : i]). The algorithm creates a new node

corresponding to w[h : i + 1] for each h (1 ≤ h ≤ j), together with a new edge (w[h :

i], w[i+ 1], w[h : i+ 1]), by traversing suf (w[h : i]) to move to the next node w[h− 1 : j].

When it finds the node corresponding to the LRS w[j+1 : i], the algorithm stops and the

update then gets completed. The node with respect to the LRS w[j + 1 : i + 1] is called

the end point of STrie(w[1 : i+ 1]).

The on-line construction of STrie(cocoa) is shown in Figure 3.2.

Theorem 3.1 (Ukkonen [55]) Assume Σ is a fixed alphabet. For any string w ∈ Σ∗,
STrie(w) can be constructed on-line and in O(|w|2) time, using O(|w|2) space.
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Figure 3.2: On-line construction of STrie(w) with w = cocoa.

3.3 On-Line Construction of the Suffix Tree for a Sin-

gle String

3.3.1 Informal Description

We firstly summarize Ukkonen’s suffix tree construction algorithm in the comparison

with the previous suffix trie algorithm. Figure 3.3 shows the on-line construction of

STree ′(cocoa). Focus on the update of STree ′(co) to STree ′(coc). Differently from that

of STrie(co) to STrie(coc), the edges leading to leaf nodes are automatically extended

with the new character c in STree ′(coc). This is feasible by the idea so-called open edges.

See the first and second steps of the update of STree ′(coco) to STree ′(cocoa). The

gray star mark indicates the active point from which a new edge is created in each step.

After the new edge (co, a, coa) is inserted, the active point moves to the implicit node

for string o. In case of the suffix trie, it is possible to move there by traversing the suffix

link of node co. However, there is yet to be the suffix link of node co in the suffix tree.

Thereof, Ukkonen’s algorithm simulates the traversal of the suffix link as follows: First,

it goes up to the explicit parent node ε of node co which has its suffix link. After that, it

moves to the bottom node ⊥ via the suffix link of the root node, and then advances along

the path spelling out co. Note that the string co corresponds to the label of the edge the
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active point went up backward. This way, in Ukkonen’s algorithm the active point moves

via ‘implicit’ suffix links. Since suffix links of leaf nodes are never utilized in Ukkonen’s

algorithm, it does not create any of them.

3.3.2 Ukkonen’s Algorithm

Ukkonen’s on-line suffix tree construction algorithm is based on the on-line algorithm to

build suffix tries recalled in Section 3.2. As stated in Definition 2.11, an edge of STree ′(w)

is labeled by a string α ∈ Factor(w). The key to achieve a linear-space implementation of

the suffix tree is to label the edge (
w

=⇒
x , α,

w
==⇒
xα ) in STree ′(w) by (k, p), such that w[k : p] = α.

An implicit node y ∈ Factor(w) can be represented by a pair (
w

=⇒
x , α) of an explicit

node
w

=⇒
x and a string α ∈ Factor(w) such that y =

w
=⇒
x · α. The pair (

w
=⇒
x , α) is called a

reference pair for the implicit node y. Note that explicit nodes can also be represented by

reference pairs. There can be one or more reference pairs for a node y. The reference pair

(
w

=⇒
x , α) for y in which |α| is minimized is called the canonical reference pair for y. The

reference pair can also be written as (
w

=⇒
x , (k, p)) such that w[k : p] = α.

Ukkonen’s algorithm reads a given string w ∈ Σ∗ from left to right, while building

STree ′(w[1 : i]) for 1 ≤ i ≤ |w|. Suppose that we from now on update STree ′(w[1 : i]) to

STree ′(w[1 : i+1]). The group (1) of the suffixes of w[1 : i+1], mentioned in the previous

section, can moreover be divided into two as follows by integer j′.

(1-a) Suffixes w[l : i+ 1] for 1 ≤ l ≤ j′ where w[j′ + 1 : i] is the LRS of w[1 : i].

(1-b) Suffixes w[� : i+ 1] for j′ + 1 ≤ � ≤ j.

We remark that all the suffixes of the group (1-a) are those represented by leaf nodes in

STree ′(w[1 : i]). Note that, for any l,

w[1:i]
====⇒
w[l : i] = w[l : i] and

w[1:i+1]
=======⇒
w[l : i+ 1] = w[l : i+ 1]. That

is, intuitively, every leaf node of STree ′(w[1 : i]) is also a leaf node in STree ′(w[1 : i+ 1]).

This fact is crucial to Ukkonen’s algorithm in order that it automatically inserts those in

the group (1-a) into STree ′(w[1 : i+ 1]), by means of open edges.

Suppose that (
w[1:i]
=⇒
x , α,

w[1:i]
==⇒
xα ) is an edge of STree ′(w[1 : i]) where

w[1:i]
==⇒
xα is a leaf node.

Letting k be the integer such that w[k : i] = α, it is feasible to label the edge by (k,∞).

This way we need no explicit insertion of the suffixes of w[1 : i+ 1] in the group (1-a).

The location from which a suffix w[� : i+1] with respect to the group (1-b) is inserted

is called the active point of STree ′(w[1 : i+ 1]). The active point for w[1 : i+ 1] begins at
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the node w[j′ + 1 : i], where w[j′ + 1 : i] is the end point of STree ′(w[1 : i]). Assume we

are now inserting suffix w[� : i+ 1] into STree ′(w[1 : i]), where j′ + 1 ≤ � ≤ j. There are

two cases to consider for the active point.

(Case 1) The active point is on an explicit node w[� : i]. In this case,

w[1:i]
====⇒
w[� : i] =

w[1:i+1]
====⇒
w[� : i] = w[� : i].

Let x = w[� : i]. In this case a new edge (
w[1:i+1]
==⇒
x , α,

w[1:i+1]
===⇒
xα ) is created, where α =

w[i+1 : i+1]. Note
w[1:i+1]
===⇒
xα = w[� : i+1]. The edge is actually labeled by (i+1,∞).

After that, the active point moves to the explicit node suf (
w[1:i+1]
==⇒
x ), corresponding to

w[�− 1 : i], in order to insert the next suffix w[�− 1 : i+ 1].

(Case 2) The active point is on an implicit node w[� : i]. In this case,

w[1:i]
====⇒
w[� : i] 
= w[� : i] but

w[�:i+1]
====⇒
w[� : i] = w[� : i].

Let (
w[1:i]
=⇒
x , α) be the canonical reference pair for the active point, namely,

w[1:i]
=⇒
x · α =

w[� : i]. Focus on the edge (
w[1:i]
=⇒
x , αβ,

w[1:i]
==⇒
xαβ) where β 
= ε. The edge is replaced by

the edges (
w[1:i+1]

=⇒
x , α,

w[1:i+1]
==⇒
xα ) and (

w[1:i+1]
==⇒
xα , β,

w[1:i+1]
===⇒
xαβ ) where

w[1:i+1]
==⇒
xα is a new explicit node.

Then a new edge (
w[1:i+1]
==⇒
xα , γ,

w[1:i+1]
===⇒
xαγ ) is created, where γ = w[i + 1 : i + 1]. Note

w[1:i+1]
===⇒
xαγ = w[� : i+ 1]. The edge is actually labeled by (i+ 1,∞).

After that, we need to move to the (implicit or explicit) node corresponding to

w[� − 1 : i], the next active point, but the table suf is yet to be computed for the

new node
w[1:i+1]
==⇒
xα . Thus we once move to its parent node

w[1:i+1]
=⇒
x for which suf (

w[1:i+1]
=⇒
x )

must have already been computed. Let suf (
w[1:i+1]

=⇒
x ) =

w[1:i+1]
=⇒
y , where there exists some

character a such that
w[1:i+1]

=⇒
x = a ·

w[i+1]
=⇒
y . Note that

w[1:i+1]
=⇒
y ·α = w[�−1 : i]. We go down

from the node
w[1:i+1]

=⇒
y with spelling out α, to obtain the canonical reference pair for

the active point w[� − 1 : i]. The node w[� − 1 : i] either is already, or will in this

step become, explicit. The value of suf (
w[1:i+1]
==⇒
xα ) is then set to w[�− 1 : i]. This way

the algorithm ‘simulates’ the suffix-link-traversal of suffix tries.

Figure 3.3 shows the on-line construction of STree ′(cocoa).
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Figure 3.3: On-line construction of STree ′(w) with w = cocoa. The star represents the

active point for each step.

A pseudo-code for Ukkonen’s algorithm is shown in Fig 3.4. There, function canonize is

a routine to canonize a given reference pair. Function check end point is one that returns

true if a given reference pair is the end point, and false otherwise. Function split edge

splits an edge into two, by creating a new explicit node at the position to which the given

reference pair corresponds.

Theorem 3.2 (Ukkonen [55]) Assume Σ is a fixed alphabet. For any string w ∈ Σ∗,

STree ′(w) can be constructed on-line and in O(|w|) time, using O(|w|) space.

3.4 On-Line Construction of the CDAWG for a Sin-

gle String

3.4.1 Informal Description

Before delving into the technical detail of the algorithm for on-line construction of CDAWGs,

we informally describe how a CDAWG is built on-line. See Figure 3.5 that shows the

on-line construction of CDAWG ′(cocoa), in comparison with Figure 3.3 displaying the

on-line construction of STree ′(cocoa). Compare CDAWG ′(co) and STree ′(co). While
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Algorithm for on-line construction of STree ′(w$)
in alphabet Σ = {w[−1], w[−2], . . . w[−m]}.
/* $ is the end-marker appearing nowhere in w. */
1 create nodes root and ⊥;
2 for j := 1 to m do create edge (⊥, (−j,−j), root);
3 suf (root) := ⊥;
4 (s, k) := (root , 1); i := 0;
5 repeat
6 i := i+ 1;
7 (s, k) := update(s, (k, i));
8 until w[i] = $;

function update(s, (k, p)): pair of integers;
/* (s, (k, p− 1)) is the canonical reference pair for the active point. */
1 c := w[p]; oldr := nil;
2 while not check end point(s, (k, p− 1), c) do
3 if k ≤ p− 1 then r := split edge(s, (k, p− 1)); /* implicit case. */
4 else r := s; /* explicit case. */
5 create node r′; create edge (r, (p,∞), r′);
6 if oldr 
= nil then suf (oldr) := r;
7 oldr := r;
8 (s, k) := canonize(suf (s), (k, p− 1));
9 if oldr 
= nil then suf (oldr) := s;
10 return canonize(s, (k, p));

function check end point(s, (k, p), c): boolean;
1 if k ≤ p then /* implicit case. */
2 let (s, (k′, p′), s′) be the w[k]-edge from s;
3 return (c = w[k′ + p− k + 1]);
4 else return (there is a c-edge from s);

function canonize(s, (k, p)): pair of node and integers;
1 if k > p then return (s, k); /* explicit case. */
2 find the w[k]-edge (s, (k′, p′), s′) from s;
3 while p′ − k′ ≤ p− k do
4 k := k + p′ − k′ + 1; s := s′;
5 if k ≤ p then find the w[k]-edge (s, (k′, p′), s′) from s;
6 return (s, k);

function split edge(s, (k, p)): node;
1 let (s, (k′, p′), s′) be the w[k]-edge from s;
2 create node r;
3 replace the edge by edges (s, (k′, k′ + p− k), r) and (r, (k′ + p− k + 1, p′), s′);
4 return r;

Figure 3.4: Ukkonen’s on-line algorithm for constructing suffix trees.
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Figure 3.5: On-line construction of CDAWG ′(w) with w = cocoa. The star mark repre-

sents the active point for each step.

strings co and o are separately represented in STree ′(co), they are in the same node in

CDAWG ′(co). The destination of any open edge of a CDAWG is all the same, the sink

node. Open edges of a CDAWG are also automatically extended, as well as those of a

suffix tree (see CDAWG ′(coc) and CDAWG ′(coco)).

Focus on the first step of the update of CDAWG ′(coco) to CDAWG ′(cocoa). String

co there gets to be explicitely represented, and at the second step the active point is

on implicit node o. In case of the construction of STree ′(cocoa), edge (ε, ocoa, ocoa) is

split into two edges (ε, o, o) and (o, coa, ocoa), and then an open edge (o, a, oa) is newly

created. However, in case of the CDAWG, edge (ε, ocoa, ocoa) is redirected to node co,

and the label is simultaneously modified. Since strings co and o are equivalent under the

equivalent relation ≡R
cocoa, they are merged into a single node in CDAWG ′(cocoa).

3.4.2 The Algorithm

The algorithm presented in this section for the on-line construction of CDAWGs behaves

similarly to Ukkonen’s algorithm. Let u = w[1 : i] and ua = w[1 : i + 1], namely,

a = w[i+ 1]. The difference between them is summarized as follows.

27



- All the suffixes in the group (1) are equivalent under ≡R
ua. Thus all of them are

represented in the sink node [
ua
=⇒
ua]Rua. Namely, the destinations of the open edges are

all the same. According to this property, we can generalize the idea of open edges

as follows. For any open edge (s, (k,∞), t) of CDAWG ′(w) where t denotes the sink

node [
ua
=⇒
ua]R

ua
, we actually implement it as (s, (k, e), t) where e is a global variable that

denotes |ua|. Thus, when a new character added after u, we can extend all open

edges only with increasing the value of e by 1. Obviously, it only takes O(1) time.

- Consider (Case 2). There can be integers �1, �2 with j′ + 1 ≤ �1 < �2 ≤ j such

that w[�1 : i] ≡R
ua w[�2 : i]. In such case, they are merged into a single explicit node

[

ua
=====⇒
w[�1 : i]]

R
ua, during the update of CDAWG ′(u) to CDAWG ′(ua). The equivalence

test is performed on the basis of Lemma 3.1 to be given in the sequel.

- Consider strings x, y ∈ Factor(u) such that
u

=⇒
x = x and

u
=⇒
y = y. Assume that

x ≡R
u y, that is, they are represented in the same explicit node [x]Ru in CDAWG ′(u).

Note that, however, x, y might not be equivalent under ≡R
ua. When CDAWG ′(u)

is updated to CDAWG ′(ua), then the node has to be separated into two nodes

[x]R
ua

and [y]R
ua
. Since this node separation happens only when x /∈ Suffix (ua) but

y ∈ Suffix (ua), we can do this procedure after we find the end point. The condition

of the node separation will be given later on, in Lemma 3.2.

Merging Implicit Nodes.

As mentioned above, it can happen that two or more nodes implicit in CDAWG ′(u)

are merged into one explicit node in CDAWG ′(ua). As a concrete example, we show

in Figure 3.7 the snapshot of the conversion of CDAWG ′(u) into CDAWG ′(ua) with

u = abcabcab and a = a. It can be observed that the implicit nodes for abcab, bcab,

and cab are merged into a single explicit node, and the implicit nodes for ab and b are

also merged into another single explicit node. The examination whether to merge implicit

nodes can be done by testing the equivalence of two nodes under the equivalence relation

≡R
ua. The equivalence test can be performed on the basis of the following proposition and

lemma.

Proposition 3.1 Let x ∈ Factor(w) for a string w, and let z =
w←→x . Then, string x

occurs within string z exactly once.
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Figure 3.6: Comparison of conversions. One is from STree ′(u) to STree ′(ua), while the

other is from CDAWG ′(u) to CDAWG ′(ua) for u = abcabcab and a = a. The black

circles represent implicit nodes to be merged in the next step, connected by implicit suffix

links corresponding to the traversal by the active point.

Lemma 3.1 Let w ∈ Σ∗. For any strings x, y ∈ Factor(w) with y ∈ Suffix (x),

x ≡R
w y ⇔ [

w−→x ]Rw = [
w−→y ]Rw.

Proof. If x ≡R
w y, we have

w←−x =
w←−y by Definition 2.3. By Corollary 2.1, we know

w−−→
(

w←−x ) =

w←−−
(

w−→x ) and

w−−→
(

w←−y ) =

w←−−
(

w−→y ), which yield

w←−−
(

w−→x ) =

w←−−
(

w−→y ). Again by Definition 2.3, we have

[
w−→x ]Rw = [

w−→y ]Rw.

Conversely, suppose [
w−→x ]R

w
= [

w−→y ]R
w
. Recall that

w←→x =

w←−−
(

w−→x ) by Corollary 2.1 and

w←−−
(

w−→x ) is

the unique longest member of [
w−→x ]Rw. Similarly,

w←→y is the unique longest member of [
w−→y ]Rw.

Thus we have
w←→x =

w←→y . Let z =
w←→x =

w←→y . Then z = αxβ for some strings α and β.

Since y is a suffix of x, there exists a string δ such that x = δy. We thus have z = αδyβ.

This occurrence of y in z must be the only one due to Proposition 3.1. Since
w←→y = αδyβ,

we conclude that every occurrence of y within w must be preceded by δ. Thus we have
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Figure 3.7: Detailed conversion from CDAWG ′(u) to CDAWG ′(ua) for u = abcabcab and

a = a.
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x ≡R
w y. �

For any string x ∈ Factor(w), the equivalence class [
w−→x ]Rw is the closest explicit child of

the node for x in CDAWG(w). Thus we can test the equivalence of two suffixes x, y of w

with Lemma 3.1.

The matter is that, for a string v ∈ Suffix (w), the node
w−→v might not be explicit in

CDAWG ′(w). Namely, on the equivalence test, we might refer to the node [
w

=⇒
x ]Rw instead

of [
w−→x ]R

w
. Nevertheless, it does not actually happen in our on-line manner in which suffixes

are processed in decreasing order of their length.

See CDAWG ′(u) shown on the right of Figure 3.6, where u = abcabcab. The black

points are the implicit nodes the active point traverses in the next step via ‘implicit’

suffix links. In CDAWG ′(u), [
u

==⇒
cab]Ru = [

u
=⇒
ab]Ru = [

u
=⇒
u ]Ru . However, in CDAWG

′(ua), cab 
≡R
ua

ab where a = a. See Figure 3.7 in which the detail of the update of CDAWG ′(u) to

CDAWG ′(ua) is displayed. Notice that there is no trouble on merging the implicit nodes.

Separating Explicit Nodes.

When CDAWG ′(u) is updated to CDAWG ′(ua), an explicit node [
u

=⇒
x ]R

u
with x ∈ Factor(u)

might be separated into two explicit nodes [
ua
=⇒
x ]R

ua
and [

ua
=⇒
y ]R

ua
if x /∈ Suffix (ua), y ∈

Suffix (x), and y ∈ Suffix (ua). It is inherently the same ‘phenomenon’ as the node sepa-

ration occurring in the on-line construction of DAWGs [7]. Therefor we briefly recall the

essence of the node separation of DAWGs. For u ∈ Σ∗ and a ∈ Σ, ≡R
ua is a refinement of

≡R
u . Furthermore, we have the following lemma.

Lemma 3.2 (Blumer et al. [7]) Let u ∈ Σ∗ and a ∈ Σ. Let z be the LRS of ua. For a

string x ∈ Factor(u), assume x =
u←−x . Then,

[x]R
u
=

{
[x]Rua ∪ [z]Rua, if z ∈ [x]Ru and x 
= z;

[x]R
ua
, otherwise.

As stated in the above lemma, we need only to care about the node [x]R
u
where z ∈ [x]R

u

and z is the LRS of ua. Namely only one node can be separated when a DAWG is updated

with a new character added. If z =
u←−x , the node is not separated (the latter case). If

z 
=
u←−x , it is separated into two nodes [x]Rua and [z]Rua when DAWG(u) is updated to

DAWG(ua) (the former case). We examine whether z =
u←−x or not by checking the length

of
u←−x and z, as follows. Let y ∈ Factor(u) be the string such that

u←−y · a = z. Note that
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there then exists an edge ([y]R
u
, a, [x]R

u
). Then,

z =
u←−x ⇔ length([y]Ru ) + |a| = length([x]Ru ), and

z 
=
u←−x ⇔ length([y]R

u
) + |a| < length([x]R

u
).

If we define the length of the bottom node ⊥ by −1, no contradiction occurs even in case

that z = ε.

Figure 3.8 shows the conversion from DAWG(u) to DAWG(ua) with u = cocoa and

a = a. The LRS of the string cocoao is o, therefore we focus on edge ([ε]R
u
, o, [o]R

u
). Since

length([ε]R
u
) + |o| = 1 < length([o]R

u
) = 2, node [o]R

u
is separated into two nodes [co]R

ua
and

[o]Rua, as shown in Figure 3.8.
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Figure 3.8: The update of DAWG(u) to DAWG(ua), where u = cocoa and a = o.

Now we go back to the update of CDAWG ′(u) to CDAWG ′(ua). The test whether to

separate a node when a CDAWG is updated can also be done on the basis of Lemma 3.2

in the very similar way. Since only explicit nodes can be separated, we only need to care

about the case that z =
ua
=⇒
z where z is the LRS of ua. It is not difficult to establish the

following lemma.

Lemma 3.3 Let w ∈ Σ∗. Assume the LRS of w is z. Then, if z =
w

=⇒
z ,

w
=⇒
x =

w−→x for any
string x ∈ Factor(w).

This lemma guarantees that the representative of [
u

=⇒
x ]Ru is equal to

u←→x if the conditions

in the lemma are satisfied. We can therefore execute the node separation test as follows:

If z =
u←→x , the node [x]Ru is not separated (the latter case). If z 
=

u←→x , it is separated
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into two nodes [x]R
ua
and [z]R

ua
when CDAWG ′(u) is updated to CDAWG ′(ua) (the former

case). We examine if z =
u←→x or not by the length of

u←→x and z in the following way. Let

y ∈ Factor(u) be the string such that
u←→y · α = z for some string α ∈ Factor(u). Note

that there then exists an edge ([y]R
u
, α, [x]R

u
). Then,

z =
u←→x ⇔ length([y]R

u
) + |α| = length([x]R

u
), and

z 
=
u←→x ⇔ length([y]R

u
) + |α| < length([x]R

u
).

Figure 3.9 shows the update of CDAWG ′(u) to CDAWG ′(ua), where u = cocoa and

a = o. The LRS of the string cocoao is o, therefore we focus on edge ([
u

=⇒
ε ]R

u
, o, [

u
=⇒
o ]R

u
).

Since length([
u

=⇒
ε ]Ru ) + |o| = 1 < length([

u
=⇒
o ]Ru ) = 2, node [

u
=⇒
o ]Ru is separated into two nodes

[
ua
=⇒
co]R

ua
and [

ua
=⇒
o ]R

ua
, as shown in Figure 3.9.
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Figure 3.9: The update of CDAWG ′(u) to CDAWG ′(ua), where u = cocoa and a = o.

Pseudo-Code.

The algorithm is described in Figure 3.10 and Figure 3.11. Function extension returns the

explicit child node of a given node (implicit or explicit). Function redirect edge redirects

a given edge to a given node, with modifying the label of the edge accordingly. Function

split edge is the same as the one used in Ukkonen’s algorithm, except that it also computes

the length of nodes. Function separate node separates a given node into two, if necessary.

It is essentially the same as the separation procedure for DAWG(w) given by Blumer et

al. [7], except that implicit nodes are also treated.
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Algorithm for on-line construction of CDAWG ′(w$)
in alphabet Σ = {w[−1], w[−2], . . . , w[−m]}.
/* $ is the end-marker appearing nowhere in w. */
1 create nodes source, sink , and ⊥;
2 for j := 1 to m do create a new edge (⊥, (−j,−j), source);
3 suf (source) := ⊥;
4 length(source) := 0; length(⊥) := −1;
5 e := 0; length(sink) := e;
6 (s, k) := (source, 1); i := 0;
7 repeat
8 i := i+ 1; e := i; /* e is a global variable. */
9 (s, k) := update(s, (k, i));
10 until w[i] = $;

function update(s, (k, p)): pair of node and integers;
/* (s, (k, p− 1)) is the canonical reference pair for the active point. */
1 c := w[p]; oldr := nil;
2 while not check end point(s, (k, p− 1), c) do
3 if k ≤ p− 1 then /* implicit case. */
4 if s′ = extension(s, (k, p− 1)) then
5 redirect edge(s, (k, p− 1), r);
6 (s, k) := canonize(suf (s), (k, p− 1));
7 continue;
8 else
9 s′ := extension(s, (k, p− 1));
10 r := split edge(s, (k, p− 1));
11 else /* explicit case. */
12 r := s;
13 create edge (r, (p, e), sink);
14 if oldr 
= nil then suf (oldr) := r;
15 oldr := r;
16 (s, k) := canonize(suf (s), (k, p− 1));
17 if oldr 
= nil then suf (oldr) := s;
18 return separate node(s, (k, p));

Figure 3.10: Main routine, function update , and function check end point of the on-line
algorithm to construct CDAWGs.
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function extension(s, (k, p)): node;
/* (s, (k, p)) is a canonical reference pair. */
1 if k > p then return s; /* explicit case. */
2 find the w[k]-edge (s, (k′, p′), s′) from s;
3 return s′;

function redirect edge(s, (k, p), r);
1 let (s, (k′, p′), s′) be the w[k]-edge from s;
2 replace the edge by edge (s, (k′, k′ + p− k), r);

function split edge(s, (k, p)): node;
1 let (s, (k′, p′), s′) be the w[k]-edge from s;
2 create node r;
3 replace the edge by edges (s, (k′, k′ + p− k), r) and (r, (k′ + p− k + 1, p′), s′),
4 length(r) := length(s) + (p− k + 1);
5 return r;

function separate node(s, (k, p)): pair of node and integer;
1 (s′, k′) := canonize(s, (k, p));
2 if k′ ≤ p then return (s′, k′); /* implicit case. */
3 /* explicit case. */
4 if length(s′) = length(s) + (p− k + 1) then return (s′, k′); /* solid case. */
5 /* non-solid case. */
6 create node r′ as a duplication of s′; /* together with the out-going edges of s′ */
7 suf (r′) := suf (s′); suf (s′) := r′;
8 length(r′) := length(s) + (p− k + 1);
9 repeat
10 replace the w[k]-edge from s to s′ by edge (s, (k, p), r′);
11 (s, k) := canonize(suf (s), (k, p− 1));
12 until (s′, k′) 
= canonize(s, (k, p));
13 return (r′, p+ 1);

Figure 3.11: Other functions for the on-line algorithm to construct CDAWGs. Since
function check end point and function canonize used here are identical to those shown
in Fig. 3.4, they are omitted.

35



Complexity of the Algorithm.

Theorem 3.3 Assume Σ is a fixed alphabet. For any string w ∈ Σ∗, the proposed algo-

rithm constructs CDAWG ′(w) on-line and in O(|w|) time, using O(|w|) space.

Proof. The linearity proof is in a sense the combination of the one of the on-line

algorithm for DAWGs [7] and the one of the on-line algorithm for suffix trees [55]. We

divide the time requirement into two components, both turn out to be linear. The first

component consists of the total computation time by canonize. The second component

consists of the rest.

Let x ∈ Factor(w). We define the suffix chain started at x on w, denoted by SCw(x),

to be the sequence of (possibly implicit) nodes reachable via suffix links from the (possibly

implicit) node associated with x to the source node in CDAWG ′(w), as in [7]. We define its

length by the number of nodes contained in the chain, and let |SCw(x)| denote it. Let k1 be

the number of iterations of the while loop of update and let k2 be the number of iterations

in the repeat-until loop in separate node, when CDAWG(w) is updated to CDAWG(wa).

By a similar argument in [7], it can be derived that |SCwa(wa)| ≤ |SCw(w)|−(k1+k2)+2.

Initially |SCw(w)| = 1 because w = ε, and then it grows at most two (possibly implicit)

nodes longer in each call of update. Since |SCw(w)| decreases by an amount proportional

to the sum of the number of iterations in the while loop and in the repeat-until loop on

each call of update , the second time component is linear in the length of the input string.

For the analysis of the first time component we have only to consider the number of

iterations in the while loop in canonize. By concerning the calls of canonize executed in

the while loop in update , it results in that the total number of the iterations is linear (by

the same argument in [55]). Thus we shall consider the number of iterations of the while

loop in canonize called in separate node. There are two cases to consider:

1. When the end point is on an implicit node. Then the computation in canonize takes

only constant time.

2. When the end point is on an explicit node. Let z be the LRS of w, which corresponds

to the end point. Consider the last edge in the path spelling out z from the source

node to the explicit node, and let the length of its label be k (≥ 1). The total

number of iterations of the while loop of canonize in the call of separate node is

at most k. Since the value of k increases at most by 1 each time a new character
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is scanned, the time requirement of the while loop of canonize in separate node is

bounded by the total length of the input string.

As a result of the above discussion, we can finally conclude that the first and second

components take overall linear time. �

3.5 Construction of the CDAWG for a Set of Strings

For a set S of strings w1, w2, . . . , wk, we consider the set S ′ = {wi$i | wi ∈ S and $i /∈
Factor(S) for 1 ≤ i ≤ |S|}. We remark that CDAWG ′(S ′) = CDAWG(S ′) for any set S

of strings.

CDAWG ′(S ′) can be constructed by the same algorithm proposed in the previous

section, with a slight modification. We use a global variable ei for each string in S ′, where

1 ≤ i ≤ |S|, which indicates the ending position of open edges for each string. We treat

the set S ′ like a single sequence t = w1$1w2$2 · · ·wk$k. Whenever we encounter an end-

marker $i, we stop increasing the value of ei. Then we create the new (i+1)-th sink node,

and start increasing the value of ei+1 each time a new character is scanned. Thereby we

have the following.

Theorem 3.4 Assume Σ is a fixed alphabet. For any set S of strings, the proposed

algorithm constructs CDAWG ′(S ′) on-line and in O(‖S ′‖) time, using O(‖S ′‖) space.

In Figure 3.12 the construction of CDAWG ′(S ′) is displayed, where S ′ = {cocoa$1, cola$2}.

Remark. As a secondary effect of the end-markers $i, we obtain a good feature on

CDAWG ′(S ′). For the set S = {cocoa, cola}, CDAWG(S) is shown in Figure 3.13.

One can see there are three sink nodes though S contains only two strings in it. This is

obviously because [
S−→a ]R

S
= {a}. In such case, we cannot readily specify what string(s) in

S the string a is a factor of. However, there is no difficulty to specify it in CDAWG ′(S ′),

since there exactly exist |S ′| = |S| sink nodes in it (see the right of Figure 3.13).
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Figure 3.12: Construction of CDAWG ′(S ′) for S ′ = {cocoa$1, cola$2}.
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Figure 3.13: For set S = {cocoa, cola}, CDAWG(S) is shown on the left. For set

S ′ = {cocoa$1, cola$2}, CDAWG ′(S ′) is displayed on the right.
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Chapter 4

Unification of Algorithms for

Constructing Index Structures

4.1 Background and Motivation

When constructing an index structure for a given text string w, what is required primarily

is to build it in time linear in the length of w. To realize it, much attention and effort has

been paid so far [58, 43, 11, 55, 7, 8, 16, 32]. From viewpoints of practice and algorithmics,

it is also very important to construct an index structure in on-line manner: for example,

we can obtain the suffix tree for wa only with small change to append new character a to

the existing suffix tree of w. If it is off-line, we have to construct the suffix tree of wa from

scratch, even if we beforehand had the suffix tree of w. Therefore, an on-line algorithm

constructs an index structure very efficiently, and it allows us to update the input string.

Another important factor in constructing an index structure is to build it for a set of

strings easily. Once constructing index structures for all strings in the set, by merging

them it may be possible to obtain an index structure for the set. However, the method

is rather straightforward and inefficient, and takes us considerably much time. Hence an

algorithm that can directly build an index structure for a set of strings is truly helpful.

Table 4.1 shows the on-line algorithms for constructing index structures. Each index

structure is suitable to solve particular problems. For example, a suffix tree is optimal to

find all the occurrences of a given pattern in a text string [20], a DAWG is a good structure

to find the longest common factor of two strings [12], a CDAWG is ideal when we want to

save memory space, since its space complexity is strictly smaller than those of the other

index structures [8], and so on. Therefore, we should need every index structure in order

39



Index Structure Algorithm linear time on-line multiple strings

suffix tries Ukkonen [55]
√ √

suffix trees Ukkonen [55]
√ √ √

DAWGs Blumer et al. [8]
√ √ √

CDAWGs Inenaga et al. [32]
√ √ √

Table 4.1: On-line algorithms to construct index structures for a set of strings.

to solve various problems. The matter is, however, that we then have to implement at

least four different algorithms, as there exist four index structures.

We had thereby been motivated to get rid of this trouble, and finally succeeded to unify

the four distinct algorithms, each of which constructs suffix tries, suffix trees, DAWGs,

and CDAWGs, respectively. That is, we produce a generic algorithm that is capable of

constructing any of suffix tries, suffix trees, DAWGs, and CDAWGs. The algorithm is

endowed with all the desired properties: it runs on-line and in linear time, and can apply

to a set of text strings. However, as an exception the construction of suffix tries cannot

always be achieved in linear time since they can require quadratic space.

A complete pseudo-code of our algorithm is shown in Fig. 4.1, Fig. 4.2, Fig. 4.3 and

Fig. 4.4. We have marked each line with four symbols: There, ♣ (♠, ♥ and ♦, resp.)
indicates the lines that can be executed when a suffix trie (a suffix tree, a DAWG, and a

CDAWG, reps.) is constructed. It has succeeded to reveal the essential common points

and separate the small differences among the typical algorithms [55, 7, 32]. In fact, all the

control blocks are exactly the same and all differences can be packed into the only one

procedure in Fig. 4.2 to create a new edge. This means that we can choose which index

structure to build, by ‘switching’ the one procedure.

Furthermore, by comparing the definitions of index structures given in Chapter 2.3

with the algorithm proposed here, some correspondence between them are revealed. Thus,

in a sense we provide an algorithmic unified view for the index structures.

The result reported in this chapter was published in [31].
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4.2 A Generic Algorithm Constructing Index Struc-

tures

Our algorithm to be shown later on constructs STree ′(S) and CDAWG ′(S) rather than

STree(S) and CDAWG(S), since it processes input strings in on-line manner. In the fol-

lowing, we explain the algorithm starting with the common part to every index structure,

then we separately give an exposition for the different part.

4.2.1 Construction of an Index Structure for a Single String

We firstly consider the case that the input for the algorithm is a single string w ∈ Σ∗.

Let Index(w[1 : i]) be an arbitrary index structure of string w[1 : i] for 1 ≤ i ≤ |w|.
Our algorithm updates Index (w[1 : i]) to Index (w[1 : i + 1]) by inserting the suffixes of

w[1 : i + 1] into Index(w[1 : i]). Recall Definition 3.1 of the LRS, given in Section 3.2.

The suffixes of w[1 : i + 1] can be divided into the following two groups, by the LRS of

w[1 : i+ 1].

(1) Suffixes w[h : i+ 1] for 1 ≤ h ≤ j where w[j + 1 : i+ 1] is the LRS of w[1 : i+ 1].

(2) Suffixes w[l : i+ 1] for j + 1 ≤ l ≤ i+ 2.

The group (2) is empty in such case that the LRS of w[1 : i + 1] = ε, that is, in case

j + 1 = i+ 2.

Notice that we need not newly insert any suffixes in case (2), simply because they

have already been represented in Index(w[1 : i]). Meanwhile, we insert each suffix of

case (1) into Index (w[1 : i]), from w[1 : i + 1] to w[j : i + 1]. We call w[j + 1 : i + 1]

the longest duplicated suffix, the LRS for short, of w[1 : i + 1]. Let us call the start

point of Index (w[1 : i + 1]) the location where the LRS of w[1 : i] is represented in

Index (w[1 : i + 1]), and call the end point of Index (w[1 : i + 1]) the location where the

LRS of w[1 : i + 1] is represented in Index (w[1 : i + 1]). The suffixes of case (1) can

moreover be divided into the following two sub-cases by integer j′.

(1-a) Suffixes w[h′ : i+ 1] for 1 ≤ h′ ≤ j′ where w[j′ + 1 : i] is the LRS of w[1 : i].

(1-b) Suffixes w[h′′ : i+ 1] for j′ + 1 ≤ h′′ ≤ j.
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♣♠♥♦ Algorithm Construction of an index structure on Σ = {w[−1], . . . , w[−m]}.
♣♠♥♦ 1 create nodes root and ⊥;
♣♠♥♦ 2 for j := 1 to m do create a new edge (⊥, (−j,−j), root);
♣♠♥♦ 3 suf (root) := ⊥; suf (⊥) := nil /* suffix link */
♣♠♥♦ 4 length(root) := 0; length(⊥) := −1;
♣♠♥♦ 5 (s, k) := (root , 1); i := 0; h := 1; (t, q) := (root , 1);
♣♠♥♦ 6 repeat
♣♠♥♦ 7 i := i+ 1;
♣♠♥♦ 8 ((s, k), (t, q)) := update((s, k), (t, q), i);
♣♠♥♦ 9 if w[i] = endmarker then
♣♠♥♦ 10 h := h+ 1;
♣♠♥♦ 11 (t, q) := (root , i+ 1);
♣♠♥♦ 12 until w[i] = EOF;

Figure 4.1: Main routine of our algorithm.

The main routine of our new algorithm is shown in Fig. 4.1. In the algorithm, an

edge (u, α, v) is represented by (u, (k, p), v) such that k (resp. p) represents the beginning

position (resp. the ending position) of the label in the input string w. The main routine

calls the function update , shown in Fig. 4.2, each time a new character is scanned. The

function update plays the main role to update the index structure with a newly scanned

character.

In update the suffixes of case (1) are inserted, while it is checked whether or not the

suffix currently focused on is the LRS of w[1 : i+ 1]. This is examined by the function

check end point , in the 2nd line of update. In the 12th line a new edge is created for each

of the suffixes in case (1), and the way to do it depends on which index structure we are

constructing, as shown in the lower part of Fig. 4.2. The detail of the dependence will be

mentioned in the sequel. The location from which the algorithm should insert each suffix

in case (1) is called the active point for the suffix. Where the active point should start on

updating the structure also depends on which index structure we are constructing.

Now suppose that we have just before finished inserting a suffix w[h : i + 1] where

j′+1 ≤ h ≤ j−1, which is in case (1-a). Then, in the 15th line of update the active point

is moved to the location where the string w[h+ 1 : i+1] is associated, via the suffix link.

The reference pair for w[h+ 1 : i+ 1] is then canonized by the function canonize . This

operation is continued until the LRS of w[1 : i+ 1], i.e. the end point, is found.
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♣♠♥♦ function update((s, k), (t, q), p): pairs of node and integer;
♣♠♥♦ /* (t, (q, p− 1)) is the canonical reference pair for the advanced point. */
♣♠♥♦ 1 c := w[p]; oldr := nil; s′ := nil;
♣♠♥♦ 2 while not check end point(s, (k, p− 1), c) do
♣♠♥♦ 3 if k ≤ p− 1 then /* implicit */
♠ ♦ 4 if s′ = extension(s, (k, p− 1)) then
♦ 5 redirect edge(s, (k, p− 1), r);
♦ 6 (s, k) := canonize(suf (s), (k, p− 1));
♦ 7 continue;

♠ ♦ 8 else
♠ ♦ 9 s′ := extension(s, (k, p− 1));
♠ ♦ 10 r := split edge(s, (k, p− 1));
♣♠♥♦ 11 else r := s; /* explicit */

♣♠♥♦ 12 CreateNewEdge /* Change only this line */

♣♠♥♦ 13 if oldr 
= nil then suf (oldr) := r;
♣♠♥♦ 14 oldr := r;
♣♠♥♦ 15 (s, k) := canonize(suf (s), (k, p− 1));
♣♠♥♦ 16 if oldr 
= nil then suf (oldr) := s;
♣♠♥♦ 17 (s, k) := separate node(s, (k, p));
♣♠♥♦ 18 (t, q) := canonize(t, (q, p));
♣♠♥♦ 19 if q > p then (s, k) := (t, q); /* the advanced point is explicit */
♣♠♥♦ 20 return ((s, k), (t, q));

CreateNewEdge should be replaced as follows respectively.

For Suffix Tries
create a new node v;
length(v) := length(r) + 1;
create a new edge (r, (p, p), v);

For Suffix Trees
create a new node v;
length(v) :=∞;
create a new edge (r, (p,∞), v);

For DAWGs
if v has not been defined yet

create a new node v;
length(v) := length(r) + 1;

create a new edge (r, (p, p), v);

For CDAWGs
if sh has not been defined yet

create a sink node sh; /* sh is a global variable */
length(sh) :=∞;

create a new edge (r, (p,∞), sh);

Figure 4.2: Function update .
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♣♠♥♦ function check end point(s, (k, p), c): boolean;
♣♠♥♦ 1 if k ≤ p then /* implicit */
♠ ♦ 2 let (s, (k′, p′), s′) be the w[k]-edge from s;
♠ ♦ 3 return (c = w[k′ + p− k + 1]);
♣♠♥♦ 4 else /* explicit */
♣♠♥♦ 5 return (there is a c-edge from s);

♣♠♥♦ function extension(s, (k, p)): node;
♣♠♥♦ /* (s, (k, p)) is a canonical reference pair. */
♣♠♥♦ 1 if k > p then return s; /* explicit */
♠ ♦ 2 find the w[k]-edge (s, (k′, p′), s′) from s; return s′; /* implicit */

♦ function redirect edge(s, (k, p), r);
♦ 1 let (s, (k′, p′), s′) be the w[k]-edge from s;
♦ 2 replace this edge by edge (s, (k′, k′ + p− k), r);

♣♠♥♦ function canonize(s, (k, p)): pair of integers;
♣♠♥♦ 1 if k > p then return (s, k); /* explicit */
♠ ♦ /* (s, (k, p)) is an implicit node. */
♠ ♦ 2 find the w[k]-edge (s, (k′, p′), s′) from s;
♠ ♦ 3 while p′ − k′ ≤ p− k do
♠ ♦ 4 k := k + p′ − k′ + 1; s := s′;
♠ ♦ 5 if k ≤ p then find the w[k]-edge (s, (k′, p′), s′) from s;
♠ ♦ 6 return (s, k);

Figure 4.3: Functions check end point , extension, and canonize.
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♠ ♦ function split edge(s, (k, p)): node;
♠ ♦ 1 let (s, (k′, p′), s′) be the w[k]-edge from s;
♠ ♦ 2 replace the edge by edges (s, (k′, k′+p−k), r) and (r, (k′+p−k+1, p′), s′)
♠ ♦ where r is a new node;
♠ ♦ 3 length(r) := length(s) + (p− k + 1);
♠ ♦ 4 return r;

♣♠♥♦ function separate node(s, (k, p)): pair of node integer;
♣♠♥♦ 1 (s′, k′) := canonize(s, (k, p));
♣♠♥♦ 2 if k′ ≤ p then return (s′, k′); /* implicit */
♣♠♥♦ /* (s′, (k′, p)) is an explicit node. */
♣♠♥♦ 3 if length(s′) = length(s) + p− k + 1 then return (s′, k′); /* solid */
♠ ♦ /* non-solid case */
♠ ♦ 4 create a new node r′ as a duplication of s′;
♠ ♦ 5 suf (r′) := suf (s′); suf (s′) := r′;
♠ ♦ 6 length(r′) := length(s) + (p− k + 1);
♠ ♦ 7 repeat
♠ ♦ 8 replace the w[k]-edge from s to s′ by edge (s, (k, p), r′);
♠ ♦ 9 (s, k) := canonize(suf (s), (k, p− 1));
♠ ♦ 10 until (s′, k′) 
= canonize(s, (k, p));
♠ ♦ 11 return (r′, p+ 1);

Figure 4.4: Other functions.

What we mentioned above are common to all the four index structures. From now on,

let us treat the differences, CreateNewEdge .

4.2.2 CreateNewEdge in Case of Suffix Tries

Assume that we now have STrie(w[1 : i]). First, we insert the suffixes of case (1-a) into

the suffix trie. Definition 2.7 tells that every edge of a suffix trie must be labeled with a

single character. Therefore, from each leaf node of STrie(w[1 : i]) a new edge labeled by

w[i+1 : i+1] is created together with a new leaf node. This way the suffixes of case (1-a)

are inserted. The update from STrie(w[1 : i]) to STrie(w[1 : i + 1]) should begin at the

node w[1 : i]. We call this location the advanced point of STrie(w[1 : i]). The active point

was reset to node w[1 : i] after the construction of STrie(w[1 : i]) had been finished, and

this was done in the 19th line of update. Second, we insert the suffixes of case (1-b). By

creating new edges labeled by w[i + 1 : i + 1] from nodes w[h : i] where j′ + 1 ≤ h ≤ j,

they are inserted.
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4.2.3 CreateNewEdge in Case of Suffix Trees

Assume that we now have STree ′(w[1 : i]). Recall Definition 2.8. A careful consideration

reveals the fact that any leaf node of STree ′(w[1 : i]) will also be a leaf node in STree ′(w[1 :

k]) for any k where i + 1 ≤ k ≤ |w|. Hence we refer the second value of label of an edge

directing a leaf node of STree ′(w[1 : i]) to “∞” as Ukkonen did in [55], and do the length

of the leaf node to “∞” as well. This way is so ingenious that we need not explicitly

insert any suffix in case (1-a). In addition, it inherently corresponds to the “compaction”

from a suffix trie to a suffix tree, shown in Fig. 3.1. Then all we have to do is to insert

the suffixes of case (1-b) into the suffix tree. That is why the active point should be on

the start point of STree ′(w[1 : i]) at the beginning of the update. Consider the case that

the active point is on an edge (on an implicit node) and corresponds to string w[h : i] for

some j′+1 ≤ h ≤ j. Since w[h : i+1] is not the LRS of w[h : i+1], naturally it has to be

inserted into the suffix tree. To do it, a new node is created where the active point is. In

other words, the implicit node becomes explicit. This is done by the function split edge

called in the 10th line of update.

4.2.4 CreateNewEdge in Case of DAWGs

Assume that we now have DAWG(w[1 : i]). Definition 2.9 tells that only strings ending at

the same position in w must be represented in the same node. String w[h : i+ 1] belongs

to [w[1 : i + 1]]R
w[1:i+1]

for any h with 1 ≤ h ≤ j′, which is a suffix in case (1-a). These

result in the fact that an edge labeled by w[i + 1 : i + 1] and the new sink node should

be created from the last sink node [w[1 : i]]R
w[1:i+1]

, and by this procedure all the suffixes of

case (1-a) are inserted. Therefore, as in case of suffix tries, in the 19th line of update the

active point was moved to the advanced point of DAWG(w[1 : i]) after its construction

had been completed. To insert a suffix w[h : i+ 1] in case (1-b) for j′ + 1 ≤ h ≤ j, a new

edge labeled with w[i+1 : i+1] is created from node [w[h : i]]R
w[1:i+1]

to the new sink node

[w[1 : i + 1]]R
w[1:i+1]

. It corresponds to the “minimization” from a suffix trie to a DAWG.

Suppose that the end point has already found, that is, the insertion of all the suffixes of

w[1 : i+ 1] has been finished, and focus on the LRS w[j + 1 : i+ 1] of w[1 : i+ 1]. In the

17th line of update the function separate node is called, which examines whether or not

w[j + 1 : i+ 1] = u, where u =

w[1:i+1]←−−−−−−−−−−
w[j + 1 : i+ 1]. If not, w[j + 1 : i+ 1] cannot any longer

be represented in the same node as u. Therefore, the node is separated into two nodes,
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[u]R
w[1:i+1]

and [w[j + 1 : i+ 1]]R
w[1:i+1]

.

4.2.5 CreateNewEdge in Case of CDAWGs

Assume that we now have CDAWG ′(w[1 : i]). The way to update CDAWG ′(w[1 : i])

is like combination of those to update STree ′(w[1 : i]) and DAWG(w[1 : i]). Let us

call the terminal edges the edges directing the sink node of a CDAWG. It follows from

Definition 2.10 that any terminal edge of CDAWG ′(w[1 : i]) will also be a terminal edge

of CDAWG ′(w[1 : k]) for any k where i + 1 ≤ k ≤ |w|. Hence we refer the second

value of any terminal edge to “∞”, like the case of suffix trees. This way every suffix of

case (1-a) is implicitly inserted to the CDAWG, therefore the active point starts at the

start point of CDAWG ′(w[1 : i]). Suppose the active point is on an edge (on an implicit

node) right before inserting w[j′ + 1 : i + 1]. Then the edge is split into two, due to the

creation of the node from which an edge with label w[i+ 1 : ∞] is created. This way to

label the edge corresponds to the “compaction” from a DAWG to a CDAWG. The edge

is directed to the sink node. It corresponds to the “minimization” from a suffix tree to a

CDAWG. To insert w[j′ + 2 : i+ 1], the active point is moved to the location with which

w[j′ +2 : i] is associated. If it is an implicit node, in the 4th line of update it is examined

if w[j′ + 2 : i + 1] is to belong to [w[j′ + 1 : i]]R
w[1:i+1]

. If so, the edge is redirected to the

node last created, [w[j′+1 : i]]Rw[1:i+1], and its label is modified accordingly. The function

redirect edge accomplishes the operation above. If not, a new node for [w[j′ + 2 : i]]R
w[1:i]

is newly created, so that a new edge labeled with w[j + 1 :∞] can be created from it to

the sink node.

4.2.6 Extension to a Set of Strings

Given a set S = {w1, w2, . . . , wk}, we regard it as a sequence t = w1$1w2$2 · · ·wk$k, where

$h is the end-marker of wh for 1 ≤ h ≤ k. This way we can treat S like one string. In

the 9th line of the main routine in Fig. 4.1, if t[i] is an end-marker, integer h counting the

number of the input strings is increased one, and the advanced point is reset to the root

node preparing for the next string. The active point is also to be on the root node, since

any end-marker never appears in any string in S. Consequently, the algorithm builds

STrie(S), STree ′(S), DAWG(S), and CDAWG ′(S), for a given set S of strings.

As a result of the discussion, we have the following.
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Theorem 4.1 For any set of strings the proposed algorithm constructs STrie(S), STree ′(S),

DAWG(S), and CDAWG ′(S) on-line, and in liner time except for STrie(S), by changing

the 12th line of the function update accordingly.

For comparison, for S = {abab, abb}, the on-line constructions of STrie(S), STree ′(S),
DAWG(S), and CDAWG ′(S) are shown in respectively Fig. 4.5, Fig. 4.6, Fig. 4.7, and

Fig. 4.8.
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Chapter 5

Construction of the CDAWG for a

Trie

5.1 Introduction

In Chapter 3 and Chapter 4, we have discussed the construction of the CDAWG for a set

S of strings. In this chapter, we consider the case that the set S is given in the form of

a trie (see Section 2.1.1). Namely, our input is Trie(S) and output is CDAWG ′(S). Let

‖S‖ = �. Since the trie shares common prefixes of the strings in S, in general the number

N of nodes of the trie is less than �. We show a non-trivial extension of the algorithm that

constructs CDAWG for a trie in O(N) time and space. The algorithm is designed on the

basis of the one for constructing CDAWGs for a set of strings, which has been introduced

in Chapter 3.

Some related work can be seen in literature: Kosaraju [37] introduced the suffix tree for

a reversed trie. We denote it by Trierev(S). Let M be the number of nodes in Trierev(S).

Kosaraju showed an algorithm to construct STree(S) in O(M logM) time. Later on,

Breslauer [9] reduced it to O(M) time.

On the other hand, our algorithm constructs a CDAWG for a (normal) trie. We

believe our assumption that a set S of strings is given as Trie(S) is natural. In addition,

we remark that the algorithm to be proposed also becomes capable of building STree(S)

and DAWG(S) in O(N) time, in the combination with the generic algorithm introduced

in Chapter 4. STrie(S) can also be constructed in O(N2) time.

The result involved in this chapter was published in [29].
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5.2 Trie and Reversed Trie

We define the reversed trie for a set S of strings as a reverse-directed tree. We denote it by

Trierev(S). The root node of Trierev(S) is out-degree zero and any leaf node is in-degree

zero. Formally, Trierev(S) is defined as follows.

Definition 5.1 Trierev(S) is the tree (V,E) such that

V = {x | x ∈ Suffix (S)},
E = {(xa, a, x) | x, xa ∈ Suffix (S) and a ∈ Σ}.

We define a counterpart of the prefix property for a set of strings.

Definition 5.2 Let S = {w1, . . . , wk} where wi ∈ Σ∗ for 1 ≤ i ≤ k and k ≥ 1. We say

that S has the suffix property iff wi /∈Suffix (wj) for any 1≤ i 
=j≤ k.

Then, the following obvious proposition holds.

Proposition 5.1 Any string in Prefix (S) can be spelled out from a leaf node in Trierev(S)

iff a set S of strings has the suffix property.

It directly follows from the contraposition of the above proposition that, if S does not

have the suffix property, we cannot spell out every string in Prefix (S). Since Breslauer’s

algorithm [9] traverses a given reversed trie from a leaf node, it is not supposed to construct

the suffix tree for a set of strings that does not have the suffix property.

Proposition 5.2 Given a set S = {w1, . . . , wk} such that wi /∈Suffix (wj) for any 1 ≤ i 
=
j ≤ k, let S ′′ = {w1$, . . . , wk$}. Then, Trierev(S ′′) has at most ‖S ′′‖− |S ′′|+2 = ‖S‖+2

nodes.

The input of Breslauer’s algorithm is Trierev(S ′′). If the strings in S ′′ have long and many

common suffixes, the number of nodes in Trierev(S ′′) is by far smaller than the upper

bound ‖S ′′‖−|S ′′|+2.

Trierev(S ′′) for S ′′ = {aaab$, aac$, aa$, abc$, bab$, ba$} is shown in Fig. 5.1.

Theorem 5.1 (Breslauer [9]) Breslauer’s algorithm constructs the suffix tree of a re-

versed trie in time proportional to the number of nodes in the reversed trie.

On the other hand, given a set S = {w1, . . . , wk} with k ≥ 1, we consider the set

S ′ = {w1$1, . . . , wk$k} where $i denotes the unique end-marker for wi (1 ≤ i ≤ k).
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Figure 5.1: Trierev(S ′′) for S ′′ = {aaab$, aac$, aa$, abc$, bab$, ba$}.

Proposition 5.3 Given a set S = {w1, . . . , wk} with k ≥ 1, let S ′ = {w1$1, . . . , wk$k}.
Then, Trie(S ′) has at most ‖S ′‖+ 1 = ‖S‖+ |S|+ 1 nodes.

See Fig. 5.2 in which Trie(S ′) is displayed, where S ′ = {aaab$1, aac$2, aa$3, abc$4, bab$5, ba$6}.
Even if set S does not have the prefix property, every string x ∈ S ′ corresponds to a leaf

node. In fact, although a string aa is a prefix of a string aaab, the path spelling out aa$3

ends at leaf node 8 in Fig. 5.2.
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Figure 5.2: Trie(S ′) for S ′ = {aaab$1, aac$2, aa$3, abc$4, bab$5, ba$6}.

Trie(S ′) is the input of our algorithm to be introduced in Section 5.3.
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5.3 Algorithm to Construct the CDAWG for a Trie

We firstly note that the CDAWG for Trie(S ′) is the same as the CDAWG of S for any set S

of string, except the following point. The label of an edge in CDAWG(S ′) is implemented

by a triple of integers (h, i, j) representing the starting position i and ending position j of

the label in the h-th string in S. Meanwhile, that in the CDAWG for Trie(S ′) refers to a

pair of nodes in Trie(S ′), between which the string corresponding to the label is lying.

The basic action of the algorithm is to update the CDAWG incrementally, synchro-

nized with the depth-first traversal on Trie(S ′). The key idea to achieve the linear time

construction is as follows.

(1) Keep track of the advanced point q in the CDAWG so that the path from the root

node to q coincides with the path from the root node to node v, where v is the node

currently visited in the trie.

(2) Create a new node in the CDAWG where the advanced point q is, before stepping

into the first branch at each branching node in the trie.

We will explain the detail in the sequel. Suppose that, after having traveled nodes with

scanning α ∈ Prefix (S ′) in Trie(S ′), the algorithm encounters a node v having k (≥ 2)

branches in Trie(S ′). Moreover suppose that it then chooses an edge from which to a

leaf node a string β ∈ Suffix (S ′) is spelled out. After updating the CDAWG with string

αβ, the algorithm has to update it with the other strings represented in Trie(S ′). Notice

that the current CDAWG already has the path representing α from the source node,

which corresponds to prefixes of at least k strings in S. Thus the algorithm has to restart

updating the CDAWG from the location to which α corresponds, and has to continue

traversing Trie(S ′) from the node v. For that purpose, we trace the advanced point q

mentioned in (1) above.

Let us now clarify the aim of (2). The aim is to make the advanced point q be an

explicit node whenever the algorithm encounters a branching node in Trie(S ′). That is,

the reference pair of q should then become of the form (s, ε) for some node s. What is

the matter if the advanced point q is not explicit before stepping into the first branch?

Assume that the advanced point q was referred to as (u, γ) with some node u and string

γ 
= ε when the algorithm encountered the node v corresponding to α in Trie(S ′). After

finishing updating the CDAWG with αβ, the algorithm focuses back on v and q=(u, γ).
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The matter is that the reference (u, γ) might not be canonical any longer: the path

spelling out γ may contain extra nodes. Namely, the path spelling out γ may have been

split while the algorithm updated the CDAWG with string β. A concrete example is

shown in Fig. 5.3.
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Figure 5.3: Trie(S ′) for S = {abcaab$1, abcb$2} is shown left. When the algorithm focuses

on node 3 in Trie(S ′), it needs to memorize the location in the CDAWG corresponding

to abc. Since there is no node but F1 at the location, it is memorized by a reference pair

(0, abc). After having visited node 7 in Trie(S ′), the algorithm updates the CDAWG

from (0, abc), and with node 3 in the trie. However, since the path spelling abc dose not

consist of an edge any more, the algorithm has to find the nearest node from the location

the path ends on, that is, node 2. We have to avoid this, because traversing the path

spelling abc in the CDAWG just deserves traversing Trie(S ′) from node 0 to 3 .

If the algorithm scans such extra nodes, its time complexity can become quadratic

with respect to the number of nodes in Trie(S ′). In order to avoid this matter, the

algorithm creates a new node s so that the active point is guaranteed to be on an explicit

node. However, the algorithm dose not merge any other edges because at the moment it

is unknown how many edges should be merged into the new node s. Of course, if γ= ε,

there is no need to create any new node.

The algorithm is described is Fig, 5.4. The variable current node indicates the node on

which the algorithm currently focuses in Trie(S ′). The variable advanced point is of the
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Algorithm to construct the CDAWG for Trie(S ′) /* The input is Trie(S ′) */
1 current node := root ; /* the root node of Trie(S ′) */
2 active point := (source, ε);

3 advanced point := (source, ε);

4 traverse and update(current node, active point, advanced point);

procedure traverse and update(current node, active point, advanced point)

1 Let label set be the set of labels of the outgoing edges of current node;

2 if |label set| = 0 then return;

3 else if |label set| ≥ 2 then create node(advanced point);

4 for each c ∈ label set do

5 new active point := update CDAWG(c, active point);

6 Let new advanced point be the location where active point advances with c;

7 Let v be the node to which the edge labeled c points;

8 traverse and update(v, new active point,new advanced point);

Figure 5.4: Algorithm to construct the CDAWG for a trie.

form of a reference pair (u, β), where u is the parent node nearest to advanced point. As

mentioned above, the string β is actually implemented by a pair of nodes in Trie(S ′). In

the procedure traverse and update, the function update CDAWG updates the CDAWG

with a letter c. The function update CDAWG is the same as the one for the con-

struction of the CDAWG for a set of strings, introduced in Chapter 3, excepting that

update CDAWG creates a new edge stemming from the node latest created by function

create node.

An example of the construction of the CDAWG for a trie is shown in Fig. 5.3.

Finally, we have the following theorem.

Theorem 5.2 The proposed algorithm constructs the CDAWG for a trie in linear time

and space with respect to the number of nodes in the trie.

Proof. We first explain that the modification of the function update CDAWG and the

function create node itself do not affect the linearity of the algorithm.

Suppose that an input trie has n nodes. It is clear that the number of nodes visited

by advanced point in the CDAWG is at most n. Hence it takes O(n) time to calcu-

late advanced point all through the construction. Furthermore suppose that m nodes in

Trie(S ′) are branching. It is clear that m < n, because any trie has at least one leaf node.
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Therefore, the function create node creates at most m nodes in the CDAWG, and it

implies that the time complexity of create node is O(m). This implies the modification,

creating new edges due to the nodes made by the function create node, takes O(m) time

as well.

We from now on verify the overall linearity of the proposed algorithm. The matter we

have to clarify is the upper bound of the number of nodes active point visits throughout

the construction. Assume that a node v in the trie has k branches and there is a path

spelling α between the root node and v. When current node arrives at node v in the trie

for the first time, the function create node creates a new node u where advanced point

is in the CDAWG. Then active point may traverse at most k|α| nodes from p to the

initial node via suffix links until finding the location it can stop on. However, k ≤ |Σ|.
Therefore, for a trie with n nodes, the number of nodes active point visits throughout the

construction is O(|Σ|n). Thus, if Σ is a fixed alphabet, the proposed algorithm constructs

the CDAWG for a trie in O(n) time and space. �

5.4 Conclusion

We gave an algorithm for constructing the CDAWG for a trie in linear time and space

with respect to the number of nodes in the trie. When input strings are given in the form

of a trie, the proposed algorithm constructs the CDAWG for the strings faster than the

one presented in [32] directly does from a set of the strings, especially when the strings

have many common prefixes. As the space complexity of CDAWGs is bounded strictly

lower than that of suffix trees, the algorithm presented in this chapter also allows to save

memory space.
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Chapter 6

On-Line Construction of Symmetric

Compact Directed Acyclic Word

Graphs

6.1 Introduction

As seen in literature [58, 43, 7, 8, 55, 16, 32] and the previous chapters, suffix links are

often used, and essential, for efficient constructions of index structures such as suffix

tries, suffix trees, DAWGs, and CDAWGs. An interesting fact is that, for any string

w ∈ Σ∗, the suffix links of STrie(w) form STrie(wrev) [18]. A DAWG also has a similar

property, that is, the suffix links of the DAWG(w) compose STree(wrev) [11]. However,

this duality is damaged in case of suffix trees. Namely, the suffix links of STree(w) do not

form a structure supporting indexes of wrev. However, the set of suffix links of STree(w)

corresponds to a subset of the set of edges of DAWG(wrev) [14].

In order to obtain the complete duality on suffix trees, the affix tree is developed by

Stoye [50, 51]. Affix trees are the modification of suffix trees so that the suffix links of

ATree(w) form ATree(wrev) (see Fig. 6.3). Stoye could not prove his on-line algorithm for

constructing affix trees runs in linear time, but Maaß [39] later succeeded to improve it so

as to run in linear time. Meanwhile, Blumer et al. [8] showed that the nodes of a CDAWG

are invariant under reversal: the nodes of the CDAWG for a string w exactly correspond

to those of the CDAWG for wrev, which they call the symmetric compact directed acyclic

word graph (SCDAWG) for w (see Fig. 6.2, right).
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Ukkonen [55] gave intuitive and excellent on-line algorithms for the construction of

STrie(w) and STree(w), as recalled in Chapter 3. Since the suffix links of STrie(w) are

equal to the edges of STrie(wrev), it turns out that STrie(w) and STrie(wrev) sharing the

same nodes can be simultaneously built on-line, scanning w from left to right. Also, as

the algorithm to construct DAWGs which Blumer et al. gave in [7] is on-line, it results

in that their algorithm builds DAWG(w) and STree(wrev) at the same time, in on-line

(left to right) fashion. Moreover, the fact is that the first algorithm that constructs suffix

trees, given by Weiner in [58], becomes more interesting when considered as an on-line

algorithm. His algorithm builds the suffix tree for a string w by appending the suffixes

of w to the current suffix tree in increasing order. In other words, his algorithm builds

STree(w) on-line, right to left. In addition to that, his algorithm can be modified so as to

create the edges of the DAWG for wrev at the same time [16]. It implies that his algorithm

also simultaneously constructs DAWG(w) together with STree(wrev) on-line, left to right.

In this chapter, we first give an algorithm that simultaneously builds STree(w) with

DAWG(wrev) on-line, left to right. This algorithm constructs STree(w) in the same way

as Ukkonen’s algorithm does, while computing the shortest extension links (sext links)

that form DAWG(wrev) at the same time. Moreover, we show an algorithm that directly

constructs SCDAWG(w) on-line, left to right. It builds CDAWG(w) similarly to the

algorithm we introduced in [32], and computes the sext links that are equal to the edges

of CDAWG(wrev).

From a practical point of view, SCDAWGs and affix trees have the essentially same

range of applications. However, the number of nodes in SCDAWG(w) is much smaller

than that of ATree(w), although both are linear with respect to the length of a given

string w. In fact, an inequality comparing the number of nodes

|SCDAWG(w)|
≤ min{|STree(w)|, |STree(wrev)|}
≤ max{|STree(w)|, |STree(wrev)|}
≤ |ATree(w)|

holds for any string w. This is because, intuitively, the set of nodes in SCDAWG(w) is the

intersection of those in STree(w) and STree(wrev), while the set of nodes in ATree(w) is

the union of them. Therefore, SCDAWGs considerably save space, compared to affix trees.

Moreover, not only an SCDAWG is attractive as index structure, but also the underlying

equivalence relation is useful in Data Mining or Machine Discovery from textual databases.
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Actually, the equivalence relation plays a central role in supporting human experts who

are involved in evaluation/interpretation task for mined expressions from anthologies of

classical Japanese poems [52].

The result shown in the chapter was published in [30].

6.2 Bidirectional Index Structures

If an index structure represents all the strings not only in Factor(w) but also in Factor(wrev),

let us call it a bidirectional index structure for string w. We define such a structure as a

graph with two kinds of edges: the ones for a string w, and the others for wrev.

Giegerich and Kurtz [18] observed that STrie(w) and STrie(wrev) are dual in the sense

that they share the same nodes. We refer this bidirectional index structure as “STrie(w)

with STrie(wrev)”. The formal definition follows.

Definition 6.1 STrie(w) with STrie(wrev) is the bidirectional tree (V,EL→R, ER→L) such

that

V = {x | x ∈ Factor(w)},
EL→R = {(x, a, xa) | x, xa ∈ Factor(w) and a ∈ Σ},
ER→L = {(x, a, ax) | x, ax ∈ Factor(w) and a ∈ Σ}.

It is obvious that there is a trivial one-to-one correspondence between the set ER→L and

the set F for the suffix links of STrie(w) in Definition 2.7.

The duality of STree(w) and DAWG(wrev), which was pointed out in [11, 14], is shown

in Definition 6.2.

Definition 6.2 STree(w) with DAWG(wrev) is the bidirectional dag (V,EL→R, ER→L)

such that

V = {
w−→x | x ∈ Factor(w)},

EL→R = {(
w−→x , aβ,

w−→xa) | x, xa ∈ Factor(w), a ∈ Σ, β ∈ Σ∗,
w−→xa = xaβ, and

w−→x 
=
w−→xa},

ER→L = {(
w−→x , a,

w−→ax) | x, ax ∈ Factor(w) and a ∈ Σ}.
Let V ′ = {[x]Lw | x ∈ Factor(w)}. It is easy to see that there is a trivial one-to-one cor-

respondence between the node set V of Definition 6.2 and V ′. Using this correspondence,

we can identify ER→L of Definition 6.2 with

{([x]L
w
, a, [ax]L

w
) | x, ax ∈ Factor(w) and a ∈ Σ}

= {([y]Rwrev , a, [ya]Rwrev) | y, ya ∈ Factor(wrev) and a ∈ Σ},
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Figure 6.1: STrie(w) with STrie(wrev) on the left, and STree(w) with DAWG(wrev) on

the right, where w = baggage. The thick solid lines represent the edges of STrie(w) and

STree(w), while the thin break lines do the ones of STrie(wrev) and DAWG(wrev). Since

the string baggage ends with a unique character e, the end-marker $ is omitted.

which is equivalent to the definition of DAWG(wrev).

The edges ER→L of Definition 6.2 are the so-called shortest extension links (sext links)

of STree(w), which were introduced by Crochemore and Rytter in [14]. Moreover, a part

of the reversed sext links are known as suffix links. Recalling the definition, the suffix

links are the set

{(
w−→ax,

w−→x ) | x, ax ∈ Factor(w), a ∈ Σ, and
w−→ax = a ·

w−→x }.

The reversal of the suffix links are called reversed suffix link, defined as

{(
w−→x , a,

w−→ax) | x, ax ∈ Factor(w), a ∈ Σ, and
w−→ax = a ·

w−→x }.

It can be observed that the suffix link set is a subset of the sext link set, under the

‘
w−→ax = a ·

w−→x ’-condition.

In Fig. 6.1 we illustrate STrie(w) with STrie(wrev) and STree(w) with DAWG(wrev),

where w = baggage.

By the duality, we omit the definition of the bidirectional index structure DAWG(w)

with STree(wrev).

Now we pay our attention to CDAWG(w). Definition 2.10 can be transformed as
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follows:

V � {
w←→x | x ∈ Factor(w)},

E � {(
w←→x , aβ,

w←→xa ) | x, xa ∈ Factor(w), a ∈ Σ, β ∈ Σ∗,
w−→xa = xaβ, and

w−→x 
=
w−→xa},

F � {(
w←→ax ,

w←→x ) | x, ax ∈ Factor(w), a ∈ Σ, and
w←→x 
=

w←→ax},

In Definition 6.3, we show the definition of the symmetric CDAWG (SCDAWG) of a

string w, denoted by SCDAWG(w), originally defined by Blumer et al. [8].

Definition 6.3 SCDAWG(w) is the bidirectional dag (V,EL→R, ER→L) such that

V = {
w←→x | x ∈ Factor(w)},

EL→R = {(
w←→x , aβ,

w←→xa ) | x, xa ∈ Factor(w), a ∈ Σ, β ∈ Σ∗,
w−→xa = xaβ, and

w−→x 
=
w−→xa},

ER→L = {(
w←→x , γa,

w←→ax ) | x, ax ∈ Factor(w), a ∈ Σ, γ ∈ Σ∗,
w←−ax = γax, and

w←−x 
=
w←−ax}.

The edges ER→L are called the sext links of CDAWG(w), as well. The reversed suffix

links of CDAWG(w) are the set

{(
w←→x , γa,

w←→ax ) | x, ax ∈ Factor(w), a ∈ Σ, γ ∈ Σ∗,
w←−ax = γax,

w←→x 
=
w←→ax , and

w←→ax = a ·
w←→x }.

The suffix link set is a subset of the sext link set, under the ‘
w←→ax = a ·

w←→x ’-condition.

We illustrate DAWG(w) with STree(wrev), and SCDAWG(w) in Fig. 6.2, where w =

baggage.

Another symmetric bidirectional index structure, called affix tree, was introduced by

Stoye [50]. ATree(w) and ATree(wrev) for w = baggage are shown in Fig. 6.3 without a

formal definition for comparison. Intuitively, the set of the nodes in SCDAWG(w) is the

intersection of those in STree(w) and STree(wrev), while the set of the nodes in ATree(w)

is the union of them.

6.3 On-Line Construction of STree(w) with DAWG(wrev)

In this section, we give an algorithm that simultaneously constructs STree(w) withDAWG(wrev)

for a string w ∈ Σ∗, on-line and in linear time with respect to |w|.

6.3.1 “STree(w) with DAWG(wrev)” Redefined

Our algorithm constructs STree ′(w) in the same fashion as the Ukkonen algorithm, and

therefore the DAWG(wrev) being constructed at the same time is incomplete in the sense
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Figure 6.2: DAWG(w) with STree(wrev) on the left, and SCDAWG(w) on the right, for

string w = baggage.
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Figure 6.3: ATree(w) on the left and ATree(wrev) on the right, where w = baggage.

that it lacks the nodes corresponding to the non-branching internal nodes of STree ′(w)

and the sext links from/to them. However, the finally obtained structure for input w$ is

exactly the same as STree(w$) with DAWG($wrev).

Definition 6.4 “STree(w) with sext links” is the bidirectional dag (V,EL→R, ER→L) such
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that

V = {
w

=⇒
x | x ∈ Factor(w)},

EL→R = {(
w

=⇒
x , aβ,

w
=⇒
xa) | x, xa ∈ Factor(w), a ∈ Σ, β ∈ Σ∗,

w
=⇒
xa = xaβ, and

w
=⇒
x 
=

w
=⇒
xa},

ER→L = {(
w

=⇒
x , a,

w
=⇒
ax) | x, ax ∈ Factor(w) and a ∈ Σ}.

Since
w$
=⇒
x =

w$−→x , this structure is identical to that defined in Definition 6.2 for input

string w$.

6.3.2 Main Idea of the Algorithm

As for STree ′(w) for a string w ∈ Σ∗, our algorithm creates it in entirely the same way as

Ukkonen’s algorithm (see Section 3.3 or [55]). Every time a new node is created during

the construction of STree ′(w), the sext links of the new node, which correspond to certain

edges of DAWG(wrev), are computed. Ukkonen’s algorithm creates no leaf node for the use

of so-called ‘∞-trick’ that enables his algorithm to achieve an O(|w|)-time construction
of STree ′(w), and an edge directed to a ‘transparent’ leaf node is called an open edge.

However, we modify it so as to create every leaf node not only because

(i) we need a leaf node in order to define its sext links, but also

(ii) the sext link of a leaf node is to be a clue to define the sext links of a node to be

created just above the leaf node.

First of all, one may wonder that if creating leaf nodes, the time complexity of the construc-

tion of STree ′(w) can be quadratic due to a series of updating the open edges. However,

recall the fact that label α of an edge of STree ′(w) is usually implemented with a pair of

integers (i, j) such that α = w[i : j]. Furthermore, note that the second value of the label

of any open edge in STree ′(w[1 : h]) is h for 1 ≤ h ≤ n. Therefore, if we implement the

second value with a global variable, we can update all the open edges in constant time

with an increment of the variable h.

Let us pay our attention back to the two reasons (i) and (ii). We have an obvious

proposition about (i).

Proposition 6.1 Suppose that in STree ′(w) the reversed suffix link of a leaf node x, which

is labeled a, points to a node y. Then node y is also a leaf node in STree ′(w).

67



Proof. From the definition the reversed suffix link of node x is a triple (
w

=⇒
x , a,

w
=⇒
ax) such

that
w

=⇒
ax = a ·

w
=⇒
x . String x is a suffix of w because x is represented by a leaf in STree ′(w).

Hence
w

=⇒
x = x. Consequently,

w
=⇒
ax = a ·

w
=⇒
x = ax = y. This means that y is also a suffix of

w and is represented by a leaf node in STree ′(w). �

The above proposition tells us that, in a suffix tree, the reversed suffix link of the newest

leaf node points to the last created leaf node. Conversely, the suffix link of the last created

leaf node is pointing to the leaf node which will be created next.

In the sequel, we shall clarify what the reason (ii) implies.

On the construction of “STree ′(w) with sext links”, we use a two dimensional table

sext. The description “sext [x, a] = y” means “the sext link of node x labeled with a points

to node y.” Similarly, we use tables suf and rsuf which correspond to the suffix link and

the reversed suffix link, respectively.

6.3.3 How to Maintain Sext Links

Here, we explain how the sext links of a new node are computed during the Ukkonen-

type construction of STree ′(w). See Fig. 6.4 that shows each phase of the construction

of STree ′(#abab$). The starred point in Fig. 6.4 is called the active point. For a string

w ∈ Σ∗, at the beginning of each phase w[1 : i] (i = 0, 1, . . . , |w| − 1), the active point

stays at which the algorithm should start to update STree ′(w[1 : i]) to STree ′(w[1 : i+1]).

Let act i denote the active point in phase w[1 : i]. In phase w[1 : i+1], act i+1 moves until

it can stop with spelling out w[i+ 1].

If it is possible for act i+1 to move ahead from the current location while spelling out

w[i + 1] (say case (a)), it moves and stops there, and then becomes act i+2. Notice that

no new node is created in case (a), as seen in phase #aba and phase #abab in Fig. 6.4.

Otherwise (say case (b)), a new edge labeled with w[i+1] has to be created from where

act i+1 currently stays. Case (b) is divided into two sub-cases:

• act i+1 is on a node u (case (b1)).

• act i+1 is on an edge (case (b2)).

In case (b1), the algorithm just creates a new edge labeled by w[i+1] with a new leaf node

v (see Fig. 6.5, left). Only v is the newly created node in case (b1). Concrete examples
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can be seen in phases #, #a, #ab, and the third step of phase #abab$ in Fig. 6.4. As

for case (b2), the algorithm needs to create a new node u where act i+1 stays now, in the

middle of the edge, to insert a new edge labeled with w[i+1] from there (see Fig. 6.5,

right). Concrete examples of case (b2) can bee seen at the first and second steps in phase

#abab$ in Fig. 6.4. After having making node u, it creates a new edge together with a

new leaf node v. These nodes u and v are all the nodes newly created in case (b2).

$

a

a

a
#

b
b

b

b
a#

#

#

a

a

b

a

b

$

$

$
$
b

b

b

$
a

a

a

a

a
#

b
b

b
b
a#

#

#

a

a

b

a

b

$

$

$
$
b

b

b

a
a

a
#

bb
b

b
a#

#

#abab:

a

a

b
aaa

a
#

bbb
a#

#

#aba:

a

a

b

a

#

bbb
a#

#

#ab:

a

#
a

##

a
a

#

#

#a:#:

#abab$:

a

b a

b

a

a

a
# bb

b

b
a#

#

#

a

a

ba

b

$

$

$

$

b

b

b

b

$
a

a

b

$

Figure 6.4: The on-line construction of STree ′(#abab$) with the sext links repre-

sented by the broken arrows. At the third step of phase #abab$, the sext links form

DAWG($baba#).

Sext Link of a Leaf Node

In both cases (b1) and (b2), it follows from Proposition 6.1 that the reversed suffix link

of a new leaf node v points to the last created leaf node v′. Suppose v is the jth created

leaf node and v′ is (j−1)th one during the construction of STree ′(w), where 2 ≤ j ≤ |w|.
Then the reversed suffix link of node v pointing to v′ is labeled by w[j−1], in formula,

rsuf [v, w[j−1]] = v′. We have the following proposition which concerns with the sext link
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Figure 6.5: The two cases of the position of the active point, which is denoted by a gray

star. Since the active point is on a node u in case (b1) displayed on the left, only leaf

node v is newly created. On the other hand, in case (b2) on the right, internal node u is

also created where the active point is at present, in the middle of an edge.

of v.

Proposition 6.2 Suppose that v and v′ are jth and (j − 1)th created leaf nodes of

STree ′(w), respectively, where 1 ≤ j ≤ |w|. Then sext [v, w[j−1]] = v′ is the sole sext link

of leaf node v.

Proof. Since v is a leaf node, v is a factor which has occurred only once in w, as a suffix.

Because v is the jth suffix, it is preceded by w[j − 1] and w[j − 1] · v = v′. Therefore, for

any c ∈ Σ such that c 
= w[j − 1], the string cv is not in Factor(w). �

For example, leaf node b is created in phase #ab of Fig. 6.4, and it is the third one.

Therefore, rsuf [b, a] = sext [b, a] = ab, where a is the second character in string #abab$.

Sext Links of an Internal Node

Since the leaf node v is the only node newly created in case (b1), the algorithm then

has only to do the above maintenance for node v. Meanwhile, because the node u is also

newly created in case (b2), we have to determine the sext links of u. Assume that in phase

w[1 : i] the internal node u is created in the middle of an edge between node s and node

r. It then results in that u has two children, r and v. If there exists a node u′ such that

suf [u′] = u, then let a be the character such that rsuf [u, a] = u′. Suppose there is a node

r′ such that sext [r, b] = r′ with b 
= a. Then sext [u, b] is set to point to r′ as well, since
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r′ =

w[1:i]
=⇒
bu in this case (remember the definition of sext links). For instance, at the first

step of phase #abab$ in Fig. 6.4, u = ab, r = abab$ and r′ = sext [abab$,#] = #abab$.

Since rsuf [ab,#] is undefined, we define sext [ab,#] = #abab$. If b = a, then sext [u, b]

stays pointing to node u′, because obviously u′ =

w[1:i]
=⇒
bu =

w[1:i]
=⇒
au . For example, at the second

step of phase #abab$ in Fig. 6.4, sext [bab$, a] = abab$. However, since rsuf [b, a] = ab,

sext [b, a] = ab. As previously remarked in the reason (ii) in Section 6.3.2, we also refers

to the sext link of leaf node v in order to determine the sext links of node u, in the same

way as mentioned above about the sext links of r. Formally, we have the following lemma.

Lemma 6.1 When an internal node u is newly created in phase w[1 : i] during the

construction of STree ′(w) with sext links, let r be the existing child node of u and v be the

new leaf node which is also a child of u. Then, sext [u, c] is created for each character c

such that either sext [r, c] or sext [v, c] was present at the beginning of the phase.

Proof. It follows from the definition that a node x has a sext link labeled by a character

c if and only if an occurrence of the string x is preceded by c. Note that the string u is

a suffix of the string w[1 : i], and that each of the occurrences of u within w[1 : i − 1] is

followed by the string α such that uα = r. Therefore, if there is an occurrence of u within

w[1 : i− 1] which is preceded by c, then the node r has a sext link labeled by c. On the

other hand, if c is the preceding character of the occurrence of u within w[1 : i] that ends

at the last character of w[1 : i], then the node v has a sext link labeled by c. �

On the other hand, if the active point arrives at a node when case (a) is applied, a

new sext link of the node is created. Suppose that, just after a leaf node v had been

created, the active point stopped on a node in phase w[1 : i] during the construction of

STree ′(w), where 1 ≤ i ≤ |w|. In addition, assume that v is the jth created leaf node,

where 1 ≤ j ≤ |w|. That is to say, v = w[j : i]. Notice that j ≤ i. After that, if the

active point stops on a node p with case (a) in the next phase, phase w[1 : i + 1], then

a sext link of node p which is labeled w[j] is created and set to point to node v, where v

now represents w[j : i + 1]. Let us clarify the reason for the above. Let u and u′ be the

parent nodes of v and p, respectively. Notice that then u · w[i : i+ 1] = v = w[j : i+ 1].

Furthermore, u′ ·w[i+1 : i+1] = u′ ·w[i+1] = w[j+1 : i+1] since suf [u] = u′. Namely,

node v currently represents w[j : i+1] and node p corresponds to w[j+1 : i+1]. That is

why sext [p, w[j]] = v. If the active point again stops on a node until the algorithm faces
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case (b), the sext link of the node whose label is w[j] is created and set to point to the

leaf node v as well. A concrete example is shown in Fig. 6.6.
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Figure 6.6: STree ′(#aaab) with the sext links is shown on the left. Node b is the last

created leaf node in that phase. Scanning a new character a, the active point moves

to node a, as seen in the center figure STree ′(#aaaba). Then, sext [a, b] is set to point

to the last created leaf node ba. Also in the right figure representing STree ′(#aaabaa),

sext [aa, b] = baa, because the active point has arrived at node aa.

Sext Links Pointing to a New Node

The only thing we have not accounted for yet is to change the sext links that point to the

newly created nodes u and v. Let us first mention the case of v, a new leaf node. The

following remark about a new leaf node v is common to case (b1) and case (b2). Whenever

a character w[i] appears in string w[1 : i] for the first time, a new edge labeled with w[i] is

created from the root node, and v is associated with w[i]. Then, sext [ε, w[i]] = v, because

the root node corresponds to the empty string ε. This can be seen in phases #, #a, #ab,

and #abab$ in Fig. 6.4. If the character w[i] has already appeared in string w[1 : i− 1],

then leaf node v should be pointed to by the leaf node which will be created next.

We now treat how to decide what sext link of STree ′(w[1 : i]) should be modified so

as to point to a newly created internal node u, in case (b2). Recall that node u has two

children r and v. Let us suppose that node r is pointed to by a c-labeled sext link of a

node p in STree ′(w[1 : j]) where j = i− 1, that is, sext [p, c] = r. In other words,
w[1:j]
=⇒
cp = r.

If |u| > |p|, then the sext link of p is modified so as to point to u (sext [p, c] = u), because

72



w[1:i]
=⇒
cp = u. A concrete example can be seen between phase #abab and phase #abab$ in

Fig. 6.4. sext [ε, a] = abab in phase #abab is modified as sext [ε, a] = ab at the first step

of phase #abab$, where node ab is the internal node newly created in phase #abab$.

In another case (if |u| ≤ |p|), the sext link of node p remains pointing to node r, since
w[1:i]
=⇒
cp = r in this case. Similar discussion holds for the sext links pointing to node v, another

child of node u.

6.3.4 Correctness and Complexity of the Algorithm

The algorithm is summarized as Fig. 6.7. If we compute the sext links of the nodes in

“STree ′(w) with sext links” according to the algorithm, we have the following:

Theorem 6.1 For any string w ∈ Σ∗, STree ′(w) with sext links can be constructed on-line

and in linear time and space with respect to |w|.

Proof. Since it has been proven in [55] that STree ′(w) can be obtained on-line and in

O(|w|) time, all we have to clarify are the correctness and complexity of the construction

of sext links. The data structure we newly add to the Ukkonen algorithm are the table

sext and rsuf. It is clear that they require O(|Σ|·|w|) space. Therefore, if Σ is a fixed

alphabet, the space complexity of our algorithm is linear.

We have assumed that a string w ends with a unique end-marker $. After $ is scanned,

a new edge labeled with $ is absolutely created from the root node, and the corresponding

new leaf node is also created. After that, the sext link of the root node, which is labeled

$, is set to point to the new leaf node. Then, the chain formed by the sext links of all

the leaf nodes in STree ′(w) exactly spells wrev, i.e., the path of DAWG(wrev) which corre-

sponds to string wrev is then completed. This guarantees that the paths of DAWG(wrev)

corresponding to the suffixes of wrev are also created as the sext links of the internal nodes

of STree ′(w). This algorithm constructs DAWG(wrev) on-line, because new sext links are

computed each time a new node is created.

From here on, we establish the sext links can be computed in linear time with respect

to |w|. It is obvious that to decide the sext link of any new leaf node takes only constant

time. When we determine the sext links of a newly created internal node, we copy the

sext links of the two children of the new node. It takes O(|Σ|) time, since each of the two

children has at most |Σ| sext links. Therefore, if Σ is a fixed alphabet, it takes constant
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time. The matter is the change of sext links due to a new-created internal node. Suppose

that, in phase w[1 : i], act i stays somewhere depth m in STree ′(w[1 : i]). At the beginning

of phase w[1 : i+ 1], the algorithm begins to seek for the location where the active point

can stop. Then, at most m sext links are changed until the active point stops. This

implies that the overall complexity of the change of sext links due to new internal nodes

takes O(|w|) time. �

6.4 On-Line Construction of SCDAWG

In this section, we propose how to construct SCDAWG for a string w, on-line in O(|w|)
time. Define CDAWG ′(w) and SCDAWG ′(w) in a similar way to the definition of STree ′(w).

Our on-line algorithm builds CDAWG ′(w) in the same way as in [32], and builds certain

edges of CDAWG(wrev) as the sext links of the nodes of CDAWG ′(w).

We stress that the algorithm of [32] is based on the Ukkonen suffix tree construction

algorithm. This implies, if we add the functions “redirect” and “separate node” in [32]

to the pseudo-code of the algorithm in Section 6.3, we obtain CDAWG ′(w). The mat-

ter is how to build the edges of CDAWG(wrev), the sext links of CDAWG(w), of course.

However, we fortunately have the fact that CDAWGs can have “the same amount of infor-

mation” as suffix trees. The loss of information comes from the property that CDAWGs

have a node having two or more incoming edges, which correspond to two or more nodes

connected by suffix links in suffix trees. Namely, the lost information is strings obtained

by concatenating labels of some suffix links. One hint has been given in [20] as an exercise.

Furthermore, the CDAWG construction algorithm in [32] is capable of storing the “lost”

information as integers in nodes. Notice that if we can treat CDAWGs like suffix trees, it

means we can obtain the sext links of CDAWGs.

In the following subsections, we show how the algorithm of Section 6.3 should be

changed when constructing CDAWGs, by using examples. If again turning our attention

to the pseudo-code, the 8th line of update function is changed to as “create a new edge

(r, (p, e), sink);” and labels of reversed suffix links and sext links can be of strings, not a

character.
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6.4.1 Sext Link Corresponding to a Newly Created Edge

A sequence of snapshots on the on-line construction of SCDAWG ′(#abab$) is shown in

Fig. 6.8. Since character a has appeared in string #a, the edge labeled with a is created

and directed to the final node in phase #a. After that, the sext link of the initial node

labeled with a# is set to point to the final node. Comparing it with the corresponding

phase in Fig. 6.4, one can see that character # in the label a# of the CDAWG corresponds

to the label # of the sext link from the leaf node a to node #a of the suffix tree in the phase

#a. In general, in phase w[1 : i] of the construction of CDAWG ′(w), the representative

of the final node is w[1 : i]. Assume that an edge is then created from a node u and it is

the jth edge entering to the final node, where 1 ≤ j ≤ i. Then, the jth edge is associated

with w[j : i]. There then exists a “gap” w[1 :j − 1] between the representative w[1 : i] and

w[j : i]. Notice that this “gap” corresponds to the reversal of the concatenation of the

labels of the sext links between leaf node w[j : i] and leaf node w[1 : i] in STree(w[1 : i]).

On the grounds of this gap w[1 : j − 1], a new sext link of node u is set to point to the

final node with label (w[1 :j])rev.

6.4.2 Change of Sext Links

See phases #abab and #abab$ in Fig. 6.8. The active point stays on the middle of the

edge labeled abab in phase #abab, and the edge is split into two edges due to the creation

of the new edge labeled $. Notice that the sext link labeled with a# is also cut into two.

One labeled with a is set to point to the new node ab, and the other labeled # is set from

node ab. It is because
w[1:6]
=⇒
εa = ab and

w[1:6]
=⇒
#ab = #abab$ in this time, where w[1 : 6] = #abab$.

What if a sext link, whose label is of length more than 1, is cut? See Fig. 6.9 that

displays CDAWG ′(#abb) and CDAWG ′(#abba). There is a sext link of the initial node

pointing to the final node, which is labeled with ba# in CDAWG ′(#abb). At the beginning

of the conversion to CDAWG ′(#abba), a new node b is created where the active point

currently stays. Then, the sext link labeled ba# is cut and its former part is set to point

to the new node b, labeled with b. In general, if a new node is created in the middle of an

edge, the sext link corresponding to the edge is cut into two, and its former part is labeled

with the single initial character of the label of the cut sext link. It does not depend on

the length of the label of the sext link to be cut.

To realize the operation above mentioned, we need to associate the sext link labeled
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ba# with string bb in the final node, where bb is not the representative of the final node.

This is because if we associate that just with the representative, like sext [ε, ba#] = #abb,

we cannot recognize which sext link pointing to the final node should be cut owing to the

newly created node (notice there exist other sext links from the initial node to the final

node). Therefore, we make a sext link point to a string represented in a certain node, not

to the representative. For example, on CDAWG ′(#abb) in Fig. 6.9, sext [ε,#] = #abb,

sext [ε, a#] = abb, sext [ε, ba#] = bb.

As seen in phase #abab$ of Fig. 6.8, the edge labeled with bab$ is merged into the

node ab and its label is modified to b. According to it, sext [ε, ba#] = bab$ becomes

sext [ε, ba] = b. The character a at the tail of label ba of the sext link corresponds to the

label of the sext link from node b to ab in STree(#abab$) in Fig. 6.4.

Fig. 6.10 displays a node separation that can happen during the construction of

CDAWGs. In Fig. 6.10, as the active point arrives at node ab via the edge labeled b

which belongs to a non-longest path from the initial node to the node ab, the node is

cloned as seen in the CDAWG ′(#ababcb). Then, sext [ε, ba] = b in CDAWG ′(#ababc) is

cut into two, one of which is sext [b, a] = ab and the other sext [ε, b] = b.

6.4.3 Implementation of Factors Represented in a Node

As is mentioned above, a sext link in CDAWG ′(w) is set to point to a certain factor of w

represented in a node. However, if we actually implement all of such strings naively, the

space requirement can be quadratic. Therefore, we implement them with integers referring

to the positions in the input string w. Suppose that the representative of a node p is α in

CDAWG ′(w[1 : i]) for 1 ≤ i ≤ |w|. Then, node p has integers j and k (1 ≤ j ≤ k ≤ i) such

that α = w[j : k] where j represents the beginning position of the left most occurrence

of α in w[1 : i]. In addition to it, each edge entering node p has an integer representing

the entrance order to node p. See the left figure in Fig. 6.10, CDAWG ′(#ababc). For

example, the edge labeled ab is the first one and the edge labeled b is the second one

entering to node ab. Note that, in CDAWG ′(#ababc), the edge labeled abc entering

to the final node represents two factors ababc and babc, which are the second and the

third members of the final node, respectively. Thus the edge labeled abc is associated

with the set {2, 3}. In this way, the edges entering to the final node are associated with

the sets {1}, {2, 3}, {4, 5}, {6} from left to right. In general, an edge in a node may

correspond to more than two strings represented in the node. However, the truth is that
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such strings always occur sequentially in string w, for any w. Therefore, even if an edge

corresponds to more than two strings, we can represent all of them with a pair of integers,

the minimum and the maximum elements in the set associated with. As a result of the

above discussions, we now have:

Theorem 6.2 For any string w ∈ Σ∗, SCDAWG for w can be constructed on-line in

linear time and space with respect to |w|.

6.5 Conclusion

First, we gave an on-line linear time algorithm to construct the suffix tree for a string

together with the DAWG for the reversal of the string. It builds the suffix tree based on

Ukkonen’s on-line algorithm [55], and simultaneously builds the DAWG as the sext links

of the nodes of the suffix tree.

Blumer et al. [8] gave an off-line linear time algorithm for the construction of the

SCDAWG for a string: first builds the DAWG with the suffix links, and then compacts

the DAWG and its suffix links to the SCDAWG. Meanwhile, the algorithm we proposed

in this paper directly constructs the SCDAWG for a given string, on-line in linear time:

builds the CDAWG for the string on-line, with the sext links that compose the CDAWG

for the reversal of the string. This enables us to save time and space at the same time

when constructing an SCDAWG.

77



Algorithm Construction of STree ′(w$) with sext links
in alphabet Σ = {w[−1], . . . , w[−m]}.
1 create nodes root and ⊥;
2 for j := 1 to m do create a new edge (⊥, (−j,−j), root);
3 suf[root ] := ⊥;
4 length(root) := 0; length(⊥) := −1;
5 (s, k) := (root , 1); i := 0;
6 lastleaf := nil; n := 0; /* lastleaf is the last (n-th) created leaf node */
7 repeat
8 i := i+ 1;
9 (s, k, lastleaf, n) := update(s, (k, i), lastleaf, n);
10 until w[i] = $;

function update(s, (k, p), lastleaf, n):
1 oldr := nil; s′ := nil;
2 while not check end point(s, (k, p− 1), w[p]) do
3 if k ≤ p− 1 then /* implicit */
4 s′ := extension(s, (k, p− 1));
5 r := split edge(s, (k, p− 1));
6 else r := s; /* explicit */
7 create a new leaf node v and a new edge (r, (p, e), v);
8 /* e is the global variable representing the scanned length of the input string. */
9 let length(v) be e− n;
10 if oldr 
= nil then set suffix link(oldr, r);
11 if lastleaf 
= nil then set suffix link(lastleaf, v);
12 if r 
= s then /* maintenance of sext links */
13 c := w[n];
14 if rsuf[r, c] = nil then sext[r, c] := sext[v, c];
15 for each character a such that sext[s′, a] 
= nil do
16 if rsuf[r, a] = nil then sext[r, a] := sext[s′, a];
17 for each sext link sext[x, a] = s′ do /* modify sext links pointing to s′ */
18 if length(r) > length(x) then sext[x, a] := r;
19 oldr := r; lastleaf := v; n := n+ 1;
20 (s, k) := canonize(suf[s], (k, p− 1));
21 if oldr 
= nil then set suffix link(oldr, s);
22 (s, k) := canonize(s, (k, p));
23 if k > p then sext[s, w[n]] := lastleaf;
24 return (s, k, lastleaf, n);

procedure set suffix link(s, t):
1 let c be the first character of the string represented by s;
2 suf[s] := t; rsuf[t, c] := s; sext[t, c] := s;

Figure 6.7: The algorithm to construct “STree ′(w) with sext links”. check end point ,
extension, canonize, and split edge are identical to those used in Chapter 3.
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Chapter 7

Bidirectional Construction of Index

Structures

7.1 Background and Motivation

As repeatedly remarked in the previous sections, the invention of Ukkonen’s algorithm

has allowed us to update an input string by adding new strings afterward. Without his

algorithm, we would have to construct the suffix tree from scratch. However, since his

algorithm is supposed to only read a string from left to right, even it is not capable of

permitting us to update the input string to the left direction. Namely, if wanting to

extend the current input string by appending another string to its front, we still now have

to reconstruct the suffix tree from the beginning. As typically seen in Bioinformatics, a

considerable amount of strings, like DNA sequences for example, has to be treated. It is

easy to imagine that reconstructing the suffix tree of such a quite long string is a very

huge task.

In this chapter we give the very one to settle the matter above. Namely, that is an

algorithm to construct a suffix tree bidirectionally, both left to right and right to left. The

idea of updating a suffix tree from right to left is based on Weiner’s algorithm. However,

his original algorithm is not suitable for updating a suffix tree which is specialized to

be treaded by Ukkonen’s algorithm. Thereby we modify Weiner’s algorithm. Mutually,

Ukkonen’s algorithm is also modified according to the influence from Weiner’s algorithm.

As once mentioned in Chapter 6, Chen and Seiferas first declared the duality of suffix

trees and DAWGs [11]. For any string w, the suffix tree of w and the DAWG of wrev can
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share the same nodes, where wrev is the reversed string of w. In [30] the on-line algorithm

to construct both the suffix tree for w and the DAWG for wrev was given, whose basis is

Ukkonen’s suffix tree construction algorithm. In this sense the DAWG of string u = wrev

can be constructed on-line, from right to left. Also, it is remarked in [14] that Weiner’s

algorithm can be modified so to build the DAWG of wrev together with the suffix tree of

w. Therefore it can build the DAWG of string u = wrev from left to right. It results in

that the algorithm we present in this paper can also build the DAWG of a given string

bidirectionally, on-line.

Some related work can be seen in literature: Stoye [50] invented a variant of suffix

trees, called affix trees. He gave an algorithm for bidirectional construction of affix trees,

and Maaß improved the time complexity of the algorithm to O(n) [39].

The result of this chapter was published in [28].

7.2 Bidirectional Construction of Suffix Trees

7.2.1 Left Extension

The part to extend a given suffix tree with a character added at the left of the string is

based on Weiner’s algorithm [58]. This operation is denoted by Left Extension.

Weiner’s Algorithm.

For a smart implementation of the algorithm, we use the bottom node Ukkonen also used

in his algorithm [55]. For any string w ∈ Σ∗, we suppose that between the bottom node

and the root node of STree ′(w) there is an edge labeled by symbol Σ, which means any

string in the alphabet. The main idea of Weiner’s algorithm is as follows. Suppose that we

are given string w ∈ Σ∗ for which we are constructing the suffix tree. Weiner’s algorithm

reads the string from right to left. The algorithm constructs STree ′(w[i − 1 : n]) from

STree ′(w[i : n]) for n+1 ≥ i ≥ 2, by inserting prefixes of w[i− 1 : n] into STree ′(w[i : n]).

We divide the prefixes of w[i− 1 : n] into the following two groups.

(1) Prefixes w[i− 1 : h] for 0 ≤ h ≤ j where j is the largest number satisfying w[i− 1 :

j] ∈ Factor(w[i : n]).

(2) Prefixes w[i− 1 : h] for j + 1 ≤ h ≤ n.
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Any prefixes in the group (1) do not need to be newly inserted into STree ′(w[i : n]),

simply because they are already represented in the suffix tree. We call the longest string

in the group (1), w[i−1 : j+1], the head for w[i−1 : n], and denote it by headw[i−1:n]. The

prefixes in the group (2) are inserted into the suffix tree from the location associated with

headw[i−1:n]. Since at least the empty string ε belongs to the group (1), there always exists

the location for headw[i−1:n] in STree
′(w[i : n]). We start the search of headw[i−1:n] from

the leaf node corresponding to the longest suffix of w[i : n], which is w[i : n] itself. We call

it the active leaf and denote it by active leafw[i−1:n]. The path from it to the bottom node

is called the working path. The search starts from active leafw[i−1:n] and proceeds along the

working path up to the bottom node. Naive method to localize it takes quadratic time.

To avoid it, we use two dimensional tables test and link , both of whose first components

are characters and second are nodes.

Definition 7.1 Let w be an arbitrary string in Σ∗ and a be an arbitrary character in Σ.

Assuming that v is a node in STree ′(w) (i.e.
w

=⇒
v = v), then:

1. test [a, v] = true iff av ∈ Factor(w).

2. link [a, v] = u if u = av for some node u in STree ′(w).

Otherwise, link [a, v] = nil.

Notice that test [a, v] = true if link [a, v] 
= nil for any character a ∈ Σ and node

v in STree ′(w). It is easy to see that link equals the reversed (and labeled) link of a

suffix link of STree ′(w) for any string w ∈ Σ∗(see Definition 2.11). Let the first test

be the node on the working path and nearest to active leafw[i−1:n] with which the table

test for w[i − 1] is true, and denote it by first testw[i−1:n]. Similarly, let the first link

be the node on the working path and nearest to active leafw[i−1:n] with which the table

link for w[i − 1] is u for some node u, and denote it by first linkw[i−1:n]. Let α be the

concatenation of labels of edges between first testw[i−1:n] and active leafw[i−1:n], and β the

one from first linkw[i−1:n] to first testw[i−1:n]. Note that α can never be ε whereas β might

be ε. Remark that headw[i−1:n] = link [w[i− 1], first linkw[i−1:n]]. When first testw[i−1:n] 
=
first linkw[i−1:n] (β 
= ε) and headw[i−1:n] is on an edge (r, γ, s), the edge is split into the two

edges (r, β, headw[i−1:n]) and (headw[i−1:n], δ, s), where γ = βδ. These are followed by the

creation of the new edge (headw[i−1:n], α, new leafw[i−1:n]), where new leafw[i−1:n] denotes

the leaf node newly created. Because new leafw[i−1:n] corresponds to w[i− 1 : n] and all
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suffixes of w[i − 1 : n] other than w[i − 1 : n] itself have already been inserted, it is the

completion of the construction of STree ′(w[i− 1 : n]). Then, the tables test and link are

maintained. Obviously, new leafw[i−1:n] becomes active leafw[i−2:n] in the next step i− 2.

Modifying Weiner’s Algorithm.

Consider the longest factor y of w[i : n] such that y ∈ Suffix(w[i − 1 : n]). We call it

the active point of STree ′(w[i − 1 : n]) the location y corresponds to, and denote it by

active pointw[i−1:n]. Notice that active pointw[i−1:n] is the longest suffix of w[i− 1 : n] not

represented by a leaf node.

Lemma 7.1 Let w ∈ Σ∗. Suppose that we are updating STree ′(w[i : n]) to STree ′(w[i−1 :
n]), where n = |w| and n + 1 ≥ i ≥ 2. Let headw[i−1:n] = ax with a ∈ Σ and x ∈ Σ∗. If

ax ∈ Suffix(w[i− 1 : n]), then x is always active pointw[i−1:n].

Let xy = active leafw[i−1:n] for some string y ∈ Σ+. Consider the case that
w

=⇒
x 
= x.

(Then there is no node corresponding to active pointw[i:n] in STree
′(w[i : n]).) It implies

that first testw[i−1:n] is the root node and first linkw[i−1:n] is the bottom node. If x 
= ε,

then headw[i−1:n] = ax cannot be localized by the information from first testw[i−1:n] and

first linkw[i−1:n]. To avoid this trouble, we treat the active point as though there exists a

node for x = active pointw[i:n]. Concretely, the values of tables test and link are computed

also for active pointw[i:n].

When active pointw[i−1:n] = x is on an edge (r, α, s) in STree ′(w[i − 1 : n]), it is

represented by a reference pair (r′, δ) such that r′ is an ancestor of r and r′δ = x. For the

string β such that rβ = x, (r, β) is called the canonical reference pair of active pointw[i−1:n].

When STree ′(w[i : n]) is updated to STree ′(w[i − 1 : n]), the active point is main-

tained as follows. Let active pointw[i:n] = u. The suffix of w[i : n] corresponding to

active pointw[i:n] is w[� : n], where � = n− |u|+ 1. There are three cases to consider:

(Case 1) w[� : n] is not a prefix of w[i : n].

(Case 2) w[� : n] is a prefix of w[i : n] but w[�− 1 : n] is not a prefix of w[i− 1 : n].

(Case 3) w[� : n] is a prefix of w[i : n] and w[�− 1 : n] is a prefix of w[i− 1 : n].

In both (Case 1) and (Case 2), active pointw[i−1:n] = active pointw[i:n]. Meanwhile, in

(Case 3), active pointw[i−1:n] corresponds to au where a = w[i− 1].
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To implement the suffix tree using only linear space, an edge (r, α, s) in STree ′(w[i : n])

is actually implemented as (r, (k, p), s) such that w[k : p] = α, where k ≥ i and p ≤ n.

In case that s is a leaf node, p = n. However, we cannot specify p since the suffix tree

might be also extended to the right direction by Right Extension to be introduced in the

next section. If specifying the value of p, it becomes impossible that the algorithm runs

in linear time. Therefore, we adopt Ukkonen’s so-called “∞-trick” [55]. That is to say,

we implement the edge as (r, (k,∞), s) such that w[k : n] = α.

Theorem 7.1 For any string w ∈ Σ∗, the modified Weiner’s algorithm constructs STree ′(w)

on-line (right to left) and in linear time with respect to |w|.

The construction of STree ′(cocoo) by Left Extension is displayed in Fig 7.1.
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Figure 7.1: Construction of STree ′(cocoo) by Left Extension. The gray star denotes the

active point for each step. The broken arrows represent the links for the table link .
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7.2.2 Right Extension

The part to extend a given suffix tree with a new character added to the right of the string

is based on Ukkonen’s algorithm [55]. This operation is denoted by Right Extension.

See Section 3.3 where Ukkonen’s algorithm has been recalled.

Modifying Ukkonen’s Algorithm.

We have to modify Ukkonen’s algorithm so that it also computes the tables test and link ,

which are used by Left Extension.

Lemma 7.2 Ukkonen’s algorithm can be modified so as to compute the tables test and

link during the construction of STree ′(w) for any w ∈ Σ∗. The overall time complexity is

still O(|w|).

We here omit the detail of proving the above lemma, but remark that computing the

tables test and link is inherently the same thing as computing the sext links, abbreviation

for the shortest extension links, introduced in [14]. It was showed in [30] that a modified

Ukkonen’s algorithm can compute the sext links in O(|w|) time. As for the active leaf

stated in the previous section, it is obvious that active leafw[1:i] = active leafw[1:i+1] for any

1 ≤ i ≤ n− 1. Therefore we need no maintenance for it.

The construction of STree ′(cocoo) by Right Extension is displayed in Fig 7.2.

7.2.3 Bidirectional On-Line Construction of Suffix Trees

We here explain how our algorithm constructs a suffix tree in bidirectional on-line manner.

Given a string w ∈ Σ∗, the algorithm can get the construction started with any position

i in w, where 1 ≤ i ≤ |w|. Firstly STree ′(w[i : i]) is constructed, by either Left Extension

or Right Extension. Then by Left Extension STree ′(w[i : i]) is updated with characters

w[j] where j is from i − 1 down to 1, and by Right Extension with characters w[k]

where k is from i + 1 up to n. For any j and k the structure built by the algorithm is

STree ′(w[j : k]). Here a symbol $ appearing nowhere in w is appended after w if w[n] is

not a unique character in w. Since STree ′(w$) = STree(w$), after the construction we

obtain inherently the same structure as STree(w) for any string w. In Fig. 7.3 an example

of bidirectional construction of STree ′(cocoon) is shown.
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Figure 7.2: Construction of STree ′(cocoo) by Right Extension. The gray star denotes the

active point for each step. Here only links for the table link are drawn as broken arrows,

so the links of the table suf correspond to the broken arrows in the reversed direction.

Theorem 7.2 For any string w ∈ Σ∗ the proposed algorithm constructs STree ′(w) in

bidirectional on-line manner and in time linear in |w|.

Proof. We briefly prove that from any position of a given string the suffix tree can be

built in linear time.

Given a string w ∈ Σ∗, suppose that we get the construction started with the position

i in w, where 1 ≤ i ≤ |w|. Let |w| = n. Suppose we here construct STree ′(w[i : i]) by

Right Extension. Then the suffix tree is updated by Right Extension (n − i + 1) times.

The matter needed to be considered is the cost to compute the active point. Though the

active point is computed (n− i+ 1) times, it might take more than O(n− i+ 1) time if

the suffix tree is extended also by Left Extension during the update by Right Extension.
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Figure 7.3: Bidirectional Construction of STree ′(cocoon). The construction has begun

with c in the position 3 of the input string cocoon.

However, the cost is bounded by O(n− i+ 1+ k), where k (0 ≤ k ≤ i− 1) is the number

of update of the suffix tree by Left Extension. Consequently, the cost of Right Extension

is O(n) for any i with 1 ≤ i ≤ n.

From now on we consider the cost of Left Extension. Suppose that we now have

STree ′(w[k : j]) with 1 ≤ k ≤ i − 1 and i ≤ j ≤ n, that is, the suffix tree has been

updated (i− k) times by Left Extension and (j − i+ 1) times by Right Extension. Then,

the cost of the next iteration by Left Extension can be charged to the difference between

the depths of active leafw[k:j] and active leafw[k−1:j] (for detail see [14]). Thus the sum of

all these differences is proportional to j. Since j ≤ n, the cost of Left Extension is O(n)

for any i with 1 ≤ i ≤ n. �
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7.3 Bidirectional Construction of DAWGs

The directed acyclic word graph (DAWG) is a well known and widely studied index

structure, originally introduced in [7]. The DAWG is the smallest finite state automaton

recognizing all suffixes of a given string [12].

Let us go back to the suffix trees. We introduce a table called the shortest extension

links, the sext links for short, of STree ′(w) for a string w ∈ Σ∗. The idea of the sext

link was originally given in [14], but it was for STree(w). What we treat here is one for

STree ′(w).

Definition 7.2 Let w be an arbitrary string in Σ∗ and a be an arbitrary character in Σ.

For a string x ∈ Factor(w), sext [a,
w

=⇒
x ] =

w
=⇒
ax.

It derives from Definition 7.2 that the sext links can be described as the set T =

{(
w

=⇒
x , a,

w
=⇒
ax) | x, ax ∈ Factor(w) and a ∈ Σ}. Assume that a string w ends with a unique

character. On this assumption
w

=⇒
x =

w−→x for any string x ∈ Factor(w). Therefore, the

following set T ′ is identical to T for any such string w, T ′ = {(
w−→x , a,

w−→ax) | x, ax ∈
Factor(w) and a ∈ Σ}. By considering the reversal wrev of the string w, the set T ′ can be

transformed as T ′ = {(
z←−y , a,

z←−ya) | y, ya ∈ Factor(z), a ∈ Σ, and z = wrev}. Observe that
there is a trivial one-to-one correspondence between E in Definition 2.9 and T ′. Hence

the following lemma stands.

Lemma 7.3 Let w be an arbitrary string in Σ∗ whose right most character is unique in

w. The set T of sext links of w is identical to the set E of edges of DAWG(w).

Meanwhile, the table sext has a very close correspondence with tables test and link .

Let v be a node of STree ′(w) and a be a character in Σ, then;

(1) if sext [a, v] = nil, then test [a, v] = false.

(2) else test [a, v] = true. Let sext [a, v] = u, then

(a) if |u| = |v|+ 1, then link [a, v] = u.

(b) else link [a, v] = nil.

If we use table length for a node x whose value is |x|, it is possible to examine the condition
of (2)-(a), whether |u| = |v| + 1, in constant time. It implies that when constructing

STree ′(w) in bidirectional on-line manner, we can use the table sext instead of the tables
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test and link . When we are given a string w ∈ Σ∗, we consider the string z = wrev and

use a symbol $ occurring nowhere in z, as z$. It then follows from Theorem 7.2 and

Lemma 7.3 that:

Theorem 7.3 For any string w ∈ Σ∗, the algorithm presented in Section 7.2 can con-

struct DAWG(w) in bidirectional on-line manner and in time linear in |w|.

It is shown in Fig 7.4 how DAWG(w) is constructed to both direction, where w =

cocoo.
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Figure 7.4: We are given string cocoo and now constructing DAWG(cocoo). In so doing,

we build STree ′(oococ$) while computing the sext links. The broken edges represent

the edges of the suffix tree, whereas the solid edges do the sext links. Ignoring the

path $co from the root node, the sext links in STree ′(oococ$) are equal to the edges of

DAWG(cocoo).
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7.4 Concluding Remarks

We developed a bidirectional, on-line, and linear-time suffix tree construction algorithm.

We also showed that the algorithm can also construct DAWGs in bidirectional on-line

manner and in linear time with respect to the length of an input string.

It might be interesting to consider bidirectional construction of compact directed

acyclic word graphs (CDAWGs), which require smaller space than both suffix trees and

DAWGs [8, 16]. Extending a given CDAWG to the right direction should be based on the

on-line (left to right) algorithm introduced in [32]. The left extension of a CDAWG could

perhaps be accomplished by a modified version of Weiner’s algorithm, which is going to

be our future work.
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Chapter 8

The Minimum All-Suffixes Directed

Acyclic Word Graphs

8.1 Introduction

A variety of patterns have been considered so far, according to various kinds of purposes

and aims. The most basic one is a substring pattern. Let Σ be a finite alphabet. We

call an element in Σ a character, and one in Σ∗ a string. We say a pattern string p is a

substring of a text string w if w = upv for some strings u, v ∈ Σ∗. When a text w is fixed

and a pattern p is flexible, once constructing a suitable data structure for w, we can solve

the substring matching problem in O(|p|) time, where |p| denotes the length of p. In order

to solve the problem efficiently, much attention has extensively been paid to inventing

efficient data structures, such as suffix trees [58, 43, 55], directed acyclic word graphs

(DAWGs) [7, 12], compact directed acyclic word graphs (CDAWGs) [8, 16, 32], suffix

arrays [41], compact suffix arrays [40], suffix cacti [35], compressed suffix arrays [47, 19],

that are also mentioned in previous chapters.

Meanwhile, the problem finding a subsequence pattern has also been widely studied.

We say a pattern p is a subsequence of a text w if p can be obtained by removing zero

or more characters from w. By means of the directed acyclic subsequence graph (DASG)

for w, we can examine whether or not p is a subsequence of w in O(|p|) time [4, 15]. An
episode pattern is a “length-bounded” version of a subsequence pattern [42], as mentioned

in Chapter 9. An episode pattern is given in the form of a pair of a string p and an integer

k, as 〈p, k〉. If p is a subsequence of x such that x is a substring of w with |x| ≤ k, we
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say that the episode pattern 〈p, k〉 matches w. The episode directed acyclic subsequence

graphs (EDASGs) were given in [53], for a practical solution of the problem.

Now we propose a new kind of pattern matching problem: Given a text string w =

w1w2 · · ·wn, a string p and an integer i, examine whether or not p is a substring of w[i :]

where w[i :] = wi . . . wn (NOTE: if i > |w|, the answer is always NO). We name the

pattern 〈p, i〉 a beginning-sensitive pattern, a BS-pattern for short. For any string w ∈ Σ∗

we denote by DAWG(w) the DAWG of w. Using the DAWGs for all suffixes of w, this

problem is solvable in O(|p|) time. This simple collection of the DAWGs is called the

naive all-suffixes directed acyclic word graph for w, written as the naive ASDAWG(w).

Since the size of DAWG(w) is O(|w|), that of the naive ASDAWG(w) is O(|w|2).
In this paper we introduce a new data structure, named the minimum ASDAWG(w)

and denoted byMASDAWG(w). MASDAWG(w) is the minimization of the naive ASDAWG(w).

We show that the size of MASDAWG(w) is Θ(|w|) if |Σ| = 1, and Θ(|w|2) if |Σ| ≥ 2.

Also, we produce an on-line algorithm that directly constructs MASDAWG(w) in time

linear in the size of MASDAWG(w).

We show further two applications of MASDAWG(w), one of which is called the region

sensitive pattern matching problem: Given a text string w = w1w2 · · ·wn, a string p and

integers i, j, examine whether or not p is a substring of w[i : j] where w[i : j] = wi . . . wj

(NOTE: if i > |w|, the answer is always NO). We name the pattern 〈p, (i, j)〉 a region-
sensitive pattern, an RS-pattern for short. Using MASDAWG(w) with additional data,

the RS-pattern problem is solvable in O(|p|) time.
Finding a good rule to separate given two sets of strings, often referred to as posi-

tive examples and negative examples, is a critical task in Knowledge Discovery and Data

Mining. In [22], an efficient method, with which a subsequence pattern is considered as a

rule for the separation, was given, and in [23] one using an episode pattern was proposed

(see also Chapter 9). MASDAWG(w) is believed certainly to be a good “weapon” to

develop a practical algorithm to find the best VLDC-patterns to distinguish given two

sets of strings efficiently. In fact, our experimental result has shown that the average size

of the minimum ASDAWGs for random texts of length 1 to 500 over a binary alphabet is

proportional to |w|1.24, in spite of the theoretical space complexity, Θ(|w|2).
The result was published in [33].
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8.2 All-Suffixes Directed Acyclic Word Graphs

In this chapter we introduce a new structure named the all-suffixes directed acyclic word

graph (ASDAWG for short). Also, the minimized version of the structure, called the

minimum ASDAWG (MASDAWG for short), is also defined. We give a tight bound for

the space complexity of the MASDAWG for an input string.

Throughout this chapter, let w[i :] = w[i : |w|] for 1 ≤ i ≤ |w|+ 1.

Definition 8.1 (All-Suffixes DAWG (ASDAWG)) ASDAWG(w) is a kind of deter-

ministic automaton with |w|+1 initial states, designated by integers 0, 1, . . . , |w|, in which
the subgraph consisting of the states reachable from an initial state k and of their outgoing

edges is DAWG(w[k + 1 :]).

The simple collection ofDAWG(w[1 :]), DAWG(w[2 :]),. . . , DAWG(w[n]), DAWG(w[n+

1 :]) (n = |w|) is an example of ASDAWG(w), to which we refer as the naive ASDAWG(w).

The number of nodes of the naive ASDAWG(w) is Θ(|w|2). By minimizing the naive

ASDAWG(w), we can obtain theminimum ASDAWG(w), which is denoted byMASDAWG(w).

The naive ASDAWG(abba) and MASDAWG(abba) are shown in Fig. 8.1. The minimiza-

tion is performed based on the equivalence relation defined as follows. Let denote a node

[x]Ru of DAWG(u) by an ordered pair 〈u, [x]Ru 〉. Every node of the naive ASDAWG(w) can
be represented by a pair 〈u, [x]R

u
〉 with u ∈ Suffix (w) and x ∈ Factor(u). The equivalence

relation, denoted by ∼w, is defined by

〈u, [x]Ru 〉 ∼w 〈v, [y]Rv 〉 ⇔ x−1Suffix (u) = y−1Suffix (v)

A node of MASDAWG(w) corresponds to an equivalence class under ∼w. We write

〈u, [x]R
u
〉 simply as 〈u, [x]〉 if no confusion occurs.

Proposition 8.1 Let u ∈ Suffix (w). Let x be a nonempty factor of u. We factorize

u as u = hxt and assume h is the shortest such string. Then, 〈hxt, [x]〉 is equivalent to
〈sxt, [x]〉 for every suffix s of h. (NOTE: The string x is not necessarily the representative
of [x]R

u
.)

Let h0, h1, . . . , hr be the suffixes of the string h arranged in the decreasing order of

their length. The above proposition implies an existence of the chain of equivalent nodes

〈h0xt, [x]〉, 〈h1xt, [x]〉, . . . , 〈hrxt, [x]〉.
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Figure 8.1: On the left DAWG(x) for any string x in Suffix (abba) are shown, and the

collection of those is the naive ASDAWG(w). On the right MASDAWG(w) is displayed.

While there are 16 states and 16 transitions in the former in total, there are 9 states and

12 transitions in the latter. For example, the nodes 〈abba, [b]〉 and 〈bba, [b]〉 are equivalent
due to Case 1 and merged into one. Also, 〈abba, [abb]〉, 〈bba, [bb]〉, and 〈ba, [b]〉 are merged
into one node, where the first two are equivalent due to Case 2 and the last two are

equivalent due to Case 3. The upper four sink nodes are equivalent due to Case 2 and

the lowest one is equivalent to them (see Lemma 8.2), and therefore the five are merged

into one sink node.

In case more than one string exist in [x]Ru , the chain length r is maximized if we choose the

shortest one as x. The chain, however, does not necessarily break at the node 〈hrxt, [x]〉.
The shortest string in [x]Ru is not necessarily the shortest in [x]Rhrxt: Shorter one may exist.

Thus we need more precise discussion.

Lemma 8.1 Let h ∈ Σ+ and u, hu ∈ Suffix (w). If a node of DAWG(u) is equivalent to
some node of DAWG(hu), then it is also equivalent to some node of DAWG(au) where a

is the last character of the string h.

Proof. Let h = ta (t ∈ Σ∗). Assume t 
= ε. Let x ∈ Factor(u) with x 
= ε, and

y ∈ Factor(tau) with y 
= ε. Assume x−1Suffix (u) = y−1Suffix (tau). We have two cases

to consider.
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• x ≡R
u y. In this case, every occurrence of the string y within tau must be included

within the u part. Thus, we have x−1Suffix (u) = y−1Suffix (au).

• x 
≡R
u y. In this case, (1) y is written as y = sx where s is a nonempty string, and

(2) there is an occurrence of y within tau that covers the boundary between a and

u but the x part of the occurrence of y = sx is contained in the u part of the string

tau. In this case, by truncating an appropriate length prefix of s we can obtain a

string z as a suffix of y = sx such that x−1Suffix (u) = z−1Suffix (au).

The proof is now complete. �

The above lemma guarantees that the DAWGs sharing one node of MASDAWG(w) are

‘consecutive.’ We therefore concentrate on the relation between two consecutive DAWGs.

First, we consider the equivalence of the initial state.

Lemma 8.2 Suppose b ∈ Σ and u, bu ∈ Suffix (w). Let y ∈ Factor(bu) and assume y is

the representative of [y]Rbu. Then, the node 〈u, [ε]〉 and 〈bu, [y]〉 are equivalent under ∼w if

and only if y = b and u is of the form b� with � ≥ 0.

See, for example, MASDAWG(bbbbb) shown in Fig. 8.2.

b
0 1

b
2

b
3

b
4

b
5

Figure 8.2: MASDAWG(w) for w = b5. For every i = 0, 1, . . . , 4, the initial node [ε]R
bi of

DAWG(bi) is equivalent to the node [b]R
bi+1 of DAWG(bi+1).

As an extreme case of Lemma 8.2 where � = 0, the node [ε]R
ε
of DAWG(ε) is always

equivalent to the sink node [b]R
b
of the previous DAWG(b).

Next, we consider the case of the states but the initial state.

Lemma 8.3 Suppose b ∈ Σ and u, bu ∈ Suffix (w). Let x ∈ Factor(u) with x 
= ε.

Let y ∈ Factor(bu) with y 
= ε. Assume x and y are the representatives of [x]R
u
and

[y]Rbu, respectively. The equivalence 〈u, [x]〉 ∼w 〈bu, [y]〉 implies that if y ∈ Prefix (bu) then
y = bx and x ∈ Prefix (u), and otherwise y = x. Moreover, 〈u, [x]〉 ∼w 〈bu, [y]〉 holds if
and only if either
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(Case 1) x 
∈ Prefix (bu) and y = x;

(Case 2) x ∈ Prefix (u), x ≡R
bu y, and y = bx; or

(Case 3) x = bi, y = bi+1, and u is of the form b�s such that i ≤ �, and s ∈ Σ∗ does not

begin with b and does not contain an occurrence of bi.

Proof. Suppose x−1Suffix(u) = y−1Suffix (bu). Let u[i+1 :] (0 < i ≤ |u|) be the longest
member of this set.

1. When y ∈ Prefix (bu). Then, i = |y| − 1 and y = by′ with y′ = u[1 : i]. Since

u[i+1 :] ∈ Suffix(x), we have u = hxu[i+1 :] for some h ∈ Σ∗. Namely, x is a suffix

of y′ = u[1 : i].

(a) When y′ 
∈ Prefix (bu). We have y ≡R
bu y′ and

(y′)−1Suffix (u) = (y′)−1Suffix (bu) = y−1Suffix (bu) = x−1Suffix (u),

which implies x ≡R
u y′. Since y′ ∈ Prefix (u), y′ must be the representative of

[y′]Ru = [x]Ru , thus we have x = y′.

(b) When y′ ∈ Prefix (bu). String y′ is a prefix of y = by′, and therefore has a period

of 1. Hence we have y′ = bi and y = bi+1. Since x is a suffix of y′ = bi, x = bj for

some j with 0 < j ≤ i. If j < i, then u[j +1 :] ∈ x−1Suffix (u), a contradiction.

Thus we have j = i, i.e., x = bi. On the other hand, u[1 : i] = y′ = bi and thus

u is of the form b�s such that � ≥ i and s ∈ Σ∗ does not begin with b. We can

show that the string s cannot contain an occurrence of x = bi.

Note that we have x ∈ Prefix (u) in both the cases.

2. When y 
∈ Prefix (bu). We have y−1Suffix (u) = y−1Suffix (bu) = x−1Suffix (u), which

implies x ≡R
u y. From the choice of x, y must be a suffix of x and x = δy with δ ∈ Σ∗.

Assume, for a contradiction, that x−1Suffix (bu) 
= x−1Suffix (u). Then there must

be a suffix u[j + 1 :] of u such that j < i and bu = hxu[j + 1 :] with h ∈ Σ∗. Since

x = δy, we have bu = hδyu[j + 1 :], which implies u[j + 1 :] ∈ y−1Suffix (bu), a

contradiction. Hence we have x ≡R
bu y. From the choice of y, x must be a suffix of

y. Thus we have x = y.
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It should be noted that Case 1 and Case 2 of Lemma 8.3 fit to Proposition 8.1, whereas

Case 3 is irregular in the sense that the two equivalence classes [x]Ru and [y]Rbu have no

common member despite 〈u, [x]〉 ∼w 〈bu, [y]〉. See Fig. 8.1, which includes instances of

Case 1, Case 2, and Case 3.

The owner of a node of MASDAWG(w) is defined to be the DAWG(w[k :]) such that

k is the smallest integer for which DAWG(w[k :]) shares the node. We are now ready to

estimate the lower bound of the number of nodes of MASDAWG(w).

Theorem 8.1 When |Σ| ≥ 2, the number of nodes of MASDAWG(w) for a string w is

Θ(|w|2). It is Θ(|w|) for a unary alphabet.

Proof. The proof for the case of a unary alphabet Σ = {a} is not difficult. We can use

Lemma 8.2. We now prove the lower bound in the case of |Σ| ≥ 2. Let us consider a string

w = (ab)m(ba)m, where a, b are distinct characters from Σ. For each i = 2, . . . , m− 1, let

ui = (ab)i(ba)m. Let x = (ba)j with 0 < j < i. It is not difficult to show that x 
≡R
ui

ax

and x 
≡R
ui

b−1x, and therefore [x]Rui
= {x}. Thus x is the representative of [x]Rui

, and we

can use the above lemma. Since x ∈ Prefix (bui), x 
∈ Prefix (ui), and the first character of

ui is not b, none of the three conditions is satisfied, and therefore DAWG(ui) is the owner

of the node corresponding to [x]R
ui
. Thus, the nodes of MASDAWG(w) corresponding to

[(ba)1]Rui
, [(ba)2]Rui

, . . . , [(ba)i−1]Rui

are distinct and are owned by DAWG(ui). For each i with 1 < i < m, DAWG(ui) has at

least i− 1 own nodes. Thus, MASDAWG(w) has Ω(m2) = Ω(|w|2) nodes. �

8.3 On-Line Construction of MASDAWGs

Since the construction of the naive ASDAWG(w) takes O(|w|2) and the minimization

can be performed in linear time proportional to the number of the edges of the naive

ASDAWG(w) (see [46]), we can build MASDAWG(w) in O(|w|2). On the other hand,

we have shown that the number of nodes in MASDAWG(w) is Θ(|w|2). We are therefore

interested in on-line and direct construction of MASDAWG(w). We have obtained the

following result.

Theorem 8.2 MASDAWG(w) can be constructed directly and on-line in time linear with

respect to its size.

98



The algorithm for on-line construction of MASDAWG(w) basically simulates the on-

line constructions of the DAWGs for all suffixes of a string w. Figure 8.3 illustrates the

on-line construction of MASDAWG(abbab).
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Figure 8.3: On-line construction of MASDAWG(w) for w = abbab. Each initial state

becomes independent whenever the newly appended character violates the condition of

Lemma 8.2. Node separation of other type occurs only twice. One happens during the

update ofMASDAWG(ab) toMASDAWG(abb). The sink node consisting of 〈abb, [ab]〉 and
〈b, [b]〉 is separated into two nodes. This is recognized as a node separation in DAWG(abb).
The other occurs during the update of MASDAWG(abba) to MASDAWG(abbab). The

node consisting of 〈abba, [abb]〉, 〈bba, [bb]〉, and 〈ba, [b]〉 is separated into two. This is

a special case in the sense that no node separation occurs inside any of DAWG(abba),

DAWG(bba), and DAWG(ba). (See the first case of Lemma 8.7.) (Note: Though each

accepting state is marked double-circled in any step in this figure, we do not maintain

it on-line. After the construction of MASDAWG(w) is completed, we mark every node

reached during the suffix-links-traversal from the sink node.)
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In the following sections, we present a basic idea of the algorithm together with several

lemmas which support it.

8.3.1 Suffix Links

In the construction, the suffix links play a key role. One main difference compared with

constructing a single DAWG is that a node may have more than one suffix link. This

happens because MASDAWG(w) may contain two distinct, equivalent nodes 〈u, [x]〉 and
〈v, [y]〉 such that the node to which the suffix link from 〈u, [x]〉 points is not equivalent
to the node to which the suffix link from 〈v, [y]〉 points. We update MASDAWG(w)

into MASDAWG(wa) as if the underlying DAWGs for w[1 :], w[2 :], . . . were updated

simultaneously, as follows. Conceptually, we reserve all suffix links of these DAWGs, by

associating each suffix link with the corresponding DAWG. Whenever two or more suffix

links are duplicated, the corresponding DAWGs are consecutive due to Lemma 8.1, so

that we can handle them at once. This is critical for the linearity of our algorithm. We

traverse the dag induced by the suffix links rooted from the sink node, in the order of the

corresponding DAWGs, and process each encountered node appropriately (creating a new

edge to the new sink node, separating the node, or redirecting an edge to the separated

node).

8.3.2 Compact Representation of Node Length Information

Remember in the on-line construction of the DAWG for a single string, there occurs an

event so-called node separation. Formally, this event is described as follows. We store in

each node [x]Rw of DAWG(w) its length, namely, the length of the representative of [x]Rw.

Consider updating DAWG(w) to DAWG(wa) where a is a character. Let z be the longest

suffix of wa that also occurs within w. We call it the longest repeated suffix of wa. A node

separation happens iff z is not the representative of [z]R
w
. The node [z]R

w
can be detected

by traversing the suffix link chain from the sink in order to find its parent node [z′]R
w
,

which is the first encountered node on the chain that has an outgoing edge labelled by a.

Whenever the length of [z]R
w
is greater than that of its parent [z′]R

w
plus one, the node [z]R

w

of DAWG(w) is separated into two nodes [x]Rwa and [z]Rwa of DAWG(wa), where x is the

representative of [z]R
w
.

Note that a node of MASDAWG(w) corresponds to an equivalence class under the
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equivalence relation∼w, and therefore two or more DAWGs may share a node ofMASDAWG(w).

We need to know the length of the corresponding node of an arbitrary one among them.

Naive solution would be to store into a node of MASDAWG(w) a (|w| + 1)-tuple of in-

tegers, the ith value of which indicates the length of the corresponding node of the i-th

DAWG, where i = 0, 1, . . . , |w|. The space requirement is, however, proportional to |w|3.
Below we give an idea of compact representation of the tuple.

Lemma 8.4 Let 〈w[i+ 1 :], [x1]〉, . . . , 〈w[i+ � :], [x�]〉 be the nodes of the naive ASDAWG(w)
which are merged into one node in MASDAWG(w), where 0 ≤ i and i+ � ≤ |w|+ 1. We

assume each of the strings x1, . . . , x� is the representatives of the equivalence class of it.

Then, there exists an integer k with 1 ≤ k ≤ � such that

xj =


 xk, if 1 ≤ j ≤ k;

xk[j − k + 1 :], if k < j ≤ �.

(See Fig. 8.4.)

Proof. By Lemma 8.3. �

For example, MASDAWG(abb) in Fig. 8.3 has a node consisting of 〈abb, [b]〉 and

〈bb, [b]〉. Also, MASDAWG(abba) has a node consisting of 〈abba, [abb]〉, 〈bba, [bb]〉, and
〈ba, [b]〉.

It follows from the above lemma that the function that takes as input an integer s

and returns |xs| if 1 ≤ s ≤ � can be represented as a quartet (i, �, k, |xk|), which requires

only a constant space (or O(log |w|) space). The update procedure of the quartet for each
node is basically apparent, except for the nodes in which node separations occur.

8.3.3 Node Separation

Recall that two or more DAWGs can share one node of MASDAWG(w), and each of them

has a possibility of being separated into two nodes. This seems to complicate the update

of MASDAWG(w). However, we can readily show the following lemma.

Lemma 8.5 Suppose b ∈ Σ and u, bu ∈ Suffix (w). Let x ∈ Factor(u) with x 
= ε. Let

y ∈ Factor(bu) with y 
= ε. Assume x and y are the representatives of [x]Ru and [y]Rbu,

respectively. Suppose 〈u, [x]〉 ∼w 〈bu, [y]〉. Let a ∈ Σ, and let z be the longest repeated

suffix of bua. Suppose z ∈ [y]Rbu. If |z| < |y|, then z is also the longest repeated suffix of

101



i+ 1: x1

x2

· · ·
· · ·
xk

xk+1

xk+2

· · ·
· · ·

x�

Figure 8.4: The representatives xj of [xj ]
R
w[i+j:] such that the nodes 〈w[i+ j :], [xj ]〉 of the

naive ASDAWG(w) are merged into one node of MASDAWG(w).

ua, and z ∈ [x]Ru . If |z| = |y|, then x is a repeated suffix of ua (not necessarily to be the

longest).

The next lemma characterizes the node separations that occur during the update of

MASDAWG(w) to MASDAWG(wa).

Lemma 8.6 Consider the node of MASDAWG(w) stated in Lemma 8.4 (see Fig. 8.4).

Let z be the longest repeated suffix of w[i+ j :]a. Suppose z ∈ [xj ]
R
w[i+j:]

.

1. When |z| = |xk|: Node separation occurs in none of the DAWGs for the strings
w[i+ j :], . . . , w[i+ � :].

2. When |z| < |xk|: Let t be the maximum integer such that z is a proper suffix

of xt. Node separation occurs in each of the DAWGs for the strings w[i + j :

], . . . , w[i+t :]. That is, for each j = 1, . . . , t, the node [xj ]
R
w[i+j:]

of DAWG(w[i+j :])

is separated into [xj ]
R
w[i+j:]a and [z]Rw[i+j:]a inside DAWG(w[i + j :]a). The nodes

〈w[i+ j :]a, [x1]〉, . . . , 〈w[i+ � :]a, [x�]〉 are equivalent under ∼wa, and the new nodes

〈w[i+ j :]a, [z]〉, . . . , 〈w[i+ t :], [z]〉 are also equivalent under ∼wa.

The node separations of DAWGs characterized in the above lemma lead to a node sep-

aration in the update of MASDAWG(w) to MASDAWG(wa). It simultaneously performs
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the node separations within each DAWG caused by the common z. (For the same z, we

can take j as small as possible.)

The remaining problem to be overcome is that there is another kind of node separation

in the update of MASDAWG(w).

Lemma 8.7 In the update of MASDAWG(w) to MASDAWG(wa), node separation of

the following types may occur, where w ∈ Σ∗ and a ∈ Σ.

1. When w[i+ 1 :] is of the form b�+1s such that w[i] 
= b or i = 0, � ≥ 1, and s in Σ∗

does not begin with b and does not contain an occurrence of b�:

Let d be the largest integer such that s contains an occurrence of bd. MASDAWG(w)

has a node consisting of

〈w[i+ j + 1 :], [bd+k]〉, 〈w[i+ j + 2 :], [bd+k−1]〉, . . . , 〈w[i+ j + k], [bd+1]〉,

where k = � − (d + j) + 1, for each j = 0, 1, . . . , d. If |s| > 0, s ends with bd, and

a = b, then the node is separated into two nodes, one of which consists of

〈w[i+ j + 1 :]a, [bd+k]〉, 〈w[i+ j + 2 :]a, [bd+k−1]〉, . . . , 〈w[i+ j + k − 1]a, [bd+2]〉,

and the other consists only of 〈w[i+ j + k :]a, [bd+1]〉.

2. When w[i+ 1 :] is of the form b� with � ≥ 1 such that w[i] 
= b or i = 0:

MASDAWG(w) has a node consisting of

〈b�, [bj ]〉, 〈b�−1, [bj−1]〉, . . . , 〈b�−j, [ε]〉,

for each j = 1, . . . , �. Whenever b 
= a, the node is separated into two nodes, one of

which consists of

〈b�a, [bj ]〉, 〈b�−1a, [bj−1]〉, . . . , 〈b�−j+1a, [b]〉,

and the other consists only of 〈b�−ja, [ε]〉,

For an example of the first case of the above lemma, consider the update ofMASDAWG(w)

to MASDAWG(wb) for w = bbbbbab, which can be found in Fig. 8.5 and Fig. 8.6.

It should be emphasized that in the node separation mentioned in the above lemma

no node separation occurs inside a DAWG. This kind of node separation can also be

performed during the suffix link traversal started at the sink node, although the detail is

omitted in this chapter.
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Figure 8.5: The naive ASDAWG(bbbbbab) on the left, and the naive ASDAWG(w) on the

right. The nodes connected by the broken lines are equivalent due to Case 3. Recall the

value of “d” mentioned in Lemma 8.7. In string bbbbbab the value of d is 1, whereas in

string bbbbbabb d = 2 since the new b is added afterward.

8.4 Applications

In this section we show some applications to which the data structure ASDAWG and its

variants effectively contribute.

8.4.1 Finding Beginning-Sensitive Patterns

Definition 8.2 (Beginning-Sensitive Pattern) A beginning-sensitive pattern (a BS-

pattern for short) is a pair 〈p, i〉 where p is a string in Σ∗ and i is a positive integer.

Definition 8.3 (BS-Pattern Matching Problem)

Instance: a text w and a BS-pattern 〈p, i〉.
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Figure 8.6: MASDAWG(bbbbbab) is on the left, and MASDAWG(bbbbbabb) is on the right.

Compare the update of MASDAWG(bbbbbab) to MASDAWG(bbbbbabb) with that of the

naive ASDAWG(bbbbbab) to the naive ASDAWG(bbbbbabb) shown in Fig. 8.5.

Determine: whether p is a substring of w[i :].

This is a natural extension of the substring pattern matching problem with i = 1.

The BS-pattern matching problem is solvable in O(|p|) for an arbitrary pair 〈p, i〉, by
using ASDAWG(w). For a given text w, we construct MASDAWG(w) with the on-line

algorithm proposed in Section 8.3. For a BS-pattern 〈p, i〉, if i > |w|, the BS-pattern

never matches w. Otherwise, we start with the i-th initial state of MASDAWG(w) and

examine whether or not the string p is recognized.

8.4.2 Pattern Matching within a Specific Region

Definition 8.4 (Region-Sensitive Pattern) A region-sensitive pattern (an RS-pattern

for short) is a triple 〈p, (i, j)〉 where p is a string in Σ∗ and i, j are positive integers.

Definition 8.5 (RS-Pattern Matching Problem)

Instance: a text w and an RS-pattern 〈p, (i, j)〉.
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Determine: whether p occurs within the region w[i : j] in the text w.

This is a natural extension of the BS-pattern matching problem in which j = |w|. For
a given text w, we construct MASDAWG(w). It is a trivial fact that, while constructing

MASDAWG(w), the on-line algorithm is able to mark each state with the integer for the

position of the right most occurrence of the string corresponding to the state. For an

RS-pattern 〈p, (i, j)〉, if i > |w|, the RS-pattern never matches w. Otherwise, we start

with the i-th initial state of MASDAWG(w) and examine whether or not the string p is

recognized. If it is recognized, we compare j with the integer k stored in the state at

which p finally arrived. Then: If j ≤ k, YES; Otherwise, NO. Obviously, the problem can

be solved in O(|p|) time.

8.4.3 Finding Variable-Length-Don’t-Care’s Patterns

We remark thatMASDAWG(w) can also be a powerful structure to find a variable-length-

don’t-care’s patterns. The detail will be treated in Section 9.5 with strong possibility that

MASDAWG(w) can contribute to Knowledge Discovery and Data Mining.
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Chapter 9

Finding Patterns to Best Separate

Two Sets of Strings

9.1 Introduction

In these days, a lot of text data or sequential data are available, and it is quite important

to discover useful rules from these data. Finding a good rule to separate two given sets,

often referred as positive examples and negative examples, is a critical task in Knowledge

Discovery and Data Mining.

In [22], Hirao et al. considered subsequence patterns as rules. A subsequence pattern

s matches a string t if s can be obtained by deleting zero or more characters from t. They

introduced a practical algorithm to find the best subsequence pattern that separates

positive examples from negative examples, and showed some experimental results. A

drawback of subsequence patterns is that they are not suitable for classifying long strings

over small alphabet, since a short subsequence pattern matches almost all long strings.

In this chapter, we consider episode patterns, which were originally introduced by Man-

nila et al. [42]. An episode pattern 〈v, k〉, where v is a string and k is an integer, matches

a string t if v is a subsequence for some substring u of t with |u| ≤ k. Episode patterns

are generalization of subsequence patterns since a subsequence pattern v is equivalent to

the episode pattern 〈v,∞〉. We give a practical solution to find the best episode pattern

which separates one set of strings from the other set of strings. We propose a practical

implementation of exact search algorithm that practically avoids exhaustive search. The

key idea is to introduce some heuristics to reduce the search space based on the com-
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binatorial properties of episode patterns, and to utilize an efficient data structure that

helps to determine whether an episode pattern matches with a fixed string, at the cost

of preprocessing time and space requirement to construct it. The result was published

in [23], and also reported in [49].

At the end of the chapter, we also consider the variable-length-don’t-care’s patterns.

Let Π = (Σ ∪ {1})∗, where 1 is a wildcard that matches any string. A pattern q ∈ Π

such as q = a1ba1c is called a variable-length-don’t-care’s pattern (VLDC-pattern), where

a, b ∈ Σ. The language L(q) of a pattern q ∈ Π is the set of strings obtained by replacing

1’s in q with strings. For example, L(a1ba1c) = {aubavc | u, v ∈ Σ∗}. This language

corresponds to a class of the pattern languages proposed by Angluin [1]. We have strongly

believed that the VLDC-patterns can be quite good rules to separate given two sets of

strings. We declare that the smallest automaton to recognize all possible VLDC-patterns

matching a text w is a variant of MASDAWG(w), introduced in Chapter 8.

9.2 Preliminaries

9.2.1 Notation

Let N be the set of integers. Throughout this chapter, we use the word substring in the

same meaning as the word factor. We say that a string v is a subsequence of a string w if

v can be obtained by removing zero or more characters from w. We write as v  str w if v

is a substring of w, and as v  seq w if v is a subsequence of w.

For a string v, we define the substring language Lstr(v) and subsequence language Lseq(v)

as follows:

Lstr(v) = {w ∈ Σ∗ | v  str w},
Lseq(v) = {w ∈ Σ∗ | v  seq w}.

An episode pattern is a pair of a string v and an integer k, and we define the episode

language Leps(〈v, k〉) by

Leps(〈v, k〉) = {w ∈ Σ∗ | ∃u  str w such that v  seq u and |u| ≤ k}.

The following lemma is obvious from the definitions.

Lemma 9.1 (Hirao et al. [22]) For any strings v, w ∈ Σ∗,
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1. if v is a prefix of w, then v  str w,

2. if v is a suffix of w, then v  str w,

3. if v  str w then v  seq w,

4. v  str w if and only if L
str(v) ⊇ Lstr(w),

5. v  seq w if and only if Lseq(v) ⊇ Lseq(w).

9.2.2 Formulation of the Problem

Let good be a function from Σ∗ × 2Σ∗ × 2Σ∗
to the set of real numbers. We formulate the

problem to be solved as follows.

Definition 9.1 (Finding the best pattern according to good)

Input: Two sets S, T ⊆ Σ∗ of strings.

Output: A string w ∈ Σ∗ that maximizes the value good(w, S, T ).

Intuitively, the value good(w, S, T ) expresses the goodness w to separate S, T . The defini-

tion of good varies for each application. For examples, the χ2 values, entropy information

gain, and gini index can be used. Essentially, these statistical measures are defined by the

numbers of strings that satisfy the rule specified by w. Any of the above examples of the

measures can be described in the following form:

good(w, S, T ) = f(xw, yw, |S|, |T |), where
xw = |S ∩ Leps(w)|,
yw = |T ∩ Leps(w)|.

When the sets S and T are fixed, the values |S| and |T | become constants. Thus, we
abbreviate the function to f(x, y) in the sequel.

Since the function good(w, S, T ) expresses the goodness of a episode pattern w to

distinguish two sets, it is natural to assume that the function f satisfies the conicality,

defined as follows.

Definition 9.2 We say that a function f(x, y) is conic if

• for any 0 ≤ y ≤ ymax, there exists an x1 such that
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– f(x, y) ≥ f(x′, y) for any 0 ≤ x < x′ ≤ x1, and

– f(x, y) ≤ f(x′, y) for any x1 ≤ x < x′ ≤ xmax.

• for any 0 ≤ x ≤ xmax, there exists a y1 such that

– f(x, y) ≥ f(x, y′) for any 0 ≤ y < y′ ≤ y1, and

– f(x, y) ≤ f(x, y′) for any y1 ≤ y < y′ ≤ ymax.

We assume that f is conic and can be evaluated in constant time in the sequel. The

optimization problem to be tackled follow.

Definition 9.3 (Finding the best substring pattern according to f)

Input: Two sets S, T ⊆ Σ∗ of strings.

Output: A string v that maximizes the value f(xv, yv), where xv = |S ∩ Lstr(v)| and
yv = |T ∩ Lstr(v)|.

Definition 9.4 (Finding the best subsequence pattern according to f)

Input: Two sets S, T ⊆ Σ∗ of strings.

Output: A string v that maximizes the value f(xv, yv), where xv = |S ∩ Lseq(v)| and
yv = |T ∩ Lseq(v)|.

Definition 9.5 (Finding the best episode pattern according to f)

Input: Two sets S, T ⊆ Σ∗ of strings.

Output: An episode pattern wpat that maximizes the value f(x〈v,k〉, y〈v,k〉), where x〈v,k〉 =

|S ∩ Leps(〈v, k〉)| and y〈v,k〉 = |T ∩ Leps(〈v, k〉)|.

We remark that the first problem can be solved in linear time [22], while the latter

two are NP-hard [44].

We review the basic idea of our algorithms. Fig. 9.1 shows a naive algorithm which

exhaustively examines and evaluate all possible patterns one by one, and returns the best

pattern that gives the maximum value. The most time-consuming part is obviously the

lines 3 and 4. In order to reduce the search time, we should (1) reduce the possible

patterns in line 2 dynamically by using some appropriate pruning method, and (2) speed

up the computation of |S ∩ L(π)| and |T ∩ L(π)| for each π. In Section 9.3, we deal with

(1), and in Section 9.4, we treat (2).
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pattern FindMaxPattern(StringSet S, T )
1 maxVal = −∞;
2 for all possible pattern π do
3 x = |S ∩ L(π)|;
4 y = |T ∩ L(π)|;
5 val = f(x, y);
6 if val > maxVal then
7 maxVal = val ;
8 maxSeq = π;
9 return maxSeq ;

Figure 9.1: Exhaustive search algorithm.

9.3 Pruning Heuristics

In this section, we introduce some pruning heuristics, inspired by Morishita and Sese [45].

For a function f(x, y), we denote F (x, y) = max{f(x, y), f(x, 0), f(0, y), f(0, 0)}. From
the definition of conic function, we can prove the following lemma.

Lemma 9.2 For any patterns v and w with L(v) ⊇ L(w), we have

f(xw, yw) ≤ F (xv, yv).

9.3.1 For Subsequence Patterns

We consider finding subsequence pattern in this subsection. By Lemma 9.1 (5) and

Lemma 9.2, we have the following lemma.

Lemma 9.3 (Hirao et al. [22]) For any strings v, w ∈ Σ∗ with v  seq w, we have

f(xw, yw) ≤ F (xv, yv).

In Fig. 9.2, we show our algorithm to find the best subsequence pattern from given

two sets of strings, according to the function f . Optionally, we can specify the maximum

length of subsequences. We use the following data structures in the algorithm.

StringSet Maintain a set S of strings.

• int numOfSubseq(string seq) : return the cardinality of the set {w ∈ S | seq  seq

w}.
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string FindMaxSubsequence(StringSet S, T , int maxLength =∞)
1 string prefix , seq , maxSeq;
2 double upperBound =∞, maxVal = −∞, val ;
3 int x, y;
4 PriorityQueue queue; /* Best First Search*/
5 queue.push(””, ∞);
6 while not queue.empty() do
7 (prefix , upperBound) = queue.pop();
8 if upperBound < maxVal then break;
9 foreach c ∈ Σ do
10 seq= prefix+ c; /* string concatenation */
11 x = S.numOfSubseq(seq);
12 y = T .numOfSubseq(seq);
13 val = f(x, y);
14 if val > maxVal then
15 maxVal = val ;
16 maxSeq = seq ;
17* upperBound = F (x, y);
18 if |seq| < maxLength then
19 queue.push(seq , upperBound);
20 return maxSeq;

Figure 9.2: Algorithm FindMaxSubsequence.

PriorityQueue Maintain strings with their priorities.

• bool empty() : return true if the queue is empty.

• void push(string w, double priority) : push a string w into the queue with priority

priority.

• (string, double) pop() : pop and return a pair (string, priority), where priority is

the highest in the queue.

The next theorem guarantees the completeness of the algorithm.

Theorem 9.1 (Hirao et al. [22]) Let S and T be sets of strings, and � be a positive

integer. The algorithm FindMaxSubsequence(S, T , �) will return a string w that maxi-

mizes the value f(xv, yv) among the strings of length at most �, where xv = |S ∩ Lseq(s)|
and ys = |T ∩ Lseq(s)|.
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9.3.2 For Episode Patterns

We now show a practical algorithm to find the best episode patterns. We should remark

that the search space of episode patterns is Σ∗×N , while the search space of subsequence

patterns was Σ∗. A straight-forward approach based on the last subsection might be as

follows. First we observe that the algorithm FindMaxSubsequence in Fig. 9.2 can be easily

modified to find the best episode pattern 〈v, k〉 for any fixed threshold k: we have only to

replace the lines 11 and 12 so that they compute the numbers of strings in S and T that

match with the episode pattern 〈seq , k〉, respectively. Thus, for each possible threshold

value k, repeat his algorithm, and get the maximum. A short consideration reveals that

we have only to consider the threshold values up to l, that is the length of the longest

string in given S and T .

However, here we give a more efficient solution. Let us consider the following problem,

that is a subproblem of finding the best episode pattern in Definition 9.5.

Definition 9.6 (Finding the best threshold value)

Input: Two sets S, T ⊆ Σ∗ of strings, and a string v ∈ Σ∗.

Output: Integer k that maximizes the value f(x〈v,k〉, y〈v,k〉), where x〈v,k〉 = |S∩Leps(〈v, k〉)|
and y〈v,k〉 = |T ∩ Leps(〈v, k〉)|.

The next lemma give a basic containment of episode pattern languages.

Lemma 9.4 (Hirao et al. [23]) For any two episode patterns 〈v, l〉 and 〈w, k〉, if v  seq

w and l ≥ k then Leps(〈v, l〉) ⊇ Leps(〈w, k〉).

By Lemma 9.2 and 9.4, we have the next lemma.

Lemma 9.5 (Hirao et al. [23]) For any two episode patterns 〈v, l〉 and 〈w, k〉, if v  seq

w and l ≥ k then f(x〈w,k〉, y〈w,k〉) ≤ F (x〈v,l〉, y〈v,l〉).

For strings v, s ∈ Σ∗, we define the threshold value θ of v for s by θ = min{k ∈ N |
s ∈ Leps(〈v, k〉)}. If no such value, let θ = ∞. Note that s 
∈ Leps(〈v, k〉) for any k < θ,

and s ∈ Leps(〈v, k〉) for any k ≥ θ. For a set S of strings and a string v, let us denote by

ΘS,v the set of threshold values of v for some s ∈ S.

A key observation is that a best threshold value for given S, T ⊆ Σ∗ and a string

v ∈ Σ∗ can be found in ΘS,v ∪ ΘT,v without loss of generality. Thus we can restrict the

search space of the best threshold values to ΘS,v ∪ΘT,v.
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From now on, we consider the numerical sequence {x〈v,k〉}∞k=0. (We will treat {y〈v,k〉}∞k=0

in the same way.) It clearly follows from Lemma 9.4 that the sequence is non-decreasing.

Remark that 0 ≤ x〈v,k〉 ≤ |S| for any k. Moreover, x〈v,l〉 = x〈v,l+1〉 = x〈v,l+2〉 = · · · , where
l is the length of the longest string in S. Hence, we can represent {x〈v,k〉}∞k=0 with a list

having at most min{|S|, l} elements. We call this list a compact representation of the

sequence {x〈v,k〉}∞k=0 (CRS, for short).

We show how to compute CRS for each v and a fixed S. Observe that x〈v,k〉 increases

only at the threshold values in ΘS,v. By computing a sorted list of all threshold values in

ΘS,v, we can construct the CRS of {x〈v,k〉}∞k=0. If using the counting sort, we can compute

the CRS for any v ∈ Σ∗ in O(|S|ml + |S|) = O(||S||m) time, where m = |v|.
We emphasize that the time complexity of computing the CRS of {x〈v,k〉}∞k=0 is the

same as that of computing x〈v,k〉 for a single k (0 ≤ k ≤ ∞), by our method.

After constructing CRSs x̄ of {x〈v,k〉}∞k=0 and ȳ of {y〈v,k〉}∞k=0, we can compute the best

threshold value in O(|x̄|+ |ȳ|) time. Thus we have the following, which gives an efficient

solution to the finding the best threshold value problem.

Lemma 9.6 Given S, T ⊆ Σ∗ and v ∈ Σ∗, we can find the best threshold value in

O( (||S||+ ||T ||)·|v| ) time.

By substituting this procedure into the algorithm FindMaxSubsequence, we get an

algorithm to find a best episode pattern from given two sets of strings, according to the

function f , shown in Fig. 9.3. We add a method crs(v) to the data structure StringSet

that returns CRS of {x〈v,k〉}∞k=0, as mentioned above.

By Lemma 9.5, we can use the value upperBound = F (xv,∞, yv,∞) to prune branches

in the search tree computed at line 19 marked by (*). We emphasize that the value

F (x〈v,k〉, y〈v,k〉) is insufficient as upperBound . Note also that x〈v,∞〉 and y〈v,∞〉 can be

extracted from x̄ and ȳ in constant time, respectively. The next theorem guarantees the

completeness of the algorithm.

Theorem 9.2 Let S and T be sets of strings, and � be a positive integer. The algorithm

FindBestEpisode(S, T , �) will return an episode pattern that maximizes f(x〈v,k〉, y〈v,k〉),

with x〈v,k〉 = |S ∩ Leps(〈v, k〉)| and y〈v,k〉 = |T ∩ Leps(〈v, k〉)|, where v varies any string of

length at most � and k varies any integer.
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string FindBestEpisode(StringSet S, T , int �)
1 string prefix , v;
2 episodePattern maxSeq ; /* pair of string and int */
3 double upperBound =∞, maxVal = −∞, val ;
4 int k′;
5 CompactRepr x̄, ȳ; /* CRS */
6 PriorityQueue queue; /* Best First Search*/
7 queue.push(””, ∞);
8 while not queue.empty() do
9 (prefix , upperBound) = queue.pop();
10 if upperBound < maxVal then break;
11 foreach c ∈ Σ do
12 v = prefix+ c; /* string concatenation */
13 x̄ = S.crs(v);
14 ȳ = T .crs(v);
15 k′ = argmaxk{f(x〈v,k〉, y〈v,k〉)} and val = f(x〈v,k′〉, y〈v,k′〉);
16 if val > maxVal then
17 maxVal = val ;
18 maxEpisode = 〈v, k′〉;
19(*) upperBound = F (x〈v,∞〉, y〈v,∞〉);
20 if upperBound > maxVal and |v| < � then
21 queue.push(v, upperBound);
22 return maxEpisode;

Figure 9.3: Algorithm FindBestEpisode.

9.4 Using Efficient Data Structures

In this chapter, we introduce a data structure efficient for the speedup of answering the

queries.

9.4.1 Episode Directed Acyclic Subsequence Graphs

We now analyze the complexity of episode pattern matching. Given an episode pattern

〈v, k〉 and a string t, determine whether t ∈ Leps(〈v, k〉) or not. This problem can be

answered by filling up the edit distance table between v and t, where only insertion

operation with cost one is allowed. It takes Θ(mn) time and space using a standard

dynamic programming method, where m = |v| and n = |t|. For a fixed string, automata-

based approach is useful. Thereby we use the Episode Directed Acyclic Subsequence

Graph (EDASG) for string t, which was recently introduced by Tróıček in [53]. Hereafter,
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Figure 9.4: EDASG(t), where t = aabaababb. Solid arrows denote the forward edges, and

broken arrows denote the backward edges. The number in each circle denotes the state

number.

let EDASG(t) denote the EDASG for t. With the use of EDASG(t), episode pattern

matching can be answered quickly in practice, although the worst case behavior is still

O(mn). EDASG(t) is also useful to compute the threshold value θ of given v for t quickly

in practice. As an example, EDASG(aabaababb) is shown in Fig. 9.4. When examining

if an episode pattern 〈abb, 4〉 matches with t or not, we start from the initial state 0 and

arrive at state 6, by traversing the forward edges spelling abb. It means that the shortest

prefix of t that contains abb as a subsequences is t[0 : 6] = aabaab, where t[i : j] denotes

the substring ti+1 . . . tj of t. Moreover, the difference between the state numbers 6 and 0

corresponds to the length of matched substring aabaab of t, that is, 6−0 = |aabaab|. Since
it exceeds the threshold 4, we move backwards spelling bba and reach state 1. It means

that the shortest suffix of t[0 : 6] that contains abb as a subsequence is t[1 : 6] = abaab.

Since 6 − 1 > 4, we have to examine other possibilities. It is not hard to see that we

have only to consider the string t[2 : ∗]. Thus we continue the same traversal started from

state 2, that is the next state of state 1. By forward traversal spelling abb, we reach state

8, and then backward traversal spelling bba bring us to state 4. In this time, we found

the matched substring t[4 : 8] = abab which contains the subsequence abb, and the length

8 − 4 = 4 satisfies the threshold. Therefore we report the occurrence and terminate the

procedure.

It is not difficult to see that the EDASGs are useful to compute the threshold value

of v for a fixed t. We have only to repeat the above forward and backward traversal up

to the end, and return the minimum length of the matched substrings. Although the

time complexity is still Θ(mn), practical behavior is usually better than using standard

dynamic programming method.

116



9.5 Finding Variable-Length-Don’t-Care’s Patterns

In this chapter, we consider other kinds of patterns, called variable-length-don’t-care’s

patterns. We here remark that the MASDAWG, introduced in Chapter 8, is a powerful

structure to find patterns of these kinds.

The variable-length-don’t-care’s patterns are defined as follows.

Definition 9.7 (Variable-Length-Don’t-Care’s Patterns) Let Π = (Σ∪{1})∗, where
1 is a wildcard that matches any string. An element q ∈ Π is called a variable-length-

don’t-care’s pattern (a VLDC-pattern for short).

For instance, 1a1ab1ba1 is a VLDC-pattern for a, b ∈ Σ. We say that a VLDC-pattern

q matches a text string w ∈ Σ∗ if w can be obtained by replacing 1’s in q with some

strings. In the running example, the VLDC-pattern 1a1ab1ba1 matches text abababbbaa

by replacing the 1’s with ab, b, b and a, respectively.

We write as q  vldc w if a VLDC-pattern q matches w. For a VLDC-pattern q, we

define the VLDC-language Lvldc(q) as

Lvldc(q) = {w ∈ Σ∗ | q  vldc w}.

Now we consider the following problem.

Definition 9.8 (Finding the best VLDC-pattern according to f)

Input: Two sets S, T ⊆ Σ∗ of strings.

Output: A string v that maximizes the value f(xv, yv), where xv = |S ∩ Lvldc(v)| and
yv = |T ∩ Lvldc(v)|.

It is known that this problem is NP-hard [44].

Given a set S, T of strings, we have to examine whether or not every possible VLDC-

pattern matches each string in S and T . Since the problem is NP-hard, we are forced to

exponentially many candidate. Thus, when considering some efficient heuristics, we need

some fast method for the examination. We address that the MASDAWGs are remarkably

helpful for this. In fact, the smallest index structure capable of solving the following

pattern matching problem in O(|q|) time is a variant of MASDAWG(w).

Definition 9.9 (VLDC-Pattern Matching Problem)

Instance: a text w and a VLDC-pattern q.

Determine: whether q matches w.
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The automaton recognizing all possible VLDC-patterns matching w is called the wild-

card ASDAWG for w, and denoted by WASDAWG(w). The automata were originally

introduced in [25]. WASDAWG(abbab) is displayed in Fig. 9.5. In WASDAWG(w), a

1-transition is added between each state and the initial state of the “same layer” in

MASDAWG(w) (see also MASDAWG(abbab) in Fig. 8.3). Note that there exist two addi-

tional states, one of which is a unique initial state ofWASDAWG(abbab). They are added

in order that VLDC-patterns beginning with a can be recognized. For any q ∈ Π, the

VLDC-pattern matching problem can be solved in O(|q|) time, by usingWASDAWG(w).

a b

b

b

b

b

b

a

a

a

a

a
a

b

b
b

a

b

Figure 9.5: WASDAWG(w) where w = abbab.

9.6 Concluding Remarks

This chapter was mainly devoted to the problem for finding the best episode patterns that

effectively separate given two sets of strings.

Hamuro et al. [21] implemented the algorithm for finding the best subsequences, and

reported a quite successful experiment on business data. In the meantime, Bannai et

al. [6] and Iida et al. [27, 26] have installed our algorithms into the core of the decision

tree generator in the BONSAI system [48]. They reported that they achieved significant

results by using episode patterns as rules, on biological sequences.
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On the other hand, we can easily extend our algorithm to enumerate all strings whose

values of the objective function exceed the given threshold, since we essentially examine

all strings, with effective pruning heuristics. Enumeration may be more preferable in the

context of text data mining [10, 17, 57].

We also discussed the use of VLDC-patterns as rules for the separation. The invention

of WASDAWGs is believed to be a clue to a practical algorithm to find the best VLDC-

patterns that distinguish two sets of strings. The development of the pruning heuristic on

using VLDC-patterns is our future work.
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[35] J. Kärkkäinen. Suffix cactus: A cross between suffix tree and suffix array. In Z. Galil

and E. Ukkonen, editors, Proc. 6th Annual Symposium on Combinatorial Pattern

Matching (CPM’95), volume 973 of Lecture Notes in Computer Science, pages 191–

204. Springer-Verlag, 1995.

[36] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM

J. Comput., 6(2):323–350, 1977.

[37] S. R. Kosaraju. Fast pattern matching in trees. In Proc. 30th IEEE Symp. on

Foundations of Computer Science, pages 178–183, 1989.

[38] S. Kurtz. Reducing the space requirement of suffix trees. Software - Practice and

Experience, 29(13):1149–1171, 1999.

124



[39] M. G. Maaß. Linear bidirectional on-line construction of affix trees. In R. Giancarlo

and D. Sankoff, editors, Proc. 11th Annual Symposium on Combinatorial Pattern

Matching (CPM’00), volume 1848 of Lecture Notes in Computer Science, pages 320–

334. Springer-Verlag, 2000.
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