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Ideally one would desire an 
indefinitely large memory 
capacity such that any 
particular . . . word would be 
im mediately available. . . . We 
are . . .  forced to recognize the 
possibility of constructing a 
hierarchy of memories, each 
of which has greater capacity 
than the preceding but which 
is less quickly accessible.

A. W. Burks, H. H. Goldstine, and J. von 
Neumann
Preliminary Discussion of the Logical Design of an 
Electronic Computing Instrument, 1946
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452 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

 5.1 Introduction

From the earliest days of computing, programmers have wanted unlimited 
amounts of fast memory. The topics in this chapter aid programmers by creating 
that illusion. Before we look at creating the illusion, let’s consider a simple analogy 
that illustrates the key principles and mechanisms that we use.

Suppose you were a student writing a term paper on important historical develop-
ments in computer hardware. You are sitting at a desk in a library with a collection 
of books that you have pulled from the shelves and are examining. You find that 
several of the important computers that you need to write about are described in 
the books you have, but there is nothing about the EDSAC. There fore, you go back 
to the shelves and look for an additional book. You find a book on early  British 
computers that covers the EDSAC. Once you have a good selec tion of books on the 
desk in front of you, there is a good probability that many of the topics you need 
can be found in them, and you may spend most of your time just using the books 
on the desk without going back to the shelves. Having several books on the desk 
in front of you saves time compared to having only one book there and constantly 
having to go back to the shelves to return it and take out another. 

The same principle allows us to create the illusion of a large memory that we 
can access as fast as a very small memory. Just as you did not need to access all the 
books in the library at once with equal probability, a program does not access all 
of its code or data at once with equal probability. Otherwise, it would be impossi ble 
to make most memory accesses fast and still have large memory in computers, just 
as it would be impossible for you to fit all the  library books on your desk and still 
find what you wanted quickly. 

This principle of locality underlies both the way in which you did your work in 
the library and the way that programs operate. The principle of locality states that 
programs access a relatively small portion of their address space at any instant of 
time, just as you accessed a very small portion of the library’s collection. There are 
two different types of locality:

■ Temporal locality (locality in time): if an item is referenced, it will tend to be 
referenced again soon. If you recently brought a book to your desk to look at, 
you will probably need to look at it again soon.

 ■ Spatial locality (locality in space): if an item is referenced, items whose 
addresses are close by will tend to be referenced soon. For example, when 

temporal locality The 
princi ple stating that if a 
data  location is referenced 
then it will tend to be 
referenced again soon.

spatial locality The 
locality principle stating 
that if a data location is 
referenced, data loca tions 
with nearby addresses 
will tend to be referenced 
soon.



you brought out the book on early English computers to find out about the 
EDSAC, you also noticed that there was another book shelved next to it about 
early mechanical computers, so you also brought back that book and, later 
on, found something useful in that book. Libraries put books on the same 
topic together on the same shelves to increase spatial locality. We’ll see how 
memory hierarchies use spatial locality in a little later in this chap ter.

Just as accesses to books on the desk naturally exhibit locality, locality in pro-
grams arises from simple and natural program structures. For example, most 
pro grams contain loops, so instructions and data are likely to be accessed repeat-
edly, showing high amounts of temporal locality. Since instructions are normally 
accessed sequentially, programs also show high spatial locality. Accesses to data also 
exhibit a natural spatial locality. For example, sequential accesses to elements of an 
array or a record will naturally have high degrees of spatial locality. 

We take advantage of the principle of locality by implementing the memory 
of a computer as a memory hierarchy. A memory hierarchy consists of multiple 
lev els of memory with different speeds and sizes. The faster memories are more 
expensive per bit than the slower memories and thus are smaller. 

Today, there are three primary technologies used in building memory hierar-
chies. Main memory is implemented from DRAM (dynamic random access 
memory), while levels closer to the processor (caches) use SRAM (static random 
access memory). DRAM is less costly per bit than SRAM, although it is substan-
tially slower. The price difference arises because DRAM uses significantly less area 
per bit of memory, and DRAMs thus have larger capacity for the same amount of 
silicon; the speed difference arises from several factors described in Section C.9 of 

 Appendix C. The third technology, used to implement the largest and slowest 
level in the hierarchy, is usually magnetic disk. (Flash mem ory is used instead of 
disks in many embedded devices; see Section 6.4.) The access time and price per 
bit vary widely among these technologies, as the table below shows, using typical 
values for 2008:

Memory technology Typical access time $ per GB in 2008

SRAM 0.5–2.5 ns $2000–$5000

DRAM 50–70 ns $20–$75

Magnetic disk 5,000,000–20,000,000 ns $0.20–$2

Because of these differences in cost and access time, it is advantageous to build 
memory as a hierarchy of levels. Figure 5.1 shows the faster memory is close to the 
processor and the slower, less expensive memory is below it. The goal is to present 
the user with as much memory as is available in the cheapest technology, while 
providing access at the speed offered by the fastest memory.

memory hierarchy 
A struc ture that uses 
multiple levels of 
memories; as the distance 
from the processor 
increases, the size of the 
memories and the access 
time both  increase.
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454 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

The data is similarly hierarchical: a level closer to the processor is generally a 
subset of any level further away, and all the data is stored at the lowest level. By 
analogy, the books on your desk form a subset of the library you are working in, 
which is in turn a subset of all the libraries on campus. Furthermore, as we move 
away from the processor, the levels take progressively longer to access, just as we 
might encounter in a hierarchy of campus libraries.

A memory hierarchy can consist of multiple levels, but data is copied between 
only two adjacent levels at a time, so we can focus our attention on just two levels. 
The upper level—the one closer to the processor—is smaller and faster than the 
lower level, since the upper level uses technology that is more expensive. Figure 5.2 
shows that the minimum unit of infor mation that can be either present or not 
present in the two-level hierarchy is called a block or a line; in our library analogy, 
a block of information is one book. 

If the data requested by the processor appears in some block in the upper level, 
this is called a hit (analogous to your finding the information in one of the books 
on your desk). If the data is not found in the upper level, the request is called a miss. 
The lower level in the hierarchy is then accessed to retrieve the block con taining the 
requested data. (Continuing our analogy, you go from your desk to the shelves to 
find the desired book.) The hit rate, or hit ratio, is the fraction of mem ory ac cesses 
found in the upper level; it is often used as a measure of the perfor mance of the 
memory hierarchy. The miss rate (1 − hit rate) is the fraction of memory accesses 
not found in the  upper level.

block (or line) The 
minimum unit of 
information that can 
be  either present or not 
present in a cache.

hit rate The fraction of 
memory accesses found 
in a level of the memory 
hierarchy.

miss rate The fraction 
of mem ory accesses not 
found in a level of the 
memory hierarchy.

FIGURE 5.1 The basic structure of a memory hierarchy. By implementing the memory system 
as a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but 
can be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many 
embedded devices, and may lead to a new level in the storage hierarchy for desktop and server computers; 
see Section 6.4. 
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Since performance is the major reason for having a memory hierarchy, the time 
to service hits and misses is important. Hit time is the time to access the upper level 
of the memory hierarchy, which includes the time needed to determine whether 
the access is a hit or a miss (that is, the time needed to look through the books 
on the desk). The miss penalty is the time to replace a block in the upper level with 
the corresponding block from the lower level, plus the time to deliver this block to 
the processor (or the time to get another book from the shelves and place it on the 
desk). Because the upper level is smaller and built using faster memory parts, the 
hit time will be much smaller than the time to access the next level in the hierarchy, 
which is the major component of the miss penalty. (The time to examine the books 
on the desk is much smaller than the time to get up and get a new book from the 
shelves.)

As we will see in this chapter, the concepts used to build memory systems affect 
many other aspects of a computer, including how the operating system manages 
memory and I/O, how compilers generate code, and even how appli cations 
use the computer. Of course, because all programs spend much of their time 
accessing memory, the memory system is necessarily a major factor in determining 
performance. The reliance on memory hierarchies to achieve performance has 
meant that programmers, who used to be able to think of memory as a flat, 
random access storage device, now need to understand that memory is a hierarchy 
to get good performance. We show how important this understanding is in later 
examples, such as Figure 5.18 on page 490. 

Since memory systems are critical to performance, computer designers devote a 
great deal of attention to these systems and develop sophisticated mechanisms for 
improving the performance of the memory system. In this chapter, we discuss the 
major conceptual ideas, although we use many simplifications and abstractions to 
keep the material manageable in length and complexity.

hit time The time 
required to access a level 
of the  memory hierarchy, 
including the time needed 
to  determine whether the 
access is a hit or a miss.

miss penalty The time 
required to fetch a block 
into a level of the memory 
hierarchy from the lower 
level, including the time to 
access the block, transmit 
it from one level to the 
other, insert it in the level 
that experienced the miss, 
and then pass the block to 
the requestor.

FIGURE 5.2 Every pair of levels in the memory hierarchy can be thought of as having an 
upper and lower level. Within each level, the unit of information that is present or not is called a block 
or a line. Usually we transfer an entire block when we copy something between levels. 

Processor

Data is transferred
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456 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Programs exhibit both temporal locality, the tendency to reuse recently 
accessed data items, and spatial locality, the tendency to reference data 
items that are close to other recently accessed items. Memory hierarchies 
take advantage of temporal locality by keeping more recently accessed 
data items closer to the processor. Memory hierarchies take advantage of 
spatial locality by moving blocks consisting of multiple contiguous words 
in memory to upper levels of the hierarchy. 

Figure 5.3 shows that a memory hierarchy uses smaller and faster 
memory technologies close to the processor. Thus, accesses that hit in the 
highest level of the hierarchy can be processed quickly. Accesses that miss 
go to lower levels of the hierarchy, which are larger but slower. If the hit 
rate is high enough, the memory hierarchy has an effective access time 
close to that of the highest (and fastest) level and a size equal to that of the 
lowest (and largest) level. 

In most systems, the memory is a true hierarchy, meaning that data 
cannot be present in level i unless it is also present in level i + 1.

The BIG
Picture

FIGURE 5.3 This diagram shows the structure of a memory hierarchy: as the distance 
from the processor increases, so does the size. This structure, with the appropriate operating 
mechanisms, allows the processor to have an access time that is determined primarily by level 1 of the hier-
archy and yet have a memory as large as level n. Maintaining this illusion is the subject of this chapter. 
Although the local disk is normally the bottom of the hierarchy, some systems use tape or a file server over a 
local area network as the next levels of the hierarchy. 

CPU
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Level 2

Level n
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access time
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Which of the following statements are generally true?

1. Caches take advantage of temporal locality.

2. On a read, the value returned depends on which blocks are in the cache.

3. Most of the cost of the memory hierarchy is at the highest level.

4. Most of the capacity of the memory hierarchy is at the lowest level.

  5.2 The Basics of Caches

In our library example, the desk acted as a cache—a safe place to store things 
(books) that we needed to examine. Cache was the name chosen to represent the 
level of the memory hierarchy between the processor and main memory in the first 
commercial computer to have this extra level. The memories in the datapath in 
Chapter 4 are simply replaced by caches. Today, although this remains the dominant 
use of the word cache, the term is also used to refer to any storage managed to take 
advantage of locality of access. Caches first appeared in research computers in the 
early 1960s and in production computers later in that same decade; every general-
purpose computer built today, from servers to low-power embedded pro cessors, 
includes caches. 

In this section, we begin by looking at a very simple cache in which the processor 
requests are each one word and the blocks also consist of a single word. (Readers 
already familiar with cache basics may want to skip to Section 5.3.) Figure 5.4 
shows such a simple cache, before and after requesting a data item that is not 
initially in the cache. Before the request, the cache contains a collection of recent 
references X1, X2, . . . , Xn − 1, and the processor requests a word Xn that is not in 
the cache. This request results in a miss, and the word Xn is brought from memory 
into the cache. 

In looking at the scenario in Figure 5.4, there are two questions to answer: How 
do we know if a data item is in the cache? Moreover, if it is, how do we find it? The 
answers are related. If each word can go in exactly one place in the cache, then it is 
straightforward to find the word if it is in the cache. The simplest way to assign a 
location in the cache for each word in memory is to assign the cache location based 
on the address of the word in memory. This cache structure is called direct mapped, 
since each memory location is mapped directly to exactly one location in the cache. 
The typical mapping between addresses and cache loca tions for a direct-mapped 
cache is usually simple. For example, almost all direct-mapped caches use this 
mapping to find a block:

(Block address) modulo (Number of blocks in the cache)

Check  
Yourself

Cache: a safe place 
for hid ing or storing 
things.

Webster’s New World 
Diction  ary of the 
American Language,  
Third College Edition, 
1988

direct-mapped cache 
A cache structure in which 
each memory location is 
mapped to exactly one 
location in the cache.
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If the number of entries in the cache is a power of 2, then modulo can be com puted  
simply by using the low-order log2 (cache size in blocks) bits of the address. 
Thus, an 8-block cache uses the three lowest bits (8 = 23) of the block address. 
For example, Figure 5.5 shows how the memory addresses between 1ten (00001two) 
and 29ten (11101two) map to locations 1ten (001two) and 5ten (101two) in a direct-
mapped cache of eight words. 

Because each cache location can contain the contents of a number of different 
memory locations, how do we know whether the data in the cache corresponds 
to a requested word? That is, how do we know whether a requested word is in the 
cache or not? We answer this question by adding a set of tags to the cache. The tags 
 contain the address information required to identify whether a word in the cache 
corresponds to the requested word. The tag needs only to contain the upper por-
tion of the address, corresponding to the bits that are not used as an index into the 
cache. For example, in Figure 5.5 we need only have the upper 2 of the 5 address 
bits in the tag, since the lower 3-bit index field of the address selects the block. 
Architects omit the index bits because they are redundant, since by defini tion the 
index field of any address of a cache block must be that block number. 

We also need a way to recognize that a cache block does not have valid infor-
mation. For instance, when a processor starts up, the cache does not have good 
data, and the tag fields will be meaningless. Even after executing many instruc tions, 
some of the cache entries may still be empty, as in Figure 5.4. Thus, we need to 
know that the tag should be ignored for such entries. The most common method 
is to add a valid bit to indicate whether an entry contains a valid address. If the bit 
is not set, there cannot be a match for this block. 

tag A field in a table used 
for a memory hierarchy 
that contains the address 
information required 
to identify whether the 
associated block in the 
hierarchy corre sponds to 
a requested word.

valid bit A field in the 
tables of a memory 
hierarchy that indicates 
that the associated block 
in the hierarchy contains 
valid data.

FIGURE 5.4 The cache just before and just after a reference to a word Xn that is not 
 initially in the cache. This reference causes a miss that forces the cache to fetch Xn from memory and 
insert it into the cache. 
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For the rest of this section, we will focus on explaining how a cache deals with 
reads. In general, handling reads is a little simpler than handling writes, since reads 
do not have to change the contents of the cache. After seeing the basics of how 
reads work and how cache misses can be handled, we’ll examine the cache designs 
for real computers and detail how these caches handle writes. 

Accessing a Cache

Below is a sequence of nine memory references to an empty eight-block cache, 
including the action for each reference. Figure 5.6 shows how the contents of the 
cache change on each miss. Since there are eight blocks in the cache, the low-order 
three bits of an address give the block number:

FIGURE 5.5 A direct-mapped cache with eight entries showing the addresses of memory 
words between 0 and 31 that map to the same cache locations. Because there are eight words in 
the cache, an address X maps to the direct-mapped cache word X modulo 8. That is, the low-order log2(8) = 
3 bits are used as the cache index. Thus, addresses 00001two, 01001two, 10001two, and 11001two all map to entry 
001two of the cache, while addresses 00101two, 01101two, 10101two, and 11101two all map to entry 101two of 
the cache. 

Cache

Memory
00001 10001

01
0

10
0

10
1

11
1

11
0

00
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00
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1

00101 01001 01101 10101 11001 11101
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Decimal address 
of reference

Binary address 
of reference

Hit or miss 
in cache

Assigned cache block 
(where found or placed)

22 10110two miss (5.6b) (10110two mod 8) = 110two

26 11010two miss (5.6c) (11010two mod 8) = 010two

22 10110two hit (10110two mod 8) = 110two

26 11010two hit (11010two mod 8) = 010two

16 10000two miss (5.6d) (10000two mod 8) = 000two

3 00011two miss (5.6e) (00011two mod 8) = 011two

16 10000two hit (10000two mod 8) = 000two

18 10010two miss (5.6f) (10010two mod 8) = 010two

16 10000two hit (10000two mod 8) = 000two

Since the cache is empty, several of the first references are misses; the caption 
of Figure 5.6 describes the actions for each memory reference. On the eighth refer-
ence we have conflicting demands for a block. The word at address 18 (10010two) 
should be brought into cache block 2 (010two). Hence, it must replace the word at 
address 26 (11010two), which is already in cache block 2 (010two). This behavior 
allows a cache to take advantage of temporal locality: recently referenced words 
 replace less recently  referenced words. 

This situation is directly analogous to needing a book from the shelves and 
having no more space on your desk—some book already on your desk must be 
returned to the shelves. In a direct-mapped cache, there is only one place to put the 
newly requested item and hence only one choice of what to replace. 

We know where to look in the cache for each possible address: the low- order bits 
of an address can be used to find the unique cache entry to which the address could 
map. Figure 5.7 shows how a referenced address is divided into 

 ■ A tag field, which is used to compare with the value of the tag field of the 
cache

 ■ A cache index, which is used to select the block

The index of a cache block, together with the tag contents of that block, uniquely 
specifies the memory address of the word contained in the cache block. Because 
the index field is used as an address to reference the cache, and because an n-bit 
field has 2n values, the total number of entries in a direct-mapped cache must be 
a power of 2. In the MIPS architecture, since words are aligned to multiples of 
four bytes, the least significant two bits of every address specify a byte within a 
word. Hence, the least significant two bits are ignored when selecting a word in 
the block. 

The total number of bits needed for a cache is a function of the cache size and 
the address size, because the cache includes both the storage for the data and the 
tags. The size of the block above was one word, but normally it is several. For the 
following situation:



Index V Tag Data Index V Tag Data

000 N 000 N

001 N 001 N

010 N 010 N

011 N 011 N

100 N 100 N

101 N 101 N

110 N 110 Y 10two Memory (10110two)

111 N 111 N

a. The initial state of the cache after power-on b. After handling a miss of address (10110two)

Index V Tag Data Index V Tag Data

000 N 000 Y 10two Memory (10000two)

001 N 001 N

010 Y 11two Memory (11010two) 010 Y 11two Memory (11010two)

011 N 011 N

100 N 100 N

101 N 101 N

110 Y 10two Memory (10110two) 110 Y 10two Memory (10110two)

111 N 111 N

c. After handling a miss of address (11010two) d. After handling a miss of address (10000two)

Index V Tag Data Index V Tag Data

000 Y 10two Memory (10000two) 000 Y 10two Memory (10000two)

001 N 001 N

010 Y 11two Memory (11010two) 010 Y 10two Memory (10010two)

011 Y 00two Memory (00011two) 011 Y 00two Memory (00011two)

100 N 100 N

101 N 101 N

110 Y 10two Memory (10110two) 110 Y 10two Memory (10110two)

111 N 111 N

e. After handling a miss of address (00011two) f. After handling a miss of address (10010two)

FIGURE 5.6 The cache contents are shown after each reference request that misses, with the index and tag fields 
shown in binary for the sequence of addresses on page 460. The cache is initially empty, with all valid bits (V entry in cache) 
turned off (N). The processor requests the following addresses: 10110two (miss), 11010two (miss), 10110two (hit), 11010two (hit), 10000two 
(miss), 00011two (miss), 10000two (hit), 10010two (miss), and 10000two (hit). The figures show the cache contents after each miss in the 
sequence has been handled. When address 10010two (18) is referenced, the entry for address 11010two (26) must be replaced, and a reference to 
11010two will cause a subsequent miss. The tag field will contain only the upper portion of the address. The full address of a word contained in 
cache block i with tag field j for this cache is j × 8 + i, or equivalently the concatenation of the tag field j and the index i. For example, in cache f 
above, index 010two has tag 10two and corresponds to address 10010two. 
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462 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

 ■ 32-bit byte addresses

 ■ A direct-mapped cache 

 ■ The cache size is 2n blocks, so n bits are used for the index

 ■ The block size is 2m words (2m+2 bytes), so m bits are used for the word within 
the block, and two bits are used for the byte part of the address

the size of the tag field is

32 − (n + m + 2).

FIGURE 5.7 For this cache, the lower portion of the address is used to select a cache 
entry consisting of a data word and a tag. This cache holds 1024 words or 4 KB. We assume 32-bit 
addresses in this chapter. The tag from the cache is compared against the upper portion of the address to 
determine whether the entry in the cache corresponds to the requested address. Because the cache has 210 
(or 1024) words and a block size of one word, 10 bits are used to index the cache, leaving 32 − 10 − 2 = 20 bits 
to be compared against the tag. If the tag and upper 20 bits of the address are equal and the valid bit is on, 
then the request hits in the cache, and the word is supplied to the processor. Otherwise, a miss occurs. 

Address (showing bit positions)

Data

Hit

Data

Tag

Valid Tag

3220

Index
0
1
2

1023
1022
1021

=

Index

20 10

Byte
offset

31 30 13 12 11 2   1 0



The total number of bits in a direct-mapped cache is 

2n × (block size + tag size + valid field size). 

Since the block size is 2m words (2m+5 bits), and we need 1 bit for the valid field, the 
number of bits in such a cache is 

2n × (2m × 32 + (32 − n − m − 2) + 1) = 2n × (2m × 32 + 31 − n − m). 

Although this is the actual size in bits, the naming convention is to exclude the size 
of the tag and valid field and to count only the size of the data. Thus, the cache in 
Figure 5.7 is called a 4 KB cache.

Bits in a Cache

How many total bits are required for a direct-mapped cache with 16 KB of data 
and 4-word blocks, assuming a 32-bit address?

We know that 16 KB is 4K (212) words. With a block size of 4 words (22), there 
are 1024 (210) blocks. Each block has 4 × 32 or 128 bits of data plus a tag, which 
is 32 – 10 – 2 – 2 bits, plus a valid bit. Thus, the total cache size is

210 × (4 × 32 + (32 − 10 − 2 − 2) + 1) = 210 × 147 = 147 Kbits

or 18.4 KB for a 16 KB cache. For this cache, the total number of bits in the 
cache is about 1.15 times as many as needed just for the storage of the data.

Mapping an Address to a Multiword Cache Block

Consider a cache with 64 blocks and a block size of 16 bytes. To what block 
number does byte address 1200 map?

We saw the formula on page 457. The block is given by

(Block address) modulo (Number of blocks in the cache) 

EXAMPLE

ANSWER

EXAMPLE

ANSWER
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where the address of the block is

  
Byte address

  ��  
Bytes per block

  

Notice that this block address is the block containing all addresses between

 ⎣   Byte address
  ��  

Bytes per block
   ⎦  × Bytes per block

and

 ⎣   Byte address
  ��  

Bytes per block
   ⎦  × Bytes per block + (Bytes per block − 1)

Thus, with 16 bytes per block, byte address 1200 is block address

 ⎣   1200 ____ 16   ⎦  = 75

which maps to cache block number (75 modulo 64) = 11. In fact, this block 
maps all addresses between 1200 and 1215.

Larger blocks exploit spatial locality to lower miss rates. As Figure 5.8 shows, 
increasing the block size usually decreases the miss rate. The miss rate may go up 
eventually if the block size becomes a significant fraction of the cache size, because 
the number of blocks that can be held in the cache will become small, and there will 
be a great deal of competition for those blocks. As a result, a block will be bumped 
out of the cache before many of its words are accessed. Stated alterna tively, spatial 
locality among the words in a block decreases with a very large block; consequently, 
the benefits in the miss rate become smaller.

A more serious problem associated with just increasing the block size is that the 
cost of a miss increases. The miss penalty is determined by the time required to fetch 
the block from the next lower level of the hierarchy and load it into the cache. The 
time to fetch the block has two parts: the latency to the first word and the transfer 
time for the rest of the block. Clearly, unless we change the memory system, the 
transfer time—and hence the miss penalty—will likely increase as the block size 
increases. Furthermore, the improvement in the miss rate starts to decrease as the 
blocks become larger. The result is that the increase in the miss penalty overwhelms 
the decrease in the miss rate for blocks that are too large, and cache performance 
thus decreases. Of course, if we design the memory to transfer larger blocks more 
efficiently, we can increase the block size and  obtain further improvements in cache 
performance. We discuss this topic in the next section.



Elaboration: Although it is hard to do anything about the longer latency component of 
the miss penalty for large blocks, we may be able to hide some of the transfer time so 
that the miss penalty is effectively smaller. The simplest method for doing this, called 
early restart, is sim ply to resume execution as soon as the requested word of the block 
is returned, rather than wait for the entire block. Many processors use this technique 
for instruction access, where it works best. Instruction accesses are largely sequential, 
so if the memory system can deliver a word every clock cycle, the processor may be 
able to restart operation when the requested word is returned, with the memory system 
delivering new instruction words just in time. This technique is usually less effective 
for data caches because it is likely that the words will be requested from the block in a 
less predictable way, and the probability that the processor will need another word from 
a different cache block before the transfer completes is high. If the processor cannot 
access the data cache because a transfer is ongoing, then it must stall.

An even more sophisticated scheme is to organize the memory so that the requested 
word is transferred from the memory to the cache first. The remainder of the block 
is then transferred, starting with the address after the requested word and wrapping 
around to the beginning of the block. This technique, called requested word first or 
critical word first, can be slightly faster than early restart, but it is limited by the same 
properties that limit early restart. 

Handling Cache Misses

Before we look at the cache of a real system, let’s see how the control unit deals 
with cache misses. (We describe a cache controller in detail in Section 5.7). The 
control unit must detect a miss and process the miss by fetching the requested data 

cache miss A request for 
data from the cache that 
cannot be filled because 
the data is not present in 
the cache.

FIGURE 5.8 Miss rate versus block size. Note that the miss rate actually goes up if the block size is 
too large relative to the cache size. Each line represents a cache of different size. (This figure is independent 
of associativity, discussed soon.) Unfortunately, SPEC CPU2000 traces would take too long if block size were 
included, so this data is based on SPEC92. 
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from memory (or, as we shall see, a lower-level cache). If the cache reports a hit, the 
computer continues using the data as if nothing happened. 

Modifying the control of a processor to handle a hit is trivial;  misses, however, 
require some extra work. The cache miss handling is done in collaboration with 
the processor con trol unit and with a separate controller that initiates the memory 
access and refills the cache. The processing of a cache miss creates a pipeline stall 
(Chapter 4) as opposed to an interrupt, which would require saving the state of 
all registers. For a cache miss, we can stall the entire processor, essentially freezing 
the contents of the temporary and programmer-visible registers, while we wait 
for memory. More sophisticated out-of-order processors can allow execution of 
instructions while waiting for a cache miss, but we’ll assume in-order processors 
that stall on cache misses in this section.

Let’s look a little more closely at how instruction misses are handled; the same 
approach can be easily extended to handle data misses. If an instruction access 
results in a miss, then the content of the Instruction register is invalid. To get 
the proper instruction into the cache, we must be able to instruct the lower level 
in the memory hierarchy to perform a read. Since the program counter is incre-
mented in the first clock cycle of execution, the address of the instruction that 
generates an instruction cache miss is equal to the value of the program counter 
minus 4. Once we have the address, we need to instruct the main memory to per-
form a read. We wait for the memory to respond (since the access will take multi-
ple clock cycles), and then write the words containing the desired instruction into 
the cache. 

We can now define the steps to be taken on an instruction cache miss:

1. Send the original PC value (current PC – 4) to the memory.

2. Instruct main memory to perform a read and wait for the memory to com-
plete its access.

3. Write the cache entry, putting the data from memory in the data portion of 
the entry, writing the upper bits of the address (from the ALU) into the tag 
field, and turning the valid bit on.

4. Restart the instruction execution at the first step, which will refetch the 
instruction, this time finding it in the cache.

 The control of the cache on a data access is essentially identical: on a miss, we 
simply stall the processor until the memory responds with the data. 

Handling Writes

Writes work somewhat differently. Suppose on a store instruction, we wrote the 
data into only the data cache (without changing main memory); then, after the 
write into the cache, memory would have a different value from that in the cache. 
In such a case, the cache and memory are said to be inconsistent. The simplest way 



to keep the main memory and the cache consistent is always to write the data into 
both the memory and the cache. This scheme is called write-through. 

The other key aspect of writes is what occurs on a write miss. We first fetch the 
words of the block from memory. After the block is fetched and placed into the 
cache, we can overwrite the word that caused the miss into the cache block. We also 
write the word to main memory using the full address.

Although this design handles writes very simply, it would not provide very good 
performance. With a write-through scheme, every write causes the data to be written 
to main memory. These writes will take a long time, likely at least 100 processor clock 
cycles, and could slow down the processor considerably. For example, suppose 10% 
of the instructions are stores. If the CPI without cache misses was 1.0, spending 100 
extra cycles on every write would lead to a CPI of 1.0 + 100 × 10% = 11, reducing 
performance by more than a factor of 10.

One solution to this problem is to use a write buffer. A write buffer stores the 
data while it is waiting to be written to memory. After writing the data into the 
cache and into the write buffer, the processor can continue execution. When a write 
to main memory completes, the entry in the write buffer is freed. If the write buffer 
is full when the processor reaches a write, the processor must stall until there is an 
empty position in the write buffer. Of course, if the rate at which the memory can 
complete writes is less than the rate at which the processor is gener ating writes, no 
amount of buffering can help, because writes are being generated faster than the 
memory system can accept them. 

The rate at which writes are generated may also be less than the rate at which the 
memory can accept them, and yet stalls may still occur. This can  happen when the 
writes occur in bursts. To reduce the occurrence of such stalls, processors usu ally 
increase the depth of the write buffer beyond a single entry.

The alternative to a write-through scheme is a scheme called write-back or 
copy back. In a write-back scheme, when a write occurs, the new value is written 
only to the block in the cache. The modi fied block is written to the lower level of 
the hierarchy when it is re placed. Write-back schemes can improve performance, 
especially when processors can generate writes as fast or faster than the writes can 
be handled by main memory; a write-back scheme is, however, more complex to 
implement than write-through.

In the rest of this section, we describe caches from real processors, and we 
examine how they handle both reads and writes. In Section 5.5, we will describe 
the handling of writes in more detail.

Elaboration: Writes introduce several complications into caches that are not present 
for reads. Here we discuss two of them: the policy on write misses and efficient 
implementation of writes in write-back caches. 

Consider a miss in a write-through cache. The most common strategy is to allocate a 
block in the cache, called write allocate. The block is fetched from memory and then the 
appropriate portion of the block is overwritten. An alternative strategy is to update the portion 
of the block in memory but not put it in the cache, called no write allocate. The motiva tion is 

write-through A scheme 
in which writes always 
update both the cache 
and the next lower level 
of the memory hierarchy, 
ensuring that data is 
always con sistent between 
the two.

write buffer A queue 
that holds data while 
the data is waiting to be 
written to memory.

write-back A scheme 
that han dles writes by 
updating values only to 
the block in the cache, 
then writing the modified 
block to the lower level 
of the hierar chy when the 
block is replaced.
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that some times programs write entire blocks of data, such as when the operating system 
zeros a page of memory. In such cases, the fetch associated with the initial write miss may 
be unnecessary. Some computers allow the write allocation policy to be changed on a per 
page basis.

Actually implementing stores efficiently in a cache that uses a write-back strategy is 
more complex than in a write-through cache. A write-through cache can write the data 
into the cache and read the tag; if the tag mismatches, then a miss occurs. Because the 
cache is write-through, the overwriting of the block in the cache is not catastrophic, since 
memory has the correct value. In a write-back cache, we must first write the block back 
to memory if the data in the cache is modified and we have a cache miss. If we simply 
overwrote the block on a store instruction before we knew whether the store had hit in 
the cache (as we could for a write-through cache), we would destroy the contents of the 
block, which is not backed up in the next lower level of the mem ory hierarchy. 

In a write-back cache, because we cannot overwrite the block, stores either require 
two cycles (a cycle to check for a hit followed by a cycle to actually perform the write) or 
require a write buffer to hold that data—effectively allowing the store to take only one 
cycle by pipelining it. When a store buffer is used, the processor does the cache lookup 
and places the data in the store buffer during the normal cache access cycle. Assuming 
a cache hit, the new data is written from the store buffer into the cache on the next 
unused cache access cycle. 

By comparison, in a write-through cache, writes can always be done in one cycle. 
We read the tag and write the data portion of the selected block. If the tag matches 
the address of the block being written, the processor can continue normally, since the 
correct block has been updated. If the tag does not match, the processor generates a 
write miss to fetch the rest of the block corresponding to that address. 

Many write-back caches also include write buffers that are used to reduce the miss 
penalty when a miss replaces a modified block. In such a case, the modified block is 
moved to a write-back buffer associated with the cache while the requested block is read 
from memory. The write-back buffer is later written back to mem ory. Assuming another 
miss does not occur immedi ately, this technique halves the miss penalty when a dirty 
block must be replaced.

An Example Cache: The Intrinsity FastMATH Processor

The Intrinsity FastMATH is a fast embedded microprocessor that uses the MIPS 
architecture and a simple cache implementation. Near the end of the chapter, we 
will examine the more complex cache design of the AMD Opteron X4 (Barcelona), 
but we start with this simple, yet real, example for pedagogical reasons. Figure 5.9 
shows the organization of the Intrinsity FastMATH data cache.

This processor has a 12-stage pipeline, similar to that discussed late in Chapter 4. 
When operating at peak speed, the processor can request both an instruction word 
and a data word on every clock. To satisfy the demands of the pipeline with out 
stalling, separate instruction and data caches are used. Each cache is 16 KB, or 4K 
words, with 16-word blocks. 

Read requests for the cache are straightforward. Because there are separate 
data and instruction caches, we need separate control signals to read and write 



each cache. (Remember that we need to update the instruction cache when a miss 
occurs.) Thus, the steps for a read request to either cache are as follows:

1. Send the address to the appropriate cache. The address comes either from 
the PC (for an instruction) or from the ALU (for data).

2. If the cache signals hit, the requested word is available on the data lines. 
Since there are 16 words in the desired block, we need to select the right one. 
A block index field is used to control the multiplexor (shown at the bottom 
of the figure), which selects the requested word from the 16 words in the 
indexed block.

FIGURE 5.9 The 16 KB caches in the Intrinsity FastMATH each contain 256 blocks with 16 words per block. The tag field 
is 18 bits wide and the index field is 8 bits wide, while a 4-bit field (bits 5–2) is used to index the block and select the word from the block using 
a 16-to-1 multi plexor. In practice, to eliminate the multiplexor, caches use a separate large RAM for the data and a smaller RAM for the tags, 
with the block offset supply ing the extra address bits for the large data RAM. In this case, the large RAM is 32 bits wide and must have 16 times 
as many words as blocks in the cache. 
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3. If the cache signals miss, we send the address to the main memory. When the 
memory returns with the data, we write it into the cache and then read it to 
fulfill the request.

For writes, the Intrinsity FastMATH offers both write-through and write-back, 
leaving it up to the operating system to decide which strategy to use for an appli-
cation. It has a one-entry write buffer.

Instruction miss rate Data miss rate Effective combined miss rate

0.4% 11.4% 3.2%

FIGURE 5.10 Approximate instruction and data miss rates for the Intrinsity FastMATH 
processor for SPEC CPU2000 benchmarks. The combined miss rate is the effective miss rate seen for 
the combination of the 16 KB instruction cache and 16 KB data cache. It is obtained by weighting the instruc-
tion and data individual miss rates by the frequency of instruction and data references. 

What cache miss rates are attained with a cache structure like that used by the 
Intrinsity FastMATH? Figure 5.10 shows the miss rates for the instruction and 
data caches. The combined miss rate is the effective miss rate per reference for 
each program after accounting for the differing frequency of instruction and data 
accesses.

Although miss rate is an important characteristic of cache designs, the ultimate 
measure will be the effect of the memory system on program execution time; we’ll 
see how miss rate and execution time are related shortly. 

Elaboration: A combined cache with a total size equal to the sum of the two split 
caches will usually have a better hit rate. This higher rate occurs because the combined 
cache does not rigidly divide the number of entries that may be used by instructions from 
those that may be used by data. Nonetheless, many processors use a split instruction 
and data cache to increase cache bandwidth. (There may also be fewer conflict misses; 
see Section 5.5.)

Here are miss rates for caches the size of those found in the Intrinsity FastMATH 
processor, and for a combined cache whose size is equal to the sum of the two caches:

 ■ Total cache size: 32 KB

 ■ Split cache effective miss rate: 3.24%

 ■ Combined cache miss rate: 3.18%

The miss rate of the split cache is only slightly worse.
The advantage of doubling the cache bandwidth, by supporting both an instruction and 

data access simultaneously, easily overcomes the disadvantage of a slightly increased 
miss rate. This observation cautions us that we cannot use miss rate as the sole 
measure of cache per formance, as Section 5.3 shows.

split cache A scheme 
in which a level of the 
memory  hierarchy 
is composed of two 
independent caches that 
operate in parallel with 
each other, with one 
 handling instructions and 
one handling data.



Designing the Memory System to Support Caches

Cache misses are satisfied from main memory, which is constructed from DRAMs. 
In Section 5.1, we saw that the primary emphasis with DRAMs is on cost and 
density. Although it is difficult to reduce the latency to fetch the first word from 
memory, we can reduce the miss penalty if we increase the bandwidth from the 
memory to the cache. This reduction allows larger block sizes to be used while still 
maintaining a low miss penalty, similar to that for a smaller block. 

The processor is traditionally connected to memory over a bus. (As we’ll see 
in Chapter 6, that tradition is changing, but the actual interconnect technology 
doesn’t matter in this chapter, so we’ll use the term bus.) The clock rate of the bus 
is usually much slower than the processor. The speed of this bus affects the miss 
penalty.

To understand the impact of different organizations of memory, let’s define a set 
of hypothetical memory access times. Assume 

 ■ 1 memory bus clock cycle to send the address

 ■ 15 memory bus clock cycles for each DRAM access initiated

 ■ 1 memory bus clock cycle to send a word of data

If we have a cache block of four words and a one-word-wide bank of DRAMs, 
the miss penalty would be 1 + 4 × 15 + 4 × 1 = 65 memory bus clock cycles. Thus, 
the number of bytes transferred per bus clock cycle for a single miss would be

  4 × 4 � 
65

   = 0.25

Figure 5.11 shows three options for designing the memory system. The first 
option follows what we have been assuming: memory is one word wide, and all 
accesses are made sequentially. The second option increases the bandwidth to 
memory by widening the memory and the buses between the processor and mem-
ory; this allows parallel access to multiple words of the block. The third option 
increases the bandwidth by widening the memory but not the interconnection 
bus. Thus, we still pay a cost to transmit each word, but we can avoid paying the 
cost of the access latency more than once. Let’s look at how much these other two 
options improve the 65-cycle miss penalty that we would see for the first option in 
Figure 5.11(a). 

Increasing the width of the memory and the bus will increase the memory 
bandwidth proportionally, decreasing both the access time and transfer time 
portions of the miss penalty. With a main memory width of two words, the miss 
pen alty drops from 65 memory bus clock cycles to 1 + (2 × 15) + 2 × 1 = 33 memory 
bus clock cycles. The bandwidth for a  single miss is then 0.48 (almost twice as high) 
bytes per bus clock cycle for a memory that is two words wide. The major costs of 
this enhancement are the wider bus and the potential increase in cache access time 
due to the multiplexor and control logic between the processor and cache. 
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Instead of making the entire path between the memory and cache wider, the 
memory chips can be organized in banks to read or write multiple words in one 
access time rather than reading or writing a single word each time. Each bank could 
be one word wide so that the width of the bus and the cache need not change, 
but sending an address to several banks permits them all to read simulta neously. 
This scheme, which is called interleaving, retains the advantage of incur ring the 
full memory latency only once. For example, with four banks, the time to get a 
four-word block would consist of 1 cycle to transmit the address and read request 
to the banks, 15 cycles for all four banks to access memory, and 4 cycles to send the 
four words back to the cache. This yields a miss penalty of 1 + (1 × 15) + 4 × 1 = 20 
memory bus clock cycles. This is an effective bandwidth per miss of 0.80 bytes per 
clock, or about three times the bandwidth for the one-word-wide  memory and bus. 

FIGURE 5.11 The primary method of achieving higher memory bandwidth is to increase the physical or logical width 
of the memory system. In this figure, memory bandwidth is improved two ways. The simplest design, (a), uses a memory where all 
components are one word wide; (b) shows a wider memory, bus, and cache; while (c) shows a narrow bus and cache with an interleaved 
memory. In (b), the logic between the cache and processor consists of a multiplexor used on reads and control logic to update the appropriate 
words of the cache on writes. 
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Banks are also valuable on writes. Each bank can write indepen dently, quadrupling 
the write bandwidth and leading to fewer stalls in a write-through cache. As we will 
see, an alternative strategy for writes makes interleaving even more attractive. 

Because of the ubiquity of caches and the desire for larger block sizes, DRAM 
manufacturers provide for a burst access to data from a series of sequential loca-
tions in the DRAM. The newest development is Double Data Rate (DDR) DRAMs. 
The name means data transfers on both the leading and falling edge of the clock, 
thereby getting twice as much bandwidth as you might expect based on the clock 
rate and the data width. To deliver such high bandwidth, the internal DRAM is 
organized as interleaved memory banks.

The advantage of such optimizations is that they use the circuitry already 
largely on the DRAMs, adding little cost to the system while achieving a signifi cant 
improvement in bandwidth. Section C.9 of  Appendix C describes the internal 
architecture of DRAMs and how these optimizations are implemented.

Elaboration: Memory chips are organized to produce a number of output bits, usually 
4 to 32, with 16 being the most popular in 2008. We describe the organization of a RAM 
as d × w, where d is the number of addressable locations (the depth) and w is the output 
(or width of each location). DRAMs are logically organized as rectangular arrays, and 
access time is divided into row access and column ac cess. DRAMs buffer a row. Burst 
transfers allow repeated accesses to the buffer without a row access time. The buffer 
acts like an SRAM; by changing column address, random bits can be accessed in the 
buffer until the next row access. This capability changes the access time significantly, 
since the access time to bits in the row is much lower. Figure 5.12 shows how the 
density, cost, and access time of DRAMs have changed over the years. 

To improve the interface to processors, DRAMs added clocks and are properly called 
Syn chronous DRAMs or SDRAMs. The advantage of SDRAMs is that the use of a clock 
elimi nates the time for the memory and processor to synchronize.

Elaboration: One way to measure the performance of the memory system behind the 
caches is the Stream benchmark [McCalpin, 1995]. It measures the performance of long 
vector operations. They have no temporal locality and they access arrays that are larger 
than the cache of the computer being tested.

Elaboration: The burst mode for DDR memory is also found on memory buses, such 
as the Intel Duo Core Front Side Bus.
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Year introduced Chip size $ per GB
Total access time to 
a new row/column

Column access 
time to existing row

1980 64 Kbit $1,500,000 250 ns 150 ns

1983 256 Kbit $500,000 185 ns 100 ns

1985 1 Mbit $200,000 135 ns 40 ns

1989 4 Mbit $50,000 110 ns 40 ns

1992 16 Mbit $15,000 90 ns 30 ns

1996 64 Mbit $10,000 60 ns 12 ns

1998 128 Mbit $4,000 60 ns 10 ns

2000 256 Mbit $1,000 55 ns 7 ns

2004 512 Mbit $250 50 ns 5 ns

2007 1 Gbit $50 40 ns 1.25 ns

FIGURE 5.12 DRAM size increased by multiples of four approximately once every three 
years until 1996, and thereafter considerably slower. The improvements in access time have been 
slower but continuous, and cost roughly tracks density improvements, although cost is often affected by 
other issues, such as availability and demand. The cost per gigabyte is not adjusted for inflation. 

Summary

We began the previous section by examining the simplest of caches: a direct-mapped 
cache with a one-word block. In such a cache, both hits and misses are simple, since 
a word can go in exactly one location and there is a separate tag for every word. To 
keep the cache and memory consistent, a write-through scheme can be used, so 
that every write into the cache also causes memory to be updated. The alternative 
to write-through is a write-back scheme that copies a block back to memory when 
it is replaced; we’ll discuss this scheme further in upcoming sections.

To take advantage of spatial locality, a cache must have a block size larger than 
one word. The use of a larger block decreases the miss rate and improves the effi-
ciency of the cache by reducing the amount of tag storage relative to the amount of 
data storage in the cache. Although a larger block size decreases the miss rate, it can 
also increase the miss penalty. If the miss penalty increased linearly with the block 
size, larger blocks could easily lead to lower performance. 

To avoid performance loss, the bandwidth of main memory is increased to 
transfer cache blocks more efficiently. Common methods for increasing bandwidth 
external to the DRAM are making the memory wider and interleaving. DRAM 
designers have steadily improved the interface between the processor and memory 
to increase the bandwidth of burst mode transfers to reduce the cost of larger cache 
block sizes.



The speed of the memory system affects the designer’s decision on the size of the 
cache block. Which of the following cache designer guidelines are generally valid?

1. The shorter the memory latency, the smaller the cache block

2. The shorter the memory latency, the larger the cache block

3. The higher the memory bandwidth, the smaller the cache block

4. The higher the memory bandwidth, the larger the cache block

 5.3  
Measuring and Improving Cache 
Performance

In this section, we begin by examining ways to measure and analyze cache perfor-
mance. We then explore two different techniques for improving cache  performance. 
One focuses on reducing the miss rate by reducing the probability that two differ-
ent memory blocks will contend for the same cache location. The sec ond tech-
nique reduces the miss penalty by adding an additional level to the hier archy. This 
technique, called multilevel caching, first appeared in high-end computers selling 
for more than $100,000 in 1990; since then it has become common on desktop 
computers selling for less than $500!

CPU time can be divided into the clock cycles that the CPU spends executing 
the program and the clock cycles that the CPU spends waiting for the memory 
system. Normally, we assume that the costs of cache accesses that are hits are part 
of the normal CPU execution cycles. Thus,

 CPU time = (CPU execution clock cycles + Memory-stall clock cycles) 
  × Clock cycle time

The memory-stall clock cycles come primarily from cache misses, and we make 
that assumption here. We also restrict the discussion to a simplified model of the 
memory system. In real processors, the stalls generated by reads and writes can be 
quite complex, and accurate performance prediction usually requires very detailed 
simulations of the processor and memory system.

Memory-stall clock cycles can be defined as the sum of the stall cycles coming 
from reads plus those coming from writes:

Memory-stall clock cycles = Read-stall cycles + Write-stall cycles

Check  
Yourself
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The read-stall cycles can be defined in terms of the number of read accesses per 
program, the miss penalty in clock cycles for a read, and the read miss rate:

Read-stall cycles =   Reads � 
Program

   × Read miss rate × Read miss penalty

Writes are more complicated. For a write-through scheme, we have two sources of 
stalls: write misses, which usually require that we fetch the block before continu-
ing the write (see the Elaboration on page 467 for more details on dealing with 
writes), and write buffer stalls, which occur when the write buffer is full when a 
write occurs. Thus, the cycles stalled for writes equals the sum of these two:

Write-stall cycles =  (   Writes � 
Program

   × Write miss rate × Write miss penalty ) 
+ Write buffer stalls

Because the write buffer stalls depend on the proximity of writes, and not just 
the frequency, it is not possible to give a simple equation to compute such stalls. 
For tunately, in systems with a reasonable write buffer depth (e.g., four or more 
words) and a memory capable of accepting writes at a rate that significantly exceeds 
the average write frequency in programs (e.g., by a factor of 2), the write buffer 
stalls will be small, and we can safely ignore them. If a system did not meet these 
criteria, it would not be well designed; instead, the designer should have used either 
a deeper write buffer or a write-back organization.

Write-back schemes also have potential additional stalls arising from the need 
to write a cache block back to memory when the block is replaced. We will discuss 
this more in Section 5.5.

In most write-through cache organizations, the read and write miss penalties 
are the same (the time to fetch the block from memory). If we assume that the 
write buffer stalls are negligible, we can combine the reads and writes by using a 
single miss rate and the miss penalty:

Memory-stall clock cycles =   
Memory accesses

  �� 
Program

   × Miss rate × Miss penalty

We can also factor this as

Memory-stall clock cycles =   Instructions � 
Program

   ×   Misses � 
Instruction

   × Miss penalty

Let’s consider a simple example to help us understand the impact of cache perfor-
mance on processor performance.



Calculating Cache Performance

Assume the miss rate of an instruction cache is 2% and the miss rate of the 
data cache is 4%. If a processor has a CPI of 2 without any memory stalls and 
the miss penalty is 100 cycles for all misses, determine how much faster a pro-
cessor would run with a perfect cache that never missed. Assume the frequen cy 
of all loads and stores is 36%.

The number of memory miss cycles for instructions in terms of the Instruc-
tion count (I) is

Instruction miss cycles = I × 2% × 100 = 2.00 × I

As the frequency of all loads and stores is 36%, we can find the number of 
memory miss cycles for data references:

Data miss cycles = I × 36% × 4% × 100 = 1.44 × I

The total number of memory-stall cycles is 2.00 I + 1.44 I = 3.44 I. This is 
more than three cycles of memory stall per instruction. Accordingly, the total 
CPI including memory stalls is 2 + 3.44 = 5.44. Since there is no change in 
instruction count or clock rate, the ratio of the CPU execution times is

  CPU time with stalls  ���   
CPU time with perfect cache

   =   
I × CPIstall × Clock cycle

  ���   
I × CPIperfect × Clock cycle

  

=   
CPIstall � 

CPIperfect
   =   5.44 � 

2
  

The performance with the perfect cache is better by   5.44 � 
2

   = 2.72.

What happens if the processor is made faster, but the memory system is not? The 
amount of time spent on memory stalls will take up an increasing fraction of the 
execution time; Amdahl’s law, which we examined in Chapter 1, reminds us of this 
fact. A few simple examples show how serious this problem can be. Suppose we 
speed-up the computer in the previous example by reducing its CPI from 2 to 1 
without changing the clock rate, which might be done with an improved pipeline. 
The system with cache misses would then have a CPI of 1 + 3.44 = 4.44, and the 
system with the perfect cache would be

EXAMPLE

ANSWER
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  4.44 � 
1

   = 4.44 times faster.

The amount of execution time spent on memory stalls would have risen from

  3.44 � 
5.44

   = 63%

to

  3.44 � 
4.44

   = 77%.

Similarly, increasing the clock rate without changing the memory system also 
increases the performance lost due to cache misses.

The previous examples and equations assume that the hit time is not a fac tor in 
determining cache performance. Clearly, if the hit time increases, the total time to 
access a word from the memory system will increase, possibly causing an increase 
in the processor cycle time. Although we will see addi tional examples of what 
can increase hit time shortly, one example is increas ing the cache size. A larger 
cache could clearly have a longer access time, just as, if your desk in the library 
was very large (say, 3 square meters), it would take longer to locate a book on the 
desk. An increase in hit time likely adds another stage to the pipeline, since it may 
take multiple cycles for a cache hit. Although it is more complex to calculate the 
performance impact of a deeper pipeline, at some point the increase in hit time for 
a larger cache could domi nate the improvement in hit rate, leading to a decrease in 
processor performance. 

To capture the fact that the time to access data for both hits and misses affects 
performance, designers sometime use average memory access time (AMAT) as a way 
to examine alternative cache designs. Average memory access time is the average 
time to access memory considering both hits and misses and the frequency of 
different accesses; it is equal to the following:

AMAT = Time for a hit + Miss rate × Miss penalty

Calculating Average Memory Access Time

Find the AMAT for a processor with a 1 ns clock cycle time, a miss penalty of 
20 clock cycles, a miss rate of 0.05 misses per instruction, and a cache access 
time (in cluding hit detection) of 1 clock cycle. Assume that the read and write 
miss penalties are the same and ignore other write stalls. 

EXAMPLE



The average memory access time per instruction is

AMAT = Time for a hit + Miss rate × Miss penalty

 = 1 + 0.05 × 20

 = 2 clock cycles

or 2 ns.

The next subsection discusses alternative cache organizations that decrease 
miss rate but may sometimes increase hit time; additional examples appear in 
Section 5.11, Fallacies and Pitfalls.

Reducing Cache Misses by More Flexible Placement 
of Blocks

So far, when we place a block in the cache, we have used a simple placement 
scheme: A block can go in exactly one place in the cache. As mentioned earlier, it is 
called direct mapped because there is a direct mapping from any block address in 
memory to a single location in the upper level of the hierarchy. However, there is 
actually a whole range of schemes for placing blocks. Direct mapped, where a block 
can be placed in exactly one location, is at one extreme.

At the other extreme is a scheme where a block can be placed in any location 
in the cache. Such a scheme is called fully associative, because a block in memory 
may be associated with any entry in the cache. To find a given block in a fully asso-
ciative cache, all the entries in the cache must be searched because a block can be 
placed in any one. To make the search practical, it is done in parallel with a com-
parator associated with each cache entry. These comparators significantly increase 
the hardware cost, effectively making fully associative placement practical only for 
caches with small numbers of blocks. 

The middle range of designs between direct mapped and fully associative is called 
set associative. In a set-associative cache, there are a fixed number of  locations 
where each block can be placed. A set-associative cache with n loca tions for a block 
is called an n-way set-associative cache. An n-way set-associa tive cache consists of a 
number of sets, each of which consists of n blocks. Each block in the memory maps 
to a unique set in the cache given by the index field, and a block can be placed in 
any element of that set. Thus, a set-associative placement combines direct-mapped 

ANSWER

fully associative cache 
A cache structure in 
which a block can be 
placed in any location in 
the cache.

set-associative cache 
A cache that has a fixed 
number of loca tions (at 
least two) where each 
block can be placed.
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placement and fully associative placement: a block is directly mapped into a set, 
and then all the blocks in the set are searched for a match. For example, Figure 5.13 
shows where block 12 may be placed in a cache with eight blocks total, accord ing 
to the three block place ment policies. 

Remember that in a direct-mapped cache, the position of a memory block is 
given by

(Block number) modulo (Number of blocks in the cache)

In a set-associative cache, the set containing a memory block is given by

(Block number) modulo (Number of sets in the cache)

Since the block may be placed in any element of the set, all the tags of all the elements 
of the set must be searched. In a fully associative cache, the block can go anywhere, 
and all tags of all the blocks in the cache must be searched. 

FIGURE 5.13 The location of a memory block whose address is 12 in a cache with eight blocks varies for direct-
mapped, set-associative, and fully associative placement. In direct-mapped placement, there is only one cache block where 
memory block 12 can be found, and that block is given by (12 modulo 8) = 4. In a two-way set-associative cache, there would be four sets, 
and memory block 12 must be in set (12 mod 4) = 0; the memory block could be in either element of the set. In a fully associative placement, 
the memory block for block address 12 can appear in any of the eight cache blocks. 
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We can also think of all block placement strategies as a variation on set 
associativity. Figure 5.14 shows the possible associativity structures for an eight-
block cache. A direct-mapped cache is simply a one-way set-associative cache: 
each cache entry holds one block and each set has one element. A fully associative 
cache with m entries is simply an m-way set-associative cache; it has one set with 
m blocks, and an entry can reside in any block within that set.

FIGURE 5.14 An eight-block cache configured as direct mapped, two-way set associa tive, four-way set associative, 
and fully associative. The total size of the cache in blocks is equal to the number of sets times the associativity. Thus, for a fixed cache 
size, increasing the associativity decreases the number of sets while increasing the number of elements per set. With eight blocks, an eight-way 
set-associative cache is the same as a fully associative cache. 
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(direct mapped)

The advantage of increasing the degree of associativity is that it usually decreases 
the miss rate, as the next example shows. The main disadvantage, which we discuss 
in more detail shortly, is a potential increase in the hit time.
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Misses and Associativity in Caches

Assume there are three small caches, each consisting of four one-word blocks. 
One cache is fully associative, a second is two-way set-associative, and the third 
is direct-mapped. Find the number of misses for each cache organiza tion given 
the following sequence of block addresses: 0, 8, 0, 6, and 8.

The direct-mapped case is easiest. First, let’s determine to which cache block 
each block address maps:

Block address Cache block

0 (0 modulo 4) = 0

6 (6 modulo 4) = 2

8 (8 modulo 4) = 0

Now we can fill in the cache contents after each reference, using a blank  entry 
to mean that the block is invalid, colored text to show a new entry added to 
the cache for the associated reference, and plain text to show an old entry in 
the cache:

Address of memory 
block accessed

Hit 
or miss

Contents of cache blocks after reference

0 1 2 3

0 miss Memory[0]

8 miss Memory[8]

0 miss Memory[0]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

The direct-mapped cache generates five misses for the five accesses.
The set-associative cache has two sets (with indices 0 and 1) with two 

elements per set. Let’s first determine to which set each block address maps:

Block address Cache set

0 (0 modulo 2) = 0

6 (6 modulo 2) = 0

8 (8 modulo 2) = 0

EXAMPLE

ANSWER



Because we have a choice of which entry in a set to replace on a miss, we need 
a replacement rule. Set-associative caches usually replace the least recently 
used block within a set; that is, the block that was used furthest in the past 
is replaced. (We will discuss other replacement rules in more detail shortly.) 
Using this replacement rule, the contents of the set-associative cache after each 
reference looks like this:

Address of memory 
block accessed

Hit 
or miss

Contents of cache blocks after reference

Set 0 Set 0 Set 1 Set 1

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

Notice that when block 6 is referenced, it replaces block 8, since block 8 has 
been less recently referenced than block 0. The two-way set-associative cache 
has four misses, one less than the direct-mapped cache. 

The fully associative cache has four cache blocks (in a single set); any 
memory block can be stored in any cache block. The fully associative cache has 
the best performance, with only three misses:

Address of memory 
block accessed

Hit 
or miss

Contents of cache blocks after reference

Block 0 Block 1 Block 2 Block 3

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[8] Memory[6]

8 hit Memory[0] Memory[8] Memory[6]

For this series of references, three misses is the best we can do, because 
three unique block addresses are accessed. Notice that if we had eight blocks 
in the cache, there would be no replacements in the two-way set-associative 
cache (check this for yourself), and it would have the same number of misses 
as the fully associative cache. Similarly, if we had 16 blocks, all 3 caches would 
have the same number of misses. Even this trivial example shows that cache 
size and associativity are not independent in determining cache perfor mance.
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How much of a reduction in the miss rate is achieved by associativity? Figure 5.15 
shows the improvement for a 64 KB data cache with a 16-word block, and associa-
tivity ranging from direct mapped to eight-way. Going from one-way to two-
way associativity decreases the miss rate by about 15%, but there is little further 
improvement in going to higher associativity.

Associativity Data miss rate

1 10.3%

2 8.6%

4 8.3%

8 8.1%

FIGURE 5.15 The data cache miss rates for an organization like the Intrinsity FastMATH 
processor for SPEC CPU2000 benchmarks with associativity varying from one-way to 
eight-way. These results for 10 SPEC CPU2000 programs are from Hennessy and Patterson [2003]. 

Locating a Block in the Cache

Now, let’s consider the task of finding a block in a cache that is set associative. 
Just as in a direct-mapped cache, each block in a set-associative cache includes an 
address tag that gives the block address. The tag of every cache block within the 
appropriate set is checked to see if it matches the block address from the proces-
sor. Figure 5.16 decomposes the address. The index value is used to select the set 
containing the address of interest, and the tags of all the blocks in the set must be 
searched. Because speed is of the essence, all the tags in the selected set are searched 
in parallel. As in a fully associative cache, a sequential search would make the hit 
time of a set-associative cache too slow.

Block offsetTag Index

FIGURE 5.16 The three portions of an address in a set-associative or direct-mapped 
cache. The index is used to select the set, then the tag is used to choose the block by comparison with the 
blocks in the selected set. The block offset is the address of the desired data within the block. 

If the total cache size is kept the same, increasing the associativity increases the 
number of blocks per set, which is the number of simultaneous compares needed 
to perform the search in parallel: each increase by a factor of 2 in asso ciativity 
doubles the number of blocks per set and halves the number of sets. Accordingly, 
each factor-of-2 increase in associativity decreases the size of the index by 1 bit and 
increases the size of the tag by 1 bit. In a fully associative cache, there is effectively 
only one set, and all the blocks must be checked in par allel. Thus, there is no index, 
and the entire address, excluding the block offset, is compared against the tag of 
every block. In other words, we search the entire cache without any indexing.



In a direct-mapped cache, only a single comparator is needed, because the entry 
can be in only one block, and we access the cache simply by indexing. Figure 5.17 
shows that in a four-way set-associative cache, four comparators are needed, 
together with a 4-to-1 multiplexor to choose among the four potential members 
of the selected set. The cache access consists of indexing the appropriate set and 
then searching the tags of the set. The costs of an associative cache are the extra 
comparators and any delay imposed by having to do the compare and select from 
among the elements of the set.

The choice among direct-mapped, set-associative, or fully associative mapping 
in any memory hierarchy will depend on the cost of a miss versus the cost of 
implementing associativity, both in time and in extra hardware.

Elaboration: A Content Addressable Memory (CAM) is a circuit that combines compari-
son and storage in a single device. Instead of supplying an address and reading a word 
like a RAM, you supply the data and the CAM looks to see if it has a copy and returns the 
index of the matching row. CAMs mean that cache designers can afford to implement 
much higher set asso ciativity than if they needed to build the hardware out of SRAMs and 
comparators. In 2008, the greater size and power of CAM generally leads to 2-way and 
4-way set associativity being built from standard SRAMs and comparators, with 8-way 
and above built using CAMs.

Choosing Which Block to Replace

When a miss occurs in a direct-mapped cache, the requested block can go in 
exactly one position, and the block occupying that position must be replaced. In 
an associative cache, we have a choice of where to place the requested block, and 
hence a choice of which block to replace. In a fully associative cache, all blocks are 
candidates for replacement. In a set-associative cache, we must choose among the 
blocks in the selected set. 

The most commonly used scheme is least recently used (LRU), which we used 
in the previous example. In an LRU scheme, the block replaced is the one that has 
been unused for the longest time. The set associative example on page 482 uses 
LRU, which is why we replaced Memory(0) instead of Memory(6).

LRU replacement is implemented by keeping track of when each element in a 
set was used relative to the other elements in the set. For a two-way set-associative 
cache, tracking when the two elements were used can be implemented by keeping 
a single bit in each set and setting the bit to indicate an element whenever that 
element is referenced. As associativity increases, implementing LRU gets harder; in 
Section 5.5, we will see an alternative scheme for replacement.

least recently used 
(LRU) A replacement 
scheme in which the block 
replaced is the one that 
has been  unused for the 
longest time.
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Size of Tags versus Set Associativity

Increasing associativity requires more comparators and more tag bits per 
cache block. Assuming a cache of 4K blocks, a 4-word block size, and a 32-bit 
address, find the total number of sets and the total number of tag bits for 
caches that are direct mapped, two-way and four-way set associative, and fully 
associative.

EXAMPLE

FIGURE 5.17 The implementation of a four-way set-associative cache requires four comparators and a 4-to-1 
multi plexor. The comparators determine which element of the selected set (if any) matches the tag. The output of the comparators 
is used to select the data from one of the four blocks of the indexed set, using a multiplexor with a decoded select signal. In some 
implementations, the Output enable signals on the data portions of the cache RAMs can be used to select the entry in the set that drives 
the output. The Output enable signal comes from the compara tors, causing the element that matches to drive the data outputs. This 
organization eliminates the need for the multiplexor. 
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V Tag
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Since there are 16 (= 24) bytes per block, a 32-bit address yields 32 − 4 = 28 bits 
to be used for index and tag. The direct-mapped cache has the same number of 
sets as blocks, and hence 12 bits of index, since log2(4K) = 12; hence, the total 
number is (28 − 12) × 4K = 16 × 4K = 64 K tag bits. 

Each degree of associativity decreases the number of sets by a factor of 2 and 
thus decreases the number of bits used to index the cache by 1 and increases the 
number of bits in the tag by 1. Thus, for a two-way set-associative cache, there 
are 2K sets, and the total number of tag bits is (28 −11) × 2 × 2K = 34 × 2K = 68 
Kbits. For a four-way set-associative cache, the total number of sets is 1K, and 
the total number is (28 − 10) × 4 × 1K = 72 × 1K = 72 K tag bits.

For a fully associative cache, there is only one set with 4K blocks, and the tag 
is 28 bits, leading to 28 × 4K × 1 = 112K tag bits. 

Reducing the Miss Penalty Using Multilevel Caches

All modern computers make use of caches. To close the gap further between the 
fast clock rates of modern processors and the increasingly long time required to 
access DRAMs, most microprocessors support an additional level of caching. This 
second-level cache is usually on the same chip and is accessed whenever a miss 
occurs in the primary cache. If the second-level cache contains the desired data, 
the miss penalty for the first-level cache will be essentially the access time of the 
second-level cache, which will be much less than the access time of main memory. 
If  neither the primary nor the secondary cache contains the data, a main memory 
access is required, and a larger miss penalty is incurred. 

How significant is the performance improvement from the use of a secondary 
cache? The next example shows us.

Performance of Multilevel Caches

Suppose we have a processor with a base CPI of 1.0, assuming all references 
hit in the primary cache, and a clock rate of 4 GHz. Assume a main memory 
access time of 100 ns, including all the miss handling. Suppose the miss rate 
per instruction at the primary cache is 2%. How much faster will the proces-
sor be if we add a secondary cache that has a 5 ns access time for either a hit or 
a miss and is large enough to reduce the miss rate to main memory to 0.5%?

The miss penalty to main memory is

  100 ns ��  
0.25   ns � 

clock cycle
  
   = 400 clock cycles

ANSWER

EXAMPLE

ANSWER

 5.3 Measuring and Improving Cache Performance 487



488 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

The effective CPI with one level of caching is given by

Total CPI = Base CPI + Memory-stall cycles per instruction

For the processor with one level of caching,

Total CPI = 1.0 + Memory-stall cycles per instruction = 1.0 + 2% × 400 = 9

With two levels of caching, a miss in the primary (or first-level) cache can be 
satisfied  either by the secondary cache or by main memory. The miss  penalty 
for an access to the second-level cache is

  5 ns ��  
0.25   ns � 

clock cycle
  
   = 20 clock cycles

If the miss is satisfied in the secondary cache, then this is the entire miss penalty. 
If the miss needs to go to main memory, then the total miss penalty is the sum 
of the secondary cache access time and the main memory access time.

Thus, for a two-level cache, total CPI is the sum of the stall cycles from both 
levels of cache and the base CPI: 

 Total CPI = 1 + Primary stalls per instruction
     + Secondary stalls per instruction 
  = 1 + 2% × 20 + 0.5% × 400 = 1 + 0.4 + 2.0 = 3.4

Thus, the processor with the secondary cache is faster by

  9.0 � 
3.4

   = 2.6

Alternatively, we could have computed the stall cycles by summing the stall 
cycles of those references that hit in the secondary cache ((2% − 0.5%) × 20 = 
0.3). Those references that go to main memory, which must include the cost to 
access the secondary cache as well as the main memory access time, is (0.5% × 
(20 + 400) = 2.1). The sum, 1.0 + 0.3 + 2.1, is again 3.4.

The design considerations for a primary and secondary cache are significantly 
different, because the presence of the other cache changes the best choice versus 
a single-level cache. In particular, a two-level cache structure allows the primary 
cache to focus on minimizing hit time to yield a shorter clock cycle or fewer 
pipeline stages, while allow ing the secondary cache to focus on miss rate to reduce 
the penalty of long mem ory access times. 



The effect of these changes on the two caches can be seen by comparing each 
cache to the optimal design for a single level of cache. In comparison to a  single-
level cache, the primary cache of a multilevel cache is often smaller. Furthermore, 
the primary cache may use a smaller block size, to go with the smaller cache size and  
also to reduce the miss penalty. In comparison, the secondary cache will be much 
larger than in a single-level cache, since the access time of the secondary cache is 
less critical. With a larger total size, the secondary cache may use a larger block size 
than appropriate with a single-level cache. It often uses higher associativity than 
the primary cache given the focus of reducing miss rates.

Sorting has been exhaustively analyzed to find better algorithms: Bubble Sort, 
Quicksort, Radix Sort, and so on. Figure 5.18(a) shows instructions executed 
by item searched for Radix Sort versus Quicksort. As expected, for large arrays, 
Radix Sort has an algorithmic advantage over Quicksort in terms of number of 
operations. Figure 5.18(b) shows time per key instead of instructions executed. We 
see that the lines start on the same trajectory as Figure 5.18(a), but then the Radix 
Sort line diverges as the data to sort increases. What is going on? Figure 5.18(c) 
answers by looking at the cache misses per item sorted: Quicksort consistently has 
many fewer misses per item to be sorted.

Alas, standard algorithmic analysis often ignores the impact of the memory 
hierarchy. As faster clock rates and Moore’s law allow architects to squeeze all of 
the performance out of a stream of instructions, using the memory hierarchy well 
is critical to high performance. As we said in the introduction, understanding the 
behavior of the memory hierarchy is critical to understanding the performance of 
programs on today’s computers.

Elaboration: Multilevel caches create several complications. First, there are now several 
different types of misses and corresponding miss rates. In the example on pages 487–488. 
we saw the primary cache miss rate and the global miss rate—the fraction of references 
that missed in all cache levels. There is also a miss rate for the secondary cache, which is 
the ratio of all misses in the secondary cache divided by the number of accesses to it. This 
miss rate is called the local miss rate of the secondary cache. Because the primary cache 
filters accesses, especially those with good spatial and temporal locality, the local miss 
rate of the secondary cache is much higher than the global miss rate. For the example on 
pages 487–488. we can compute the local miss rate of the secondary cache as 0.5%/2% 
= 25%! Luckily, the global miss rate dictates how often we must access the main memory.

Elaboration: With out-of-order processors (see Chapter 4), performance is more 
complex, since they execute instructions during the miss penalty. Instead of instruction 
miss rates and data miss rates, we use misses per instruction, and this formula:

  
Memory-stall cycles

  ��  
Instruction

   =   Misses � 
 Instruction

   × (Total miss latency – Overlapped miss latency)

multilevel cache 
A memory hierarchy with 
multiple levels of caches, 
rather than just a cache 
and main memory.

Understanding 
Program 
Performance

global miss rate The 
fraction of references 
that miss in all lev els of a 
multilevel cache.

local miss rate The 
fraction of references to 
one level of a cache that 
miss; used in multilevel 
hierarchies.
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FIGURE 5.18 Comparing Quicksort and Radix Sort by (a) instructions executed per item 
sorted, (b) time per item sorted, and (c) cache misses per item sorted. This data is from a 
paper by LaMarca and Ladner [1996]. Although the numbers would change for newer computers, the idea 
still holds. Due to such results, new versions of Radix Sort have been invented that take memory hierarchy 
into account, to regain its algorithmic advantages (see Section 5.11). The basic idea of cache optimizations is 
to use all the data in a block repeatedly before it is replaced on a miss. 
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There is no general way to calculate overlapped miss latency, so evaluations of memory 
hierarchies for out-of-order processors inevitably require simulation of the processor and 
mem ory hierarchy. Only by seeing the execution of the processor during each miss can we 
see if the processor stalls waiting for data or simply finds other work to do. A guideline is 
that the proces sor often hides the miss penalty for an L1 cache miss that hits in the L2 
cache, but it rarely hides a miss to the L2 cache.

Elaboration: The performance challenge for algorithms is that the memory hierarchy 
varies between different implementations of the same architecture in cache size, 
associa tivity, block size, and number of caches. To cope with such variability, some 
recent numeri cal libraries parameterize their algorithms and then search the parameter 
space at runtime to find the best combination for a particular computer. This approach 
is called autotuning.

Which of the following is generally true about a design with multiple levels of 
caches?

1. First-level caches are more concerned about hit time, and second-level 
caches are more concerned about miss rate.

2. First-level caches are more concerned about miss rate, and second-level 
caches are more concerned about hit time.

Summary

In this section, we focused on three topics: cache performance, using associativity 
to reduce miss rates, and the use of multilevel cache hierarchies to reduce miss 
penalties. 

The memory system has a significant effect on program execution time. The 
number of memory-stall cycles depends on both the miss rate and the miss penalty. 
The challenge, as we will see in Section 5.5, is to reduce one of these factors without 
significantly affecting  other critical factors in the memory hierarchy.

To reduce the miss rate, we examined the use of associative placement schemes. 
Such schemes can reduce the miss rate of a cache by allowing more flexible place-
ment of blocks within the cache. Fully associative schemes allow blocks to be 
placed anywhere, but also require that every block in the cache be searched to 
sat isfy a request. The higher costs make large fully associative caches impractical. 
Set-associative caches are a practical alternative, since we need only search among 
the elements of a unique set that is chosen by indexing. Set-associative caches 
have higher miss rates but are faster to access. The amount of associativity that 
yields the best performance depends on both the technology and the details of the 
implementation.

Finally, we looked at multilevel caches as a technique to reduce the miss penalty 
by allowing a larger secondary cache to handle misses to the primary cache. 
Second-level caches have become commonplace as designers find that limited 
silicon and the goals of high clock rates prevent primary caches from becoming 

Check  
Yourself
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large. The secondary cache, which is often ten or more times larger than the pri mary 
cache, handles many accesses that miss in the primary cache. In such cases, the miss 
penalty is that of the access time to the secondary cache (typically < 10 processor 
cycles) versus the access time to memory (typically > 100 proces sor cycles). As with 
associativity, the design tradeoffs between the size of the secondary cache and its 
access time depend on a number of aspects of the implementation.

 5.4 Virtual Memory

In the previous section, we saw how caches provided fast access to recently used 
portions of a program’s code and data. Similarly, the main memory can act as a 
“cache” for the secondary storage, usually implemented with magnetic disks. This 
technique is called virtual memory. Historically, there were two major motiva tions 
for virtual memory: to allow efficient and safe sharing of memory among multiple 
programs, and to remove the programming burdens of a small, limited amount of 
main memory. Four decades after its invention, it’s the former reason that reigns 
today.

Consider a collection of programs running all at once on a computer. Of course, 
to allow multiple programs to share the same memory, we must be able to protect 
the programs from each other, ensuring that a program can only read and write 
the portions of main memory that have been assigned to it. Main memory need 
contain only the active portions of the many programs, just as a cache contains 
only the active portion of one program. Thus, the principle of locality enables vir-
tual memory as well as caches, and virtual memory allows us to efficiently share the 
processor as well as the main memory. 

We cannot know which programs will share the memory with  other pro-
grams when we compile them. In fact, the programs sharing the memory change 
dynamically while the programs are running. Because of this dynamic interaction, 
we would like to compile each program into its own address space—a separate 
range of memory locations accessible only to this program. Virtual memory 
implements the translation of a program’s address space to physical addresses. 
This translation process enforces protection of a program’s address space from 
other programs. 

The second motivation for virtual memory is to allow a single user program to 
exceed the size of primary memory. Formerly, if a program became too large for 
memory, it was up to the programmer to make it fit. Programmers di vided pro-
grams into pieces and then identified the pieces that were mutually exclusive. These 
overlays were loaded or unloaded under user program control during exe cution, 
with the programmer ensuring that the program never tried to access an overlay 
that was not loaded and that the overlays loaded never exceeded the total size of 
the memory. Overlays were traditionally organized as modules, each con taining 

. . . a system has been 
devised to make the 
core drum combina-
tion appear to the 
programmer as a single 
level store, the requisite 
transfers taking place 
auto matically. 

Kilburn et al., One-level 
storage system, 1962

virtual memory 
A technique that uses 
main memory as a “cache” 
for secondary storage.

physical address An 
address in main memory.

protection A set 
of mecha nisms for 
ensuring that multiple 
processes sharing the 
processor, memory, 
or I/O devices cannot 
interfere, intentionally 
or unin tentionally, with 
one another by reading 
or writing each other’s 
data. These mechanisms 
also isolate the operating 
system from a user 
process.



both code and data. Calls between procedures in different modules would lead to 
overlaying of one module with another.

As you can well imagine, this responsibility was a substantial burden on pro-
grammers. Virtual memory, which was invented to relieve programmers of this 
difficulty, automatically manages the two levels of the memory hierarchy repre-
sented by main memory (sometimes called physical memory to distinguish it from 
virtual memory) and secondary storage. 

Although the concepts at work in virtual memory and in caches are the same, 
their differing historical roots have led to the use of different term  inology. A virtual 
memory block is called a page, and a virtual memory miss is called a page fault. 
With virtual memory, the processor produces a virtual address, which is translated 
by a combina tion of hardware and software to a physical  address, which in turn can 
be used to access main memory. Figure 5.19 shows the virtually addressed memory 
with pages mapped to main memory. This process is called address mapping or 
address translation. Today, the two mem ory hierarchy levels controlled by virtual 
memory are usually DRAMs and magnetic disks (see Chapter 1, pages 22–23). If 
we return to our library analogy, we can think of a virtual address as the title of 
a book and a physical address as the location of that book in the library, such as 
might be given by the Library of Congress call number.

page fault An event that 
occurs when an accessed 
page is not present in 
main memory.

virtual address An 
address that corresponds 
to a  location in virtual 
space and is translated 
by address mapping to 
a physical address when 
memory is  accessed.

address translation Also 
called address mapping. 
The process by which a 
virtual address is mapped 
to an address used to 
access memory.

FIGURE 5.19 In virtual memory, blocks of memory (called pages) are mapped from one 
set of addresses (called virtual addresses) to another set (called physical addresses). 
The processor generates virtual addresses while the memory is accessed using physical addresses. Both the 
virtual memory and the physical memory are broken into pages, so that a virtual page is mapped to a phys ical 
page. Of course, it is also possible for a virtual page to be absent from main memory and not be mapped to 
a physical address; in that case, the page resides on disk. Physical pages can be shared by having two vir tual 
addresses point to the same physical address. This capability is used to allow two different programs to share 
data or code. 

Virtual addresses Physical addresses
Address translation

Disk addresses
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Virtual memory also simplifies loading the program for execution by provid ing 
relocation. Relocation maps the virtual addresses used by a program to dif ferent 
physical addresses before the addresses are used to access memory. This relocation 
allows us to load the program anywhere in main memory. Further more, all virtual 
memory systems in use today relocate the program as a set of fixed-size blocks 
(pages), thereby eliminating the need to find a contiguous block of memory to 
allocate to a program; instead, the operating system need only find a sufficient 
number of pages in main memory. 

In virtual memory, the address is broken into a virtual page number and a page 
offset. Figure 5.20 shows the translation of the virtual page number to a physical 
page number. The physical page number constitutes the upper portion of the 
physical address, while the page offset, which is not changed, constitutes the lower 
 portion. The number of bits in the page offset field determines the page size. The 
number of pages addressable with the virtual address need not match the number 
of pages addressable with the physical address. Having a larger number of virtual 
pages than physical pages is the basis for the illusion of an essentially unbounded 
amount of virtual memory.

FIGURE 5.20 Mapping from a virtual to a physical address. The page size is 212 = 4 KB. The 
number of physical pages allowed in memory is 218, since the physical page number has 18 bits in it. Thus, 
main memory can have at most 1 GB, while the virtual address space is 4 GB. 

Virtual page number Page offset

31 30 29 28 27 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

29 28 27 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation

Many design choices in virtual memory systems are motivated by the high cost 
of a miss, which in virtual memory is traditionally called a page fault. A page fault 
will take millions of clock cycles to process. (The table on page 453 shows that main 
memory latency is about 100,000 times quicker than disk.) This enormous miss 



penalty, dominated by the time to get the first word for typical page sizes, leads to 
several key decisions in designing virtual memory systems:

 ■ Pages should be large enough to try to amortize the high access time. Sizes 
from 4 KB to 16 KB are typical today. New desktop and server systems are 
being developed to support 32 KB and 64 KB pages, but new embedded sys-
tems are going in the other direction, to 1 KB pages.

 ■ Organizations that reduce the page fault rate are attractive. The primary tech-
nique used here is to allow fully associative placement of pages in memory.

 ■ Page faults can be handled in software because the overhead will be small 
compared to the disk access time. In addition, software can afford to use 
clever algorithms for choosing how to place pages because even small reduc-
tions in the miss rate will pay for the cost of such algorithms. 

 ■ Write-through will not work for virtual memory, since writes take too long. 
Instead, virtual memory systems use write-back. 

The next few subsections address these factors in virtual memory design.

Elaboration: Although we normally think of virtual addresses as much larger than 
physical addresses, the opposite can occur when the processor address size is small 
relative to the state of the memory technology. No single program can benefit, but a 
collection of programs running at the same time can benefit from not having to be 
swapped to memory or by running on parallel processors. For servers and desktop 
computers, 32-bit address processors are problematic. 

Elaboration: The discussion of virtual memory in this book focuses on paging, which 
uses fixed-size blocks. There is also a variable-size block scheme called segmentation. 
In segmenta tion, an address consists of two parts: a segment number and a segment 
offset. The segment register is mapped to a physical address, and the offset is added 
to find the actual physical address. Because the segment can vary in size, a bounds 
check is also needed to make sure that the offset is within the segment. The major 
use of segmentation is to support more powerful methods of protection and sharing in 
an address space. Most operating system textbooks con tain extensive discussions of 
segmentation compared to paging and of the use of segmentation to logically share the 
address space. The major disadvantage of segmentation is that it splits the address 
space into logically separate pieces that must be manipulated as a two-part address: 
the segment number and the offset. Paging, in contrast, makes the boundary between 
page number and offset invisible to programmers and compilers.

Segments have also been used as a method to extend the address space without 
changing the word size of the computer. Such attempts have been unsuccessful because 
of the awkwardness and performance penalties inherent in a two-part address, of which 
programmers and compilers must be aware.

Many architectures divide the address space into large fixed-size blocks that simplify 
pro tection between the operating system and user programs and increase the efficiency 
of imple menting paging. Although these divisions are often called “segments,” this 
mechanism is much simpler than variable block size segmentation and is not visible to 
user programs; we discuss it in more detail shortly. 

segmentation 
A variable-size address 
mapping scheme in which 
an address consists of two 
parts: a segment number, 
which is mapped to a 
physical address, and a 
segment offset.
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Placing a Page and Finding It Again

Because of the incredibly high penalty for a page fault, designers reduce page fault 
frequency by optimizing page placement. If we allow a virtual page to be mapped 
to any physical page, the operating system can then choose to replace any page 
it wants when a page fault occurs. For example, the operating system can use a 
sophisticated algorithm and complex data structures that track page usage to try 
to choose a page that will not be needed for a long time. The ability to use a clever 
and flexible replacement scheme reduces the page fault rate and simplifies the use 
of fully associative placement of pages. 

As mentioned in Section 5.3, the difficulty in using fully associative place ment 
is in locating an entry, since it can be anywhere in the upper level of the hierarchy. 
A full search is impractical. In virtual memory systems, we locate pages by using a 
table that indexes the memory; this structure is called a page table, and it resides in 
memory. A page table is indexed with the page number from the virtual address to 
discover the corresponding physical page number. Each program has its own page 
table, which maps the virtual address space of that program to main memory. In 
our library analogy, the page table corre sponds to a mapping between book titles 
and library locations. Just as the card catalog may contain entries for books in 
another library on campus rather than the  local branch library, we will see that the 
page table may contain entries for  pages not present in memory. To indicate the 
location of the page table in mem ory, the hardware includes a register that points 
to the start of the page table; we call this the page table register. Assume for now that 
the page table is in a fixed and contiguous area of memory. 

The page table, together with the program counter and the registers, specifies the 
state of a program. If we want to allow another program to use the processor, we 
must save this state. Later, after restoring this state, the program can continue exe-
cution. We often refer to this state as a process. The process is considered active 
when it is in possession of the processor; other wise, it is considered inactive. The 
operating system can make a process active by loading the process’s state, includ-
ing the program counter, which will initiate execution at the value of the saved 
program counter. 

The process’s address space, and hence all the data it can access in memory, is 
defined by its page table, which resides in memory. Rather than save the entire 
page table, the operating system simply loads the page table register to point to 
the page table of the process it wants to make active. Each process has its own page 
table, since different processes use the same virtual addresses. The operating sys tem 
is responsible for allocating the physical memory and updating the page tables, so 
that the virtual address spaces of different processes do not collide. As we will see 
shortly, the use of separate page tables also provides protection of one process from 
another.

page table The table 
contain ing the virtual 
to physical address 
translations in a virtual 
memory system. The table, 
which is stored in memory, 
is typically indexed by the 
virtual page number; each 
entry in the table contains 
the physical page number 
for that virtual page if 
the page is currently in 
memory.

Hardware/ 
Software 
Interface



Figure 5.21 uses the page table register, the virtual address, and the indicated 
page table to show how the hardware can form a physical address. A valid bit is 
used in each page table entry, just as we did in a cache. If the bit is off, the page is 
not present in main memory and a page fault occurs. If the bit is on, the page is in 
memory and the entry contains the physical page number.

FIGURE 5.21 The page table is indexed with the virtual page number to obtain the corresponding portion of the 
physical address. We assume a 32-bit address. The starting address of the page table is given by the page table pointer. In this figure, the 
page size is 212 bytes, or 4 KB. The virtual address space is 232 bytes, or 4 GB, and the physical address space is 230 bytes, which allows main 
memory of up to 1 GB. The number of entries in the page table is 220, or 1 million entries. The valid bit for each entry indicates whether the 
mapping is legal. If it is off, then the page is not present in memory. Although the page table entry shown here need only be 19 bits wide, it 
would typically be rounded up to 32 bits for ease of index ing. The extra bits would be used to store additional information that needs to be 
kept on a per-page basis, such as protection. 

Virtual page number Page offset

3 1  3 0  2 9  2 8  2 7 3  2  1  01 5  1 4  1 3  1 2  1 1  1 0  9  8

Physical page number Page offset

2 9  2 8  2 7 3  2  1  01 5  1 4  1 3  1 2  1 1  1 0  9  8

Virtual address

Physical address

Page table register

Physical page numberValid

Page table

If 0 then page is not
present in memory

20 12

18
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Because the page table contains a mapping for every possible virtual page, no 
tags are  required. In cache terminology, the index that is used to access the page 
table consists of the full block address, which is the virtual page  number. 

Page Faults

If the valid bit for a virtual page is off, a page fault occurs. The operating system 
must be given control. This transfer is done with the exception mechanism, which 
we discuss later in this section. Once the operating system gets control, it must find 
the page in the next level of the hierarchy (usually magnetic disk) and decide where 
to place the requested page in main memory. 

The virtual address alone does not immediately tell us where the page is on disk. 
Returning to our library analogy, we cannot find the location of a library book on 
the shelves just by knowing its title. Instead, we go to the catalog and look up the 
book, obtaining an address for the location on the shelves, such as the Library of 
Congress call number. Likewise, in a virtual memory system, we must keep track of 
the location on disk of each page in virtual address space. 

Because we do not know ahead of time when a page in memory will be 
replaced, the operating system usually creates the space on disk for all the pages 
of a process when it creates the process. This disk space is called the swap space. 
At that time, it also creates a data structure to record where each virtual page is 
stored on disk. This data structure may be part of the page table or may be an aux-
iliary data structure indexed in the same way as the page table. Figure 5.22 shows 
the organization when a single table holds either the physical page number or the 
disk address. 

The operating system also creates a data structure that tracks which  processes 
and which virtual addresses use each physical page. When a page fault occurs, if all 
the pages in main memory are in use, the operating system must choose a page to 
replace. Because we want to minimize the number of page faults, most operating 
systems try to choose a page that they hypothesize will not be needed in the near 
future. Using the past to predict the future,  operating systems follow the least 
recently used (LRU) replacement scheme, which we mentioned in Section 5.3. The 
operating system searches for the least recently used page, assuming that a page 
that has not been used in a long time is less likely to be needed than a more recently 
accessed page. The replaced pages are written to swap space on the disk. In case 
you are wondering, the operating system is just another process, and these tables 
controlling memory are in memory; the details of this seeming contradic tion will 
be explained shortly.

swap space The space on 
the disk reserved for the 
full virtual memory space 
of a process.



Implementing a completely accurate LRU scheme is too expensive, since it requires 
updating a data structure on every memory reference. Instead, most operating 
systems approximate LRU by keeping track of which pages have and which pages 
have not been recently used. To help the operating system estimate the LRU pages, 
some computers provide a reference bit or use bit, which is set whenever a page 
is accessed. The operating system periodi cally clears the refer ence bits and later 
records them so it can determine which pages were touched during a particular 
time period. With this usage information, the operating sys tem can select a page 
that is among the least recently referenced (detected by hav ing its reference bit off). 
If this bit is not provided by the hardware, the operating system must find another 
way to estimate which pages have been accessed.

Hardware/ 
Software 
Interface

reference bit Also called 
use bit. A field that is 
set whenever a page 
is accessed and that is 
used to implement LRU 
or other replacement 
schemes.

FIGURE 5.22 The page table maps each page in virtual memory to either a page in main 
memory or a page stored on disk, which is the next level in the hierarchy. The vir tual page 
number is used to index the page table. If the valid bit is on, the page table supplies the physical page number 
(i.e., the starting address of the page in memory) corresponding to the virtual page. If the valid bit is off, the 
page currently resides only on disk, at a specified disk address. In many systems, the table of physical page 
addresses and disk page addresses, while logically one table, is stored in two sepa rate data structures. Dual 
tables are justified in part because we must keep the disk addresses of all the pages, even if they are currently 
in main memory. Remember that the pages in main memory and the pages on disk are the same size. 
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Elaboration: With a 32-bit virtual address, 4 KB pages, and 4 bytes per page table 
entry, we can compute the total page table size:

Number of page table entries =   2
32
 � 

212
   = 220

Size of page table = 220 page table entries × 22   
bytes
 ��  

page table entry
   = 4 MB

That is, we would need to use 4 MB of memory for each program in execution at any 
time. This amount is not so bad for a single program. What if there are hundreds of 
programs running, each with their own page table? And how should we handle 64-bit 
addresses, which by this cal culation would need 252 words?

A range of techniques is used to reduce the amount of storage required for the page 
table. The five techniques below aim at reducing the total maximum storage required as 
well as mini mizing the main memory dedicated to page tables:

1. The simplest technique is to keep a limit register that restricts the size of the page 
table for a given process. If the virtual page number becomes larger than the con-
tents of the limit reg ister, entries must be added to the page table. This technique 
allows the page table to grow as a process consumes more space. Thus, the page 
table will only be large if the process is using many pages of virtual address space. 
This technique requires that the address space expand in only one direction.

2. Allowing growth in only one direction is not sufficient, since most languages require 
two areas whose size is expandable: one area holds the stack and the other area 
holds the heap. Because of this duality, it is convenient to divide the page table and 
let it grow from the highest address down, as well as from the lowest address up. 
This means that there will be two separate page tables and two separate limits. The 
use of two page tables breaks the address space into two segments. The high-order 
bit of an address usually determines which segment and thus which page table to 
use for that address. Since the segment is specified by the  high-order address bit, 
each segment can be as large as one-half of the address space. A limit register for 
each segment specifies the current size of the segment, which grows in units of 
pages. This type of segmentation is used by many architectures, including MIPS. 
Unlike the type of segmentation discussed in the second elaboration on page 495, 
this form of segmentation is invisible to the application program, although not to the 
operating system. The major disadvantage of this scheme is that it does not work 
well when the address space is used in a sparse fashion rather than as a contiguous 
set of virtual addresses. 

3. Another approach to reducing the page table size is to apply a hashing function to 
the vir tual address so that the page table need be only the size of the number of 
physical pages in main memory. Such a structure is called an  inverted page table. 
Of course, the lookup process is slightly more complex with an inverted page table, 
because we can no longer just index the page table.

4. Multiple levels of page tables can also be used to reduce the total amount of page 
table storage. The first level maps large fixed-size blocks of virtual address space, 
perhaps 64 to 256 pages in total. These large blocks are sometimes called  segments, 
and this first-level mapping table is sometimes called a segment table, though the 



segments are again invisible to the user. Each entry in the segment table indicates 
whether any pages in that segment are allocated and, if so, points to a page table for 
that segment. Address transla tion happens by first looking in the  segment table, 
using the highest-order bits of the ad dress. If the segment address is valid, the next 
set of high-order bits is used to index the page table indicated by the segment table 
entry. This scheme allows the address space to be used in a sparse fashion (multiple 
noncontiguous segments can be active) without hav ing to allocate the entire page 
table. Such schemes are particularly useful with very large address spaces and in 
software systems that require noncontiguous allocation. The prima ry disadvantage 
of this two-level mapping is the more complex process for address trans lation. 

5. To reduce the actual main memory tied up in page tables, most modern systems 
also allow the page tables to be paged. Although this sounds tricky, it works by using 
the same basic ideas of virtual memory and simply allowing the page tables to 
 reside in the virtual ad dress space. In addition, there are some small but  critical 
problems, such as a never-end ing series of page faults, which must be avoided. How 
these problems are overcome is both very detailed and typically highly processor 
specific. In brief, these problems are avoided by placing all the page tables in the 
address space of the operating system and placing at least some of the page tables 
for the operating system in a portion of main mem ory that is physically addressed 
and is always present and thus never on disk. 

What about Writes?

The difference between the access time to the cache and main memory is tens to 
hundreds of cycles, and write-through schemes can be used, although we need a 
write buffer to hide the latency of the write from the processor. In a virtual mem ory 
system, writes to the next level of the hierarchy (disk) take millions of proces sor 
clock cycles; therefore, building a write buffer to allow the system to write-through 
to disk would be completely impractical. Instead, virtual memory sys tems must use 
write-back, performing the individual writes into the page in memory, and copying 
the page back to disk when it is replaced in the memory. 

A write-back scheme has another major advantage in a virtual memory system. 
Because the disk transfer time is small compared with its access time, copying back 
an entire page is much more efficient than writing individual words back to the 
disk. A write-back operation, although more efficient than transferring indi vidual 
words, is still costly. Thus, we would like to know whether a page needs to be copied 
back when we choose to replace it. To track whether a page has been written since 
it was read into the memory, a dirty bit is added to the page table. The dirty bit is 
set when any word in a page is written. If the operating system chooses to replace 
the page, the dirty bit indicates whether the page needs to be written out before its 
location in memory can be given to another page. Hence, a modified page is often 
called a dirty page.

Hardware/ 
Software 
Interface
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Making Address Translation Fast: the TLB

Since the page tables are stored in main memory, every memory access by a program 
can take at least twice as long: one memory access to obtain the physical address 
and a second access to get the data. The key to improving access performance is to 
rely on locality of reference to the page table. When a translation for a virtual page 
number is used, it will probably be needed again in the near future, because the 
references to the words on that page have both temporal and spatial locality. 

Accordingly, modern processors include a special cache that keeps track of recently 
used translations. This special address translation cache is  tradition ally referred to 
as a translation-lookaside buffer (TLB), although it would be more accurate to call 
it a translation cache. The TLB corresponds to that little piece of paper we typically 
use to record the location of a set of books we look up in the card catalog; rather 
than continually searching the entire catalog, we record the location of several books 
and use the scrap of paper as a cache of Library of Con gress call numbers.

Figure 5.23 shows that each tag entry in the TLB holds a portion of the virtual 
page number, and each data entry of the TLB holds a physical page number. Because 

translation-lookaside 
buffer (TLB) A cache 
that keeps track of 
recently used address 
mappings to try to avoid 
an access to the page table.

FIGURE 5.23 The TLB acts as a cache of the page table for the entries that map to physical pages only. The TLB contains 
a sub set of the virtual-to-physical page mappings that are in the page table. The TLB mappings are shown in color. Because the TLB is a cache, 
it must have a tag field. If there is no matching entry in the TLB for a page, the page table must be examined. The page table either supplies 
a physical page number for the page (which can then be used to build a TLB entry) or indicates that the page resides on disk, in which case a 
page fault occurs. Since the page table has an entry for every virtual page, no tag field is needed; in other words, unlike a TLB, a page table is 
not a cache. 
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we access the TLB instead of the page table on every reference, the TLB will need to 
include other status bits, such as the dirty and the reference bits. 

On every reference, we look up the virtual page number in the TLB. If we get a 
hit, the physical page number is used to form the address, and the corresponding 
reference bit is turned on. If the processor is performing a write, the dirty bit is also 
turned on. If a miss in the TLB occurs, we must determine whether it is a page fault 
or merely a TLB miss. If the page exists in memory, then the TLB miss indicates 
only that the translation is missing. In such cases, the processor can handle the 
TLB miss by loading the translation from the page table into the TLB and then 
trying the reference again. If the page is not present in memory, then the TLB miss 
indicates a true page fault. In this case, the processor invokes the operating system 
using an  exception. Because the TLB has many fewer entries than the number of 
pages in main memory, TLB misses will be much more fre quent than true page 
faults. 

TLB misses can be handled either in hardware or in software. In practice, with 
care there can be little performance difference between the two approaches, because 
the basic operations are the same in either case.

After a TLB miss occurs and the missing translation has been retrieved from the 
page table, we will need to select a TLB entry to replace. Because the reference and 
dirty bits are contained in the TLB entry, we need to copy these bits back to the page 
table entry when we replace an entry. These bits are the only portion of the TLB 
entry that can be changed. Using write-back—that is, copying these entries back at 
miss time rather than when they are written—is very efficient, since we expect the 
TLB miss rate to be small. Some systems use other techniques to approximate the 
reference and dirty bits, eliminating the need to write into the TLB except to load 
a new table entry on a miss.

Some typical values for a TLB might be

 ■ TLB size: 16–512 entries

 ■ Block size: 1–2 page table entries (typically 4–8 bytes each)

 ■ Hit time: 0.5–1 clock cycle

 ■ Miss penalty: 10–100 clock cycles

 ■ Miss rate: 0.01%–1%

Designers have used a wide variety of associativities in TLBs. Some systems use 
small, fully associative TLBs because a fully associative mapping has a lower miss 
rate; furthermore, since the TLB is small, the cost of a fully associative mapping 
is not too high. Other systems use large TLBs, often with small associativity. With 
a fully associative mapping, choosing the entry to replace becomes tricky since 
implementing a hardware LRU scheme is too expensive. Furthermore, since TLB 
misses are much more frequent than page faults and thus must be handled more 
cheaply, we cannot afford an expensive software algorithm, as we can for page 
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faults. As a result, many systems provide some support for randomly choosing 
an entry to replace. We’ll examine replacement schemes in a little more detail in 
Section 5.5.

The Intrinsity FastMATH TLB
To see these ideas in a real processor, let’s take a closer look at the TLB of the 
Intrinsity FastMATH. The memory system uses 4 KB pages and a 32-bit address 
space; thus, the virtual page number is 20 bits long, as in the top of Figure 5.24. 
The physical address is the same size as the virtual address. The TLB contains 16 
entries, it is fully associative, and it is shared between the instruction and data  
ref erences. Each entry is 64 bits wide and contains a 20-bit tag (which is the virtual 
page number for that TLB entry), the corresponding physical page number (also 
20 bits), a valid bit, a dirty bit, and other bookkeeping bits. 

Figure 5.24 shows the TLB and one of the caches, while Figure 5.25 shows the 
steps in processing a read or write request. When a TLB miss occurs, the MIPS 
hardware saves the page number of the reference in a special register and generates 
an exception. The exception invokes the operating system, which handles the miss 
in software. To find the physical address for the missing page, the TLB miss rou-
tine indexes the page table using the page number of the virtual address and the 
page table register, which indicates the starting address of the active process page 
table. Using a special set of system instructions that can update the TLB, the oper-
ating system places the physical address from the page table into the TLB. A TLB 
miss takes about 13 clock cycles, assuming the code and the page table entry are 
in the instruction cache and data cache, respectively. (We will see the MIPS TLB 
code on page 513.) A true page fault occurs if the page table entry does not have a 
valid physical address. The hardware maintains an index that indicates the recom-
mended entry to replace; the recommended entry is chosen randomly. 

There is an extra complication for write requests: namely, the write access bit in 
the TLB must be checked. This bit prevents the program from writing into pages 
for which it has only read access. If the program attempts a write and the write 
access bit is off, an exception is generated. The write access bit forms part of the 
protection mechanism, which we will discuss shortly.

Integrating Virtual Memory, TLBs, and Caches

Our virtual memory and cache systems work together as a hierarchy, so that data 
cannot be in the cache unless it is present in main memory. The operating system 
helps maintain this hierarchy by flushing the contents of any page from the cache 
when it decides to migrate that page to disk. At the same time, the OS modifies 
the page tables and TLB, so that an attempt to access any data on the migrated page 
will gener ate a page fault.



FIGURE 5.24 The TLB and cache implement the process of going from a virtual address to a data item in the Intrinsity 
Fast MATH. This figure shows the organization of the TLB and the data cache, assuming a 4 KB page size. This diagram focuses on a read; 
Figure 5.25 describes how to handle writes. Note that unlike Figure 5.9, the tag and data RAMs are split. By addressing the long but narrow 
data RAM with the cache index concatenated with the block offset, we select the desired word in the block without a 16:1 multiplexor. While 
the cache is direct mapped, the TLB is fully associative. Implementing a fully associative TLB requires that every TLB tag be compared against 
the virtual page number, since the entry of interest can be anywhere in the TLB. (See content addressable memories in the Elaboration on 
page 485.) If the valid bit of the matching entry is on, the access is a TLB hit, and bits from the physical page number together with bits from 
the page offset form the index that is used to access the cache. 
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FIGURE 5.25 Processing a read or a write-through in the Intrinsity FastMATH TLB and cache. If the TLB generates a hit, the 
cache can be accessed with the resulting physical address. For a read, the cache generates a hit or miss and supplies the data or causes a stall 
while the data is brought from memory. If the operation is a write, a portion of the cache entry is overwritten for a hit and the data is sent to 
the write buffer if we assume write-through. A write miss is just like a read miss except that the block is modified after it is read from memory. 
Write-back requires writes to set a dirty bit for the cache block, and a write buffer is loaded with the whole block only on a read miss or write 
miss if the block to be replaced is dirty. Notice that a TLB hit and a cache hit are independent events, but a cache hit can only occur after a TLB 
hit occurs, which means that the data must be present in memory. The relationship between TLB misses and cache misses is examined further 
in the following example and the exercises at the end of this chapter. 



Under the best of circumstances, a virtual address is translated by the TLB and 
sent to the cache where the appropriate data is found, retrieved, and sent back to 
the processor. In the worst case, a reference can miss in all three components of the 
memory hierarchy: the TLB, the page table, and the cache. The following example 
illustrates these interactions in more detail.

Overall Operation of a Memory Hierarchy

In a memory hierarchy like that of Figure 5.24, which includes a TLB and a 
cache organized as shown, a memory reference can encounter three different 
types of misses: a TLB miss, a page fault, and a cache miss. Consider all the 
combinations of these three events with one or more occurring (seven possi-
bilities). For each possibility, state whether this event can actually occur and 
under what circumstances.

Figure 5.26 shows all combinations and whether each is possible in practice. 

TLB
Page 
table Cache Possible? If so, under what circumstance?

Hit Hit Miss Possible, although the page table is never really checked if TLB hits.

Miss Hit Hit TLB misses, but entry found in page table; after retry, data is found in cache.

Miss Hit Miss TLB misses, but entry found in page table; after retry, data misses in cache.

Miss Miss Miss TLB misses and is followed by a page fault; after retry, data must miss in cache.

Hit Miss Miss Impossible: cannot have a translation in TLB if page is not present in memory.

Hit Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.

Miss Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.

FIGURE 5.26 The possible combinations of events in the TLB, virtual memory system, and 
cache. Three of these combinations are impossible, and one is possible (TLB hit, virtual memory hit, cache 
miss) but never detected. 

Elaboration: Figure 5.26 assumes that all memory addresses are translated to 
physical addresses before the cache is accessed. In this organization, the cache is 
physically indexed and physically tagged (both the cache index and tag are physical, 
rather than virtual, addresses). In such a system, the amount of time to access memory, 

EXAMPLE

ANSWER
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assuming a cache hit, must accommodate both a TLB access and a cache access; 
of course, these accesses can be pipelined.

Alternatively, the processor can index the cache with an address that is completely 
or par tially virtual. This is called a virtually addressed cache, and it uses tags that 
are virtual addresses; hence, such a cache is virtually indexed and virtually tagged. 
In such caches, the address translation hardware (TLB) is unused during the normal 
cache access, since the cache is accessed with a virtual address that has not been 
translated to a physical address. This takes the TLB out of the critical path, reducing 
cache latency. When a cache miss occurs, however, the processor needs to translate 
the address to a physical address so that it can fetch the cache block from main 
memory. 

When the cache is accessed with a virtual address and pages are shared between 
programs (which may access them with different virtual addresses), there is the possibility 
of aliasing. Aliasing occurs when the same object has two names—in this case, two 
virtual addresses for the same page. This ambiguity creates a problem, because a word 
on such a page may be cached in two different locations, each corresponding to different 
virtual addresses. This ambiguity would allow one program to write the data without the 
other program being aware that the data had changed. Completely virtually addressed 
caches either introduce design limitations on the cache and TLB to reduce aliases or 
require the operating system, and possibly the user, to take steps to ensure that aliases 
do not occur. 

A common compromise between these two design points is caches that are virtually 
indexed—sometimes using just the page offset portion of the address, which is really 
a physical address since it is not translated—but use physical tags. These designs, 
which are virtually indexed but physically tagged, attempt to achieve the performance 
advantages of virtually indexed caches with the architecturally simpler advantages of 
a physically addressed cache. For example, there is no alias problem in this case. 
Figure 5.24 assumed a 4 KB page size, but it’s really 16 KB, so the Intrinsity FastMATH 
can use this trick. To pull it off, there must be careful coordination between the minimum 
page size, the cache size, and associativity.

Implementing Protection with Virtual Memory 

Perhaps the most important function of virtual memory is to allow sharing of a 
single main memory by multiple processes, while providing memory protection 
among these processes and the operating system. The protection mechanism must 
ensure that although multiple processes are sharing the same main memory, one 
renegade process cannot write into the address space of another user process or 
into the operating system either intentionally or unintentionally. The write access 
bit in the TLB can protect a page from being written. Without this level of protec-
tion, computer viruses would be even more widespread.

virtually addressed 
cache A cache that is 
accessed with a vir tual 
address rather than a 
physi cal address.

aliasing A situation in 
which the same object is 
accessed by two addresses; 
can occur in vir tual 
memory when there are 
two virtual addresses for 
the same physical page.

physically addressed 
cache A cache that is 
addressed by a physical 
address.



To enable the operating system to implement protection in the virtual memory 
sys tem, the hardware must provide at least the three basic capabilities summarized 
below.

1. Support at least two modes that indicate whether the running process is a 
user process or an operating system process, variously called a supervisor 
process, a kernel process, or an executive process.

2. Provide a portion of the processor state that a user process can read but 
not write. This includes the user/supervisor mode bit, which dictates 
whether the processor is in user or supervisor mode, the page table 
pointer, and the TLB. To write these elements, the operating system uses 
special instructions that are only available in supervisor mode. 

3. Provide mechanisms whereby the processor can go from user mode to 
supervisor mode and vice versa. The first direction is typically accom-
plished by a system call exception, implemented as a special instruction 
(syscall in the MIPS instruction set) that transfers control to a dedicated 
location in supervisor code space. As with any other exception, the 
program counter from the point of the system call is saved in the 
exception PC (EPC), and the processor is placed in supervisor mode. To 
return to user mode from the exception, use the return from exception 
(ERET) instruction, which resets to user mode and jumps to the address 
in EPC.

By using these mechanisms and storing the page tables in the operating sys tem’s 
address space, the operating system can change the page tables while pre venting a 
user process from changing them, ensuring that a user  process can access only the 
storage provided to it by the operating system.

We also want to prevent a process from reading the data of another  process. 
For example, we wouldn’t want a student program to read the grades while they 
were in the processor’s memory. Once we begin sharing main memory, we must 
provide the ability for a process to protect its data from both reading and writ ing 
by another process; otherwise, sharing the main memory will be a mixed blessing!

Remember that each process has its own virtual address space. Thus, if the 
operating system keeps the page tables organized so that the independent virtual 
pages map to disjoint physical pages, one process will not be able to access another’s 
data. Of course, this also requires that a user process be unable to change the page 
table mapping. The operating system can assure safety if it prevents the user process 
from modifying its own page tables. However, the operating system must be able to 
modify the page tables. Placing the page tables in the protected address space of the 
operating system satisfies both requirements.

Hardware/ 
Software 
Interface
supervisor mode Also 
called kernel mode. A 
mode  indicating that a 
running process is an 
operating  system process.

system call A special 
instruc tion that transfers 
control from user mode 
to a dedicated loca tion 
in supervisor code space, 
invoking the exception 
mecha nism in the process.
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When processes want to share information in a limited way, the operating system 
must assist them, since accessing the information of another process requires 
changing the page table of the accessing process. The write access bit can be used 
to restrict the sharing to just read sharing, and, like the rest of the page table, this 
bit can be changed only by the operating system. To allow another process, say, P1, 
to read a page owned by process P2, P2 would ask the operating system to create 
a page table entry for a virtual page in P1’s address space that points to the same 
physical page that P2 wants to share. The operating system could use the write 
protection bit to prevent P1 from writing the  data, if that was P2’s wish. Any bits 
that determine the access rights for a page must be included in both the page table 
and the TLB, because the page table is accessed only on a TLB miss.

Elaboration: When the operating system decides to change from running process 
P1 to run ning process P2 (called a context switch or process switch), it must ensure 
that P2 cannot get access to the page tables of P1 because that would compromise 
protection. If there is no TLB, it suffices to change the page table register to point to P2’s 
page table (rather than to P1’s); with a TLB, we must clear the TLB entries that belong to 
P1—both to protect the data of P1 and to force the TLB to load the entries for P2. If the 
process switch rate were high, this could be quite ineffi cient. For example, P2 might load 
only a few TLB entries before the operating system switched back to P1. Unfortunately, 
P1 would then find that all its TLB entries were gone and would have to pay TLB misses 
to reload them. This problem arises because the virtual addresses used by P1 and P2 
are the same, and we must clear out the TLB to avoid confusing these addresses. 

A common alternative is to extend the virtual address space by adding a process 
identifier or task identifier. The Intrinsity FastMATH has an 8-bit address space ID (ASID) 
field for this purpose. This small field identifies the currently running process; it is kept 
in a register loaded by the operating system when it switches processes. The process 
identifier is concatenated to the tag portion of the TLB, so that a TLB hit occurs only if 
both the page number and the pro cess identifier match. This combination eliminates the 
need to clear the TLB, except on rare occasions. 

Similar problems can occur for a cache, since on a process switch the cache will 
contain data from the running process. These problems arise in different ways for 
physically addressed and virtually addressed caches, and a variety of different solutions, 
such as process identifiers, are used to ensure that a process gets its own data. 

Handling TLB Misses and Page Faults

Although the translation of virtual to physical addresses with a TLB is straightfor-
ward when we get a TLB hit, handling TLB misses and page faults is more com plex. 
A TLB miss occurs when no entry in the TLB matches a virtual address. A TLB miss 
can indicate one of two possibilities:

1. The page is present in memory, and we need only create the missing TLB entry. 

2. The page is not present in memory, and we need to transfer control to the 
operating system to deal with a page fault. 

context switch A 
changing of the internal 
state of the proces sor to 
allow a different process 
to use the processor 
that includes saving the 
state needed to return to 
the currently exe cuting 
process.



How do we know which of these two circumstances has occurred? When we process 
the TLB miss, we will look for a page table entry to bring into the TLB. If the 
matching page table entry has a valid bit that is turned off, then the corresponding 
page is not in memory and we have a page fault, rather than just a TLB miss. If the 
valid bit is on, we can simply retrieve the desired entry. 

A TLB miss can be handled in software or hardware because it will require only 
a short sequence of operations to copy a valid page table entry from memory into 
the TLB. MIPS traditionally handles a TLB miss in software. It brings in the page 
table entry from memory and then re-executes the instruction that caused the TLB 
miss. Upon re-executing, it will get a TLB hit. If the page table entry indicates the 
page is not in memory, this time it will get a page fault exception.

Handling a TLB miss or a page fault requires using the exception mechanism 
to interrupt the active process, transferring control to the operating system, and 
later resuming execution of the interrupted process. A page fault will be recognized 
sometime during the clock cycle used to access memory. To restart the instruction 
after the page fault is handled, the program counter of the instruction that caused 
the page fault must be saved. Just as in Chapter 4, the exception program counter 
(EPC) is used to hold this value. 

In addition, a TLB miss or page fault exception must be asserted by the end of 
the same clock cycle that the memory access occurs, so that the next clock cycle 
will begin exception processing rather than continue normal instruction execu-
tion. If the page fault was not recognized in this clock cycle, a load instruction 
could overwrite a register, and this could be disastrous when we try to restart the 
instruction. For example, consider the instruction lw $1,0($1): the computer 
must be able to prevent the write pipeline stage from occurring; otherwise, it could 
not properly restart the instruction, since the contents of $1 would have been 
destroyed. A similar complication arises on stores. We must prevent the write into 
memory from actually completing when there is a page fault; this is usually done 
by deasserting the write control line to the memory.

Register CP0 register number Description

EPC 14 Where to restart after exception

Cause 13 Cause of exception

BadVAddr 8 Address that caused exception

Index 0 Location in TLB to be read or written

Random 1 Pseudorandom location in TLB

EntryLo 2 Physical page address and flags

EntryHi 10 Virtual page address

Context 4 Page table address and page number

FIGURE 5.27 MIPS control registers. These are considered to be in coprocessor 0, and hence are 
read using mfc0 and written using mtc0. 
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Between the time we begin executing the exception handler in the operating system 
and the time that the operating system has saved all the state of the process, the 
operating system is particularly vulnerable. For example, if another excep tion 
occurred when we were processing the first exception in the operating sys tem, the 
control unit would overwrite the exception program counter, making it impossible 
to return to the instruction that caused the page fault! We can avoid this disaster 
by providing the ability to disable and enable exceptions. When an exception first 
occurs, the processor sets a bit that disables all other exceptions; this could happen 
at the same time the processor sets the supervisor mode bit. The operating system 
will then save just enough state to allow it to recover if another exception occurs—
namely, the exception program counter (EPC) and Cause registers. EPC and Cause 
are two of the special control registers that help with exceptions, TLB misses, and 
page faults; Figure 5.27 shows the rest. The operating system can then re-enable 
exceptions. These steps make sure that exceptions will not cause the processor 
to lose any state and thereby be unable to restart execution of the interrupting 
instruction.

Once the operating system knows the virtual address that caused the page fault, 
it must complete three steps:

1. Look up the page table entry using the virtual address and find the location 
of the referenced page on disk.

2. Choose a physical page to replace; if the chosen page is dirty, it must be writ-
ten out to disk before we can bring a new virtual page into this physical page.

3. Start a read to bring the referenced page from disk into the chosen physical 
page. 

Of course, this last step will take millions of processor clock cycles (so will the sec-
ond if the replaced page is dirty); accordingly, the operating system will usually 
select another process to execute in the processor until the disk access completes. 
Because the operating system has saved the state of the process, it can freely give 
control of the processor to another process. 

When the read of the page from disk is complete, the operating system can 
restore the state of the process that originally caused the page fault and execute the 
instruction that returns from the exception. This instruction will reset the proces-
sor from kernel to user mode, as well as restore the program counter. The user 
process then re-executes the instruction that faulted, accesses the requested page 
successfully, and continues execution.

Hardware/ 
Software 
Interface

exception enable Also 
called interrupt enable. 
A signal or action that 
controls whether the 
process responds to 
an excep tion or not; 
necessary for preventing 
the occurrence of 
exceptions during 
intervals before the 
processor has safely saved 
the state needed to restart.



Page fault exceptions for data accesses are difficult to implement properly in a 
processor because of a combination of three characteristics: 

1. They occur in the middle of instructions, unlike instruction page faults.

2. The instruction cannot be completed before handling the exception.

3. After handling the exception, the instruction must be restarted as if nothing 
had occurred. 

Making instructions restartable, so that the exception can be handled and the 
instruction later continued, is relatively easy in an architecture like the MIPS. 
Because each instruction writes only one data item and this write occurs at the end 
of the instruction cycle, we can simply prevent the instruction from complet ing (by 
not writing) and restart the instruction at the beginning. 

Let’s look in more detail at MIPS. When a TLB miss occurs, the MIPS hardware 
saves the page number of the reference in a special register called BadVAddr and 
generates an exception.

The exception invokes the operating system, which handles the miss in software. 
Control is transferred to address 8000 0000hex, the location of the TLB miss han dler. 
To find the physical address for the missing page, the TLB miss routine indexes the 
page table using the page number of the virtual address and the page table regis ter, 
which indicates the starting address of the active process page table. To make this 
indexing fast, MIPS hardware places everything you need in the special Context 
register: the upper 12 bits have the address of the base of the page table, and the 
next 18 bits have the virtual address of the missing page. Each page table entry is 
one word, so the last 2 bits are 0. Thus, the first two instructions copy the Context 
regis ter into the kernel temporary register $k1 and then load the page table entry 
from that address into $k1. Recall that $k0 and $k1 are reserved for the operating 
system to use without saving; a major reason for this convention is to make the TLB 
miss handler fast. Below is the MIPS code for a typical TLB miss handler:

TLBmiss: 
 mfc0  $k1,Context # copy address of PTE into temp $k1 
 lw  $k1, 0($k1) # put PTE into temp $k1 
 mtc0  $k1,EntryLo # put PTE into special register EntryLo 
 tlbwr   # put EntryLo into TLB entry at Random 
 eret    # return from TLB miss exception

As shown above, MIPS has a special set of system instructions to update the 
TLB. The instruction tlbwr copies from control register EntryLo into the TLB 
entry selected by the control register Random. Random implements random 
replacement, so it is basically a free-running counter. A TLB miss takes about a 
dozen clock cycles. 

restartable instruction 
An instruction that can 
resume exe cution after 
an exception is resolved 
without the excep tion’s 
affecting the result of the 
instruction.

handler Name of a 
software routine invoked 
to “handle” an exception 
or interrupt.
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Note that the TLB miss handler does not check to see if the page table entry is 
valid. Because the exception for TLB entry missing is much more frequent than a 
page fault, the operating system loads the TLB from the page table without exam-
ining the entry and restarts the instruction. If the entry is invalid, another and 
dif ferent exception occurs, and the operating system recognizes the page fault. This 
method makes the frequent case of a TLB miss fast, at a slight performance pen alty 
for the infrequent case of a page fault.

Once the process that generated the page fault has been interrupted, it transfers 
control to 8000 0180hex, a different address than the TLB miss handler. This is 
the general address for exception; TLB miss has a special entry point to lower the 
pen alty for a TLB miss. The operating system uses the exception Cause register 
to diagnose the cause of the exception. Because the exception is a page fault, the 
operating system knows that extensive processing will be required. Thus, unlike a 
TLB miss, it saves the entire state of the active process. This state includes all the 
general-purpose and floating-point registers, the page table address register, the 
EPC, and the exception Cause register. Since exception handlers do not usually use 
the floating-point registers, the general entry point does not save them, leav ing that 
to the few handlers that need them.

Figure 5.28 sketches the MIPS code of an exception handler. Note that we save 
and restore the state in MIPS code, taking care when we enable and disable excep-
tions, but we invoke C code to handle the particular exception.

The virtual address that caused the fault depends on whether the fault was an 
instruction or data fault. The address of the instruction that generated the fault is 
in the EPC. If it was an instruction page fault, the EPC contains the virtual address 
of the faulting page; otherwise, the faulting virtual address can be computed by 
examining the instruction (whose address is in the EPC) to find the base register 
and offset field. 

Elaboration: This simplified version assumes that the stack pointer (sp) is valid. 
To avoid the problem of a page fault during this low-level exception code, MIPS sets 
aside a portion of its address space that cannot have page faults, called unmapped. 
The operating system places the exception entry point code and the exception stack 
in unmapped memory. MIPS hardware translates virtual addresses 8000 0000hex to 
BFFF FFFFhex to physical addresses simply by ignoring the upper bits of the virtual 
address, thereby placing these addresses in the low part of physical memory. Thus, 
the operating system places exception entry points and exception stacks in unmapped 
memory.

Elaboration: The code in Figure 5.28 shows the MIPS-32 exception return sequence. 
The older MIPS-I architecture uses rfe and jr instead of eret.

unmapped A portion 
of the address space that 
cannot have page faults.



Save state

Save GPR  addi $k1,$sp, -XCPSIZE # save space on stack for state 
 sw $sp, XCT_SP($k1) # save $sp on stack 
 sw $v0, XCT_V0($k1) # save $v0 on stack 
 ...   # save $v1, $ai, $si, $ti,... on stack
 sw $ra, XCT_RA($k1) # save $ra on stack

Save hi, lo  mfhi $v0  # copy Hi 
 mflo $v1  # copy Lo 
 sw $v0, XCT_HI($k1) # save Hi value on stack 
 sw $v1, XCT_LO($k1) # save Lo value on stack

Save exception
registers

 mfc0 $a0, $cr  # copy cause register 
 sw $a0, XCT_CR($k1) # save $cr value on stack 
 ...   # save $v1,.... 
 mfc0 $a3, $sr  # copy status register 
 sw $a3, XCT_SR($k1) # save $sr on stack

Set sp  move $sp, $k1  # sp = sp - XCPSIZE

Enable nested exceptions

 andi $v0, $a3, MASK1 # $v0 = $sr & MASK1, enable exceptions 
 mtc0 $v0, $sr  # $sr = value that enables exceptions

Call C exception handler

Set $gp  move $gp, GPINIT # set $gp to point to heap area

Call C code  move $a0, $sp  # arg1 = pointer to exception stack 
 jal xcpt_deliver  # call C code to handle exception

Restoring state

Restore most 
GPR, hi, lo

 move $at, $sp  # temporary value of $sp 
 lw $ra, XCT_RA($at) # restore $ra from stack 
 ...   # restore $t0,...., $a1 
 lw $a0, XCT_A0($k1) # restore $a0 from stack

Restore status 
register

 lw $v0, XCT_SR($at) # load old $sr from stack 
 li $v1, MASK2 # mask to disable exceptions 
 and $v0, $v0, $v1 # $v0 = $sr & MASK2, disable exceptions 
 mtc0 $v0, $sr  # set status register

Exception return

Restore $sp 
and rest of 
GPR used as 
temporary 
registers

 lw $sp, XCT_SP($at) # restore $sp from stack 

 lw $v0, XCT_V0($at) # restore $v0 from stack 

 lw $v1, XCT_V1($at) # restore $v1 from stack 

 lw $k1, XCT_EPC($at) # copy old $epc from stack 

 lw $at, XCT_AT($at) # restore $at from stack

Restore ERC 
and return

 mtc0 $k1, $epc # restore $epc 

 eret $ra  # return to interrupted instruction

FIGURE 5.28 MIPS code to save and restore state on an exception. 

Elaboration: For processors with more complex instructions that can touch many 
memory locations and write many data items, making instructions restartable is much 
harder. Processing one instruction may generate a number of page faults in the middle 
of the instruction. For example, x86 processors have block move instructions that touch 
thousands of data words. In such processors, instructions often cannot be restarted 
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from the beginning, as we do for MIPS instructions. Instead, the instruction must be 
interrupted and later continued midstream in its execution. Resuming an instruction in 
the middle of its execution usually requires saving some special state, processing the 
exception, and restoring that special state. Making this work prop erly requires careful 
and detailed coordination between the exception-handling code in the operating system 
and the hardware.

Summary

Virtual memory is the name for the level of memory hierarchy that manages cach-
ing between the main memory and disk. Virtual memory allows a single program 
to expand its address space beyond the limits of main memory. More importantly, 
virtual memory supports sharing of the main memory among multiple, simulta-
neously active processes, in a protected manner. 

Managing the memory hierarchy between main memory and disk is challeng ing 
because of the high cost of page faults. Several techniques are used to reduce the 
miss rate:

1. Pages are made large to take advantage of spatial locality and to reduce the 
miss rate.

2. The mapping between virtual addresses and physical addresses, which is 
implemented with a page table, is made fully associative so that a virtual 
page can be placed anywhere in main memory.

3. The operating system uses techniques, such as LRU and a reference bit, to 
choose which pages to replace.

Writes to disk are expensive, so virtual memory uses a write-back scheme and also 
tracks whether a page is unchanged (using a dirty bit) to avoid writing unchanged 
pages back to disk.

The virtual memory mechanism provides address translation from a virtual 
address used by the program to the physical address space used for accessing 
memory. This address translation allows protected sharing of the main memory 
and provides several additional benefits, such as simplifying memory allocation. 
Ensuring that processes are protected from each other requires that only the 
operating system can change the address translations, which is implemented by 
preventing user programs from changing the page tables. Controlled sharing of 
pages among processes can be implemented with the help of the operating sys tem 
and access bits in the page table that indicate whether the user program has read or 
write access to a page.

If a processor had to access a page table resident in memory to translate every 
 access, virtual memory would be too expensive, as caches would be pointless! 
Instead, a TLB acts as a cache for translations from the page table. Addresses are 
then translated from virtual to physical using the translations in the TLB. 

Caches, virtual memory, and TLBs all rely on a common set of principles and 
policies. The next section discusses this common framework.



Although virtual memory was invented to enable a small memory to act as a large 
one, the performance difference between disk and memory means that if a program 
routinely accesses more virtual memory than it has physical mem ory, it will run 
very slowly. Such a program would be continuously swapping pages between 
memory and disk, called thrashing. Thrashing is a disaster if it occurs, but it is rare. 
If your program thrashes, the easiest solution is to run it on a computer with more 
memory or buy more memory for your computer. A more complex choice is to 
re-examine your algorithm and data structures to see if you can change the locality 
and thereby reduce the number of pages that your program uses simultaneously. 
This set of popular pages is informally called the working set.

A more common performance problem is TLB misses. Since a TLB might handle 
only 32–64 page entries at a time, a program could easily see a high TLB miss rate, 
as the processor may access less than a quarter megabyte directly: 64 × 4 KB = 
0.25 MB. For example, TLB misses are often a challenge for Radix Sort. To try 
to alleviate this problem, most computer architectures now support variable page 
sizes. For example, in addition to the standard 4 KB page, MIPS hardware sup ports 
16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 16 MB, 64 MB, and 256 MB pages. Hence, if 
a program uses large page sizes, it can access more memory directly without TLB 
misses. 

The practical challenge is getting the operating system to allow programs to 
select these larger page sizes. Once again, the more complex solution to reducing 
TLB misses is to re-examine the algorithm and data structures to reduce the work-
ing set of pages; given the importance of memory accesses to performance and 
the frequency of TLB misses, some programs with large working sets have been 
redesigned with that goal.

Match the memory hierarchy element on the left with the closest phrase on the 
right: 

1. L1 cache a. A cache for a cache

2. L2 cache b. A cache for disks

3. Main memory c. A cache for a main memory

4. TLB d. A cache for page table entries

Understanding 
Program  
Performance

Check  
Yourself
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 5.5  
A Common Framework for Memory 
Hierarchies

By now, you’ve recognized that the different types of memory hierarchies share a 
great deal in common. Although many of the aspects of memory hierarchies differ 
quantitatively, many of the policies and features that determine how a hierarchy 
functions are similar qualitatively. Figure 5.29 shows how some of the quantitative 
characteristics of memory hierarchies can differ. In the rest of this section, we will 
discuss the common operational alternatives for memory hierarchies, and how 
these determine their behavior. We will examine these policies as a series of four 
questions that apply between any two levels of a memory hierarchy, although for 
simplicity we will primarily use terminology for caches.

Feature
Typical values 
for L1 caches

Typical values 
for L2 caches

Typical values for 
paged memory

Typical values 
for a TLB

Total size in blocks 250–2000 15,000–50,000 16,000–250,000 40–1024

Total size in kilobytes 16–64 500–4000 1,000,000–1,000,000,000 0.25–16

Block size in bytes 16–64 64–128 4000–64,000 4–32

Miss penalty in clocks 10–25 100–1000 10,000,000–100,000,000 10–1000

Miss rates (global for L2) 2%–5% 0.1%–2% 0.00001%–0.0001% 0.01%–2%

FIGURE 5.29 The key quantitative design parameters that characterize the major elements of memory hierarchy in a 
com puter. These are typical values for these levels as of 2008. Although the range of values is wide, this is partially because many of the values 
that have shifted over time are related; for example, as caches become larger to overcome larger miss penalties, block sizes also grow. 

Question 1: Where Can a Block Be Placed?
We have seen that block placement in the upper level of the hierarchy can use a 
range of schemes, from direct mapped to set associative to fully associative. As 
mentioned above, this entire range of schemes can be thought of as variations on 
a set-associa tive scheme where the number of sets and the number of blocks per 
set varies: 

Scheme name Number of sets Blocks per set

Direct mapped Number of blocks in cache 1

Set associative   Number of blocks in the cache   ���  
 Associativity

  Associativity (typically 2–16)

Fully associative 1 Number of blocks in the cache

The advantage of increasing the degree of associativity is that it usually decreases 
the miss rate. The improvement in miss rate comes from reducing misses that com-
pete for the same location. We will examine these in more detail shortly. First, let’s 



look at how much improvement is gained. Figure 5.30 shows the miss rates for 
several cache sizes as associativity varies from direct mapped to eight-way set asso-
ciative. The largest gains are obtained in going from direct mapped to two-way 
set associative, which yields between a 20% and 30% reduc tion in the miss rate. 
As cache sizes grow, the relative improvement from associa tivity increases only 
slightly; since the overall miss rate of a larger cache is lower, the opportunity for 
improving the miss rate decreases and the absolute improve ment in the miss rate 
from associativity shrinks significantly. The potential disad vantages of associativ-
ity, as we mentioned earlier, are increased cost and slower access time.

FIGURE 5.30 The data cache miss rates for each of eight cache sizes improve as the 
associativity increases. While the benefit of going from one-way (direct mapped) to two-way set 
asso ciative is significant, the benefits of further associativity are smaller (e.g., 1%–10% improvement going 
from two-way to four-way versus 20%–30% improvement going from one-way to two-way). There is even 
less improvement in going from four-way to eight-way set associative, which, in turn, comes very close 
to the miss rates of a fully associative cache. Smaller caches obtain a significantly larger absolute benefit 
from associativity because the base miss rate of a small cache is larger. Figure 5.15 explains how this data 
was col lected. 
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Question 2: How Is a Block Found?

The choice of how we locate a block depends on the block placement scheme, since 
that dictates the number of possible locations. We can summarize the schemes as 
follows:
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Associativity Location method Comparisons required

Direct mapped Index 1

Set associative Index the set, search among elements Degree of associativity

Full Search all cache entries Size of the cache

Separate lookup table 0

The choice among direct-mapped, set-associative, or fully associative mapping 
in any memory hierarchy will depend on the cost of a miss versus the cost of 
implementing associativity, both in time and in extra hardware. Including the L2 
cache on the chip enables much higher associativity, because the hit times are not 
as critical and the designer does not have to rely on standard SRAM chips as the 
building blocks. Fully associative caches are prohibitive except for small sizes, where 
the cost of the comparators is not overwhelming and where the absolute miss rate 
improvements are greatest.

In virtual memory systems, a separate mapping table—the page table—is kept 
to index the memory. In addition to the storage required for the table, using an 
index table requires an extra memory access. The choice of full associativity for 
page placement and the extra table is motivated by these facts:

1. Full associativity is beneficial, since misses are very expensive.

2. Full associativity allows software to use sophisticated replacement schemes 
that are designed to reduce the miss rate. 

3. The full map can be easily indexed with no extra hardware and no search ing 
required. 

Therefore, virtual memory systems almost always use fully associative placement. 
Set-associative placement is often used for caches and TLBs, where the access 

combines indexing and the search of a small set. A few systems have used direct-
mapped caches because of their advantage in access time and simplicity. The 
advantage in access time occurs because finding the requested block does not 
depend on a comparison. Such design choices depend on many details of the 
implementation, such as whether the cache is on-chip, the technology used for 
implementing the cache, and the critical role of cache access time in determining 
the processor cycle time. 

Question 3: Which Block Should Be Replaced 
on a Cache Miss?

When a miss occurs in an associative cache, we must decide which block to replace. 
In a fully associative cache, all blocks are candidates for replacement. If the cache is 
set associative, we must choose among the blocks in the set. Of course, replacement 
is easy in a direct-mapped cache because there is only one candidate. 



There are the two primary strategies for replacement in set-associative or fully 
associative caches:

 ■ Random: Candidate blocks are randomly selected, possibly using some 
hardware assistance. For example, MIPS supports random replacement for 
TLB misses.

 ■ Least recently used (LRU): The block replaced is the one that has been unused 
for the longest time. 

In practice, LRU is too costly to implement for hierarchies with more 
than a small degree of associativity (two to four, typically), since tracking the 
usage information is costly. Even for four-way set associativity, LRU is often 
approximated—for example, by keeping track of which pair of blocks is LRU 
(which  requires 1 bit), and then tracking which block in each pair is LRU (which 
requires 1 bit per pair). 

For larger associativity, either LRU is approximated or random replacement is 
used. In caches, the replacement algorithm is in hardware, which means that the 
scheme should be easy to implement. Random replacement is simple to build in 
hardware, and for a two-way set-associative cache, random replacement has a miss 
rate about 1.1 times higher than LRU   replacement. As the caches become larger, the 
miss rate for both replacement  strategies falls, and the absolute differ ence becomes 
small. In fact, random replacement can sometimes be better than the simple LRU 
approximations that are easily implemented in hardware.

In virtual memory, some form of LRU is always approximated, since even a tiny 
reduction in the miss rate can be important when the cost of a miss is enormous. 
Reference bits or equivalent functionality are often provided to make it easier for 
the operating system to track a set of less recently used pages.  Because misses are 
so expensive and relatively infrequent, approximating this information primarily 
in software is acceptable. 

Question 4: What Happens on a Write?

A key characteristic of any memory hierarchy is how it deals with writes. We have 
already seen the two basic options:

 ■ Write-through: The information is written to both the block in the cache and 
the block in the lower level of the memory hierarchy (main memory for a 
cache). The caches in Section 5.2 used this scheme. 

 ■ Write-back: The in formation is written only to the block in the cache. The 
modi fied block is written to the lower level of the hierarchy only when it 
is re placed. Virtual memory systems always use write-back, for the reasons 
discussed in Section 5.4.
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Both write-back and write-through have their advantages. The key advantages 
of write-back are the following:

 ■ Individual words can be written by the processor at the rate that the cache, 
rather than the memory, can accept them.

 ■ Multiple writes within a block require only one write to the lower level in the 
hierarchy.

 ■ When blocks are written back, the system can make effective use of a high-
bandwidth transfer, since the entire block is written. 

Write-through has these advantages:

 ■ Misses are simpler and cheaper because they never require a block to be 
written back to the lower level.

 ■ Write-through is easier to implement than write-back, although to be prac-
tical, a write-through cache will still need to use a write buffer. 

In virtual memory systems, only a write-back policy is practical because of the 
long latency of a write to the lower level of the hierarchy (disk). The rate at which 
writes are generated by a processor generally exceed the rate at which the memory 
system can process them, even allowing for physically and logically wider memories 
and burst modes for DRAM. Consequently, today lowest-level caches typically use 
write-back.

Caches, TLBs, and virtual memory may initially look very different, but 
they rely on the same two principles of locality, and they can be under-
stood by their answers to four questions:

Question 1: Where can a block be placed?
Answer: One place (direct mapped), a few places (set associative), 

or any place (fully associative).

Question 2: How is a block found?
Answer: There are four methods: indexing (as in a direct-mapped 

cache), limited search (as in a set-associative cache), full 
search (as in a fully associative cache), and a separate 
lookup table (as in a page table). 

Question 3: What block is replaced on a miss?
Answer: Typically, either the least recently used or a random block.

Question 4: How are writes handled?
Answer: Each level in the hierarchy can use either write-through or 

write-back.

The BIG 
Picture
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The Three Cs: An Intuitive Model for Understanding the 
Behavior of Memory Hierarchies
In this section, we look at a model that provides insight into the sources of misses 
in a memory hierarchy and how the misses will be affected by changes in the hier-
archy. We will explain the ideas in terms of caches, although the ideas carry over 
directly to any other level in the hierarchy. In this model, all misses are classified 
into one of three categories (the three Cs):

■ Compulsory misses: These are cache misses caused by the first access to 
a block that has never been in the cache. These are also called cold-start 
misses.

■ Capacity misses: These are cache misses caused when the cache cannot con-
tain all the blocks needed during execution of a program. Capacity misses 
occur when blocks are replaced and then later retrieved. 

■ Conflict misses: These are cache misses that occur in set-associative or 
 direct-mapped caches when multiple blocks compete for the same set. Con-
flict misses are those misses in a direct-mapped or set-associative cache that 
are eliminated in a fully associative cache of the same size. These cache misses 
are also called collision misses.

Figure 5.31 shows how the miss rate divides into the three sources. These sources 
of misses can be directly attacked by changing some aspect of the cache design. Since 
conflict misses arise directly from contention for the same cache block, increasing 
associativity reduces conflict misses. Associativity, however, may slow access time, 
leading to lower overall performance.

Capacity misses can easily be reduced by enlarging the cache; indeed, second-
level caches have been growing steadily larger for many years. Of course, when we 
make the cache larger, we must also be careful about increasing the access time, 
which could lead to lower overall performance. Thus, first-level caches have been 
growing slowly, if at all.

Because compulsory misses are generated by the first reference to a block, the 
primary way for the cache system to reduce the number of compulsory misses is to 
increase the block size. This will reduce the number of references required to touch 
each block of the program once, because the program will consist of fewer cache 
blocks. As mentioned above, increasing the block size too much can have a negative 
effect on performance because of the increase in the miss penalty.

The decomposition of misses into the three Cs is a useful qualitative model. In 
real cache designs, many of the design choices interact, and changing one cache 
characteristic will often affect several components of the miss rate. Despite such 
shortcomings, this model is a useful way to gain insight into the performance of 
cache designs.

three Cs model A cache 
model in which all cache 
misses are classified into 
one of three cate gories: 
compulsory misses, 
capacity misses, and 
conflict misses. 

compulsory miss Also 
called cold-start miss. 
A cache miss caused by 
the first access to a block 
that has  never been in the 
cache.

capacity miss A cache 
miss that occurs because 
the cache, even with 
full associativity, can not 
contain all the blocks 
needed to satisfy the 
request. 

conflict miss Also called 
colli sion miss. A cache 
miss that occurs in a  
set-associative or direct-
mapped cache when 
mul tiple blocks compete 
for the same set and that 
are eliminated in a fully 
associative cache of the 
same size.
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The challenge in designing memory hierarchies is that every change that 
potentially improves the miss rate can also negatively affect overall perfor-
mance, as Figure 5.32 summarizes. This combination of  positive and nega-
tive effects is what makes the design of a memory hierarchy interesting.

FIGURE 5.31 The miss rate can be broken into three sources of misses. This graph shows 
the total miss rate and its components for a range of cache sizes. This data is for the SPEC CPU2000 integer 
and floating-point benchmarks and is from the same source as the data in Figure 5.30. The compulsory 
miss component is 0.006% and cannot be seen in this graph. The next component is the capacity miss rate, 
which depends on cache size. The conflict portion, which depends both on associativity and on cache size, is 
shown for a range of associativities from one-way to eight-way. In each case, the labeled section corre sponds 
to the increase in the miss rate that occurs when the associativity is changed from the next higher degree to 
the labeled degree of associativity. For example, the section labeled two-way indicates the addi tional misses 
arising when the cache has associativity of two rather than four. Thus, the difference in the miss rate incurred 
by a direct-mapped cache versus a fully associative cache of the same size is given by the sum of the sections 
marked eight-way, four-way, two-way, and one-way. The difference between eight-way and four-way is so 
small that it is difficult to see on this graph. 
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Design change Effect on miss rate
Possible negative  

performance effect

Increase cache size Decreases capacity misses May increase access time

Increase associativity Decreases miss rate due to conflict 
misses

May increase access time

Increase block size Decreases miss rate for a wide range of 
block sizes due to spatial locality

Increases miss penalty. Very large 
block could increase miss rate

FIGURE 5.32 Memory hierarchy design challenges. 

Which of the following statements (if any) are generally true?

1. There is no way to reduce compulsory misses.

2. Fully associative caches have no conflict misses.

3. In reducing misses, associativity is more important than capacity.

 5.6 Virtual Machines

An idea related to virtual memory that is almost as old is Virtual Machines (VM). 
They were first developed in the mid-1960s, and they have remained an important 
part of mainframe computing over the years. Although largely ignored in the 
domain of single-user computers in the 1980s and 1990s, they have recently gained 
popularity due to 

 ■ The increasing importance of isolation and security in modern systems

 ■ The failures in security and reliability of standard operating systems 

 ■ The sharing of a single computer among many unrelated users

 ■ The dramatic increases in raw speed of processors over the decades, which 
makes the overhead of VMs more acceptable

The broadest definition of VMs includes basically all emulation methods that 
provide a standard software interface, such as the Java VM. In this section, we are 
interested in VMs that provide a complete system-level environment at the binary 
instruction set architecture (ISA) level. Although some VMs run different ISAs in 
the VM from the native hardware, we assume they always match the hardware. 
Such VMs are called (Operating) System Virtual Machines. IBM VM/370, VMware 
ESX Server, and Xen are examples. 

Check  
Yourself
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System virtual machines present the illusion that the users have an entire 
 computer to themselves, including a copy of the operating system. A single com-
puter runs multiple VMs and can support a number of different operating systems 
(OSes). On a conventional platform, a single OS “owns” all the hardware resources, 
but with a VM, multiple OSes all share the hardware resources. 

The software that supports VMs is called a virtual machine monitor (VMM) or 
hypervisor; the VMM is the heart of virtual machine technology. The underlying 
hardware platform is called the host, and its resources are shared among the guest 
VMs. The VMM determines how to map virtual resources to physical resources: 
a physical resource may be time-shared, partitioned, or even emulated in software. 
The VMM is much smaller than a traditional OS; the isolation portion of a VMM 
is perhaps only 10,000 lines of code.

Although our interest here is in VMs for improving protection, VMs provide 
two other benefits that are commercially significant:

1. Managing software. VMs provide an abstraction that can run the complete 
software stack, even including old operating systems like DOS. A typical 
deployment might be some VMs running legacy OSes, many running the 
current stable OS release, and a few testing the next OS release.

2. Managing hardware. One reason for multiple servers is to have each appli-
cation running with the compatible version of the operating system on sep-
arate computers, as this separation can improve dependability. VMs allow 
these separate software stacks to run independently yet share hardware, 
thereby consolidating the number of servers. Another example is that some 
VMMs support migration of a running VM to a different computer, either 
to balance load or to evacuate from failing hardware.

In general, the cost of processor virtualization depends on the workload. User-
level processor-bound programs have zero virtualization overhead, because the 
OS is rarely invoked, so everything runs at native speeds. I/O-intensive workloads 
are generally also OS-intensive, executing many system calls and privileged 
instructions that can result in high virtualization overhead. On the other hand, if 
the I/O-intensive workload is also I/O-bound, the cost of processor virtualization 
can be completely hidden, since the processor is often idle waiting for I/O. 

The overhead is determined by both the number of instructions that must be 
emulated by the VMM and by how much time each takes to emulate. Hence, when 
the guest VMs run the same ISA as the host, as we assume here, the goal of the 
architecture and the VMM is to run almost all instructions directly on the native 
hardware. 



Requirements of a Virtual Machine Monitor
What must a VM monitor do? It presents a software interface to guest software, 
it must isolate the state of guests from each other, and it must protect itself from 
guest software (including guest OSes). The qualitative requirements are:

 ■ Guest software should behave on a VM exactly as if it were running on the 
native hardware, except for performance-related behavior or limitations of 
fixed resources shared by multiple VMs.

 ■ Guest software should not be able to change allocation of real system resources 
directly.

To “virtualize” the processor, the VMM must control just about everything—access 
to privileged state, address translation, I/O, exceptions, and interrupts—even though 
the guest VM and OS currently running are temporarily using them.

For example, in the case of a timer interrupt, the VMM would suspend the cur-
rently running guest VM, save its state, handle the interrupt, determine which guest 
VM to run next, and then load its state. Guest VMs that rely on a timer interrupt 
are provided with a virtual timer and an emulated timer interrupt by the VMM. 

To be in charge, the VMM must be at a higher privilege level than the guest 
VM, which generally runs in user mode; this also ensures that the execution of 
any privileged instruction will be handled by the VMM. The basic requirements 
of  system virtual machines are almost identical to those for paged virtual memory 
listed above: 

 ■ At least two processor modes, system and user

 ■ A privileged subset of instructions that is available only in system mode, 
resulting in a trap if executed in user mode; all system resources must be 
controllable only via these instructions

(Lack of) Instruction Set Architecture Support for  
Virtual Machines

If VMs are planned for during the design of the ISA, it’s relatively easy to reduce 
both the number of instructions that must be executed by a VMM and improve 
their emulation speed. An architecture that allows the VM to execute directly on 
the hardware earns the title virtualizable, and the IBM 370 architecture proudly 
bears that label.

Alas, since VMs have been considered for desktop and PC-based server applica-
tions only fairly recently, most instruction sets were created without virtualization 
in mind. These culprits include x86 and most RISC architectures, including ARM 
and MIPS. 
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Because the VMM must ensure that the guest system only interacts with virtual 
resources, a conventional guest OS runs as a user mode program on top of the 
VMM. Then, if a guest OS attempts to access or modify information related to 
hardware resources via a privileged instruction—for example, reading or writing 
the page table pointer—it will trap to the VMM. The VMM can then effect the 
appropriate changes to corresponding real resources.

Hence, if any instruction that tries to read or write such sensitive information 
traps when executed in user mode, the VMM can intercept it and support a virtual 
version of the sensitive information, as the guest OS expects. 

In the absence of such support, other measures must be taken. A VMM must 
take special precautions to locate all problematic instructions and ensure that they 
behave correctly when executed by a guest OS, thereby increasing the complexity 
of the VMM and reducing the performance of running the VM. 

Protection and Instruction Set Architecture

Protection is a joint effort of architecture and operating systems, but architects 
had to modify some awkward details of existing instruction set architectures when 
virtual memory became popular. For example, to support virtual memory in the 
IBM 370, architects had to change the successful IBM 360 instruction set architec-
ture that had been announced just six years before. Similar adjustments are being 
made today to accommodate virtual machines.

For example, the x86 instruction POPF loads the flag registers from the top of 
the stack in memory. One of the flags is the Interrupt Enable (IE) flag. If you run 
the POPF instruction in user mode, rather than trap it, it simply changes all the 
flags except IE. In system mode, it does change the IE. Since a guest OS runs in user 
mode inside a VM, this is a problem, as it expects to see a changed IE. 

Historically, IBM mainframe hardware and VMM took three steps to improve 
performance of virtual machines:

1. Reduce the cost of processor virtualization

2. Reduce interrupt overhead cost due to the virtualization

3. Reduce interrupt cost by steering interrupts to the proper VM without 
invoking VMM

In 2006, new proposals by AMD and Intel try to address the first point, reduc ing 
the cost of processor virtualization. It will be interesting to see how many genera-
tions of architecture and VMM modifications it will take to address all three points, 
and how long before virtual machines of the 21st century will be as effi cient as the 
IBM mainframes and VMMs of the 1970s.



Elaboration: In addition to virtualizing the instruction set, another challenge is 
virtualiza tion of virtual memory, as each guest OS in every VM manages its own set of 
page tables. To make this work, the VMM separates the notions of real and physical 
memory (which are often treated synonymously), and makes real memory a separate, 
intermediate level between virtual memory and physical memory. (Some use the terms 
virtual memory, physical memory, and machine memory to name the same three levels.) 
The guest OS maps virtual memory to real memory via its page tables, and the VMM 
page tables map the guest’s real memory to physical memory. The virtual memory 
architecture is specified either via page tables, as in IBM VM/370 and the x86, or via 
the TLB structure, as in MIPS.

Rather than pay an extra level of indirection on every memory access, the VMM 
maintains a shadow page table that maps directly from the guest virtual address space 
to the physical address space of the hardware. By detecting all modifications to the 
guest’s page table, the VMM can ensure the shadow page table entries being used by 
the hardware for translations cor respond to those of the guest OS environment, with 
the exception of the correct physical pages substituted for the real pages in the guest 
tables. Hence, the VMM must trap any attempt by the guest OS to change its page table 
or to access the page table pointer. This is commonly done by write protecting the guest 
page tables and trapping any access to the page table pointer by a guest OS. As noted 
above, the latter happens naturally if accessing the page table pointer is a privileged 
operation.

The final portion of the architecture to virtualize is I/O. This is by far the most difficult 
part of system virtualization because of the increasing number of I/O devices attached 
to the com puter and the increasing diversity of I/O device types. Another difficulty is the 
sharing of a real device among multiple VMs, and yet another comes from supporting 
the myriad of device driv ers that are required, especially if different guest OSes are 
supported on the same VM system. The VM illusion can be maintained by giving each 
VM generic versions of each type of I/O device driver, and then leaving it to the VMM to 
handle real I/O. 

 5.7 
 Using a Finite-State Machine to Control 
a Simple Cache

We can now implement control for a cache, just as we implemented control for 
the single-cycle and pipelined datapaths in Chapter 4. This section starts with a 
definition of a simple cache and then a description of finite-state machines (FSM). 
It finishes with the FSM of a controller for this simple cache.  Section 5.9 on the 
CD goes into more depth, showing the cache and controller in a new hardware 
description language.

A Simple Cache

We’re going to design a controller for a simple cache. Here are the key charateris tics 
of the cache:
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 ■ Direct-mapped cache 

 ■ Write-back using write allocate

 ■ Block size is 4 words (16 bytes or 128 bits)

 ■ Cache size is 16 KB, so it holds 1024 blocks

 ■ 32-bit byte addresses

 ■ The cache includes a valid bit and dirty bit per block

From Section 5.2, we can now calculate the fields of an address for the cache:

 ■ Cache index is 10 bits

 ■ Block offset is 4 bits

 ■ Tag size is 32 − (10 + 4) or 18 bits

The signals between the processor to the cache are 

 ■ 1-bit Read or Write signal

 ■ 1-bit Valid signal, saying whether there is a cache operation or not

 ■ 32-bit address

 ■ 32-bit data from processor to cache

 ■ 32-bit data from cache to processor

 ■ 1-bit Ready signal, saying the cache operation is complete

Note that this is a blocking cache, in that the processor must wait until the cache 
has finished the request.

The interface between the memory and the cache has the same fields as between 
the processor and the cache, except that the data fields are now 128 bits wide. The 
extra memory width in generally found microprocessors today, which deal with 
either 32-bit or 64-bit words in the processor while the DRAM control ler is often 
128 bits. Making the cache block match the width of the DRAM sim plified the 
design. Here are the signals:

 ■ 1-bit Read or Write signal

 ■ 1-bit Valid signal, saying whether there is a memory operation or not

 ■ 32-bit address

 ■ 128-bit data from cache to memory

 ■ 128-bit data from memory to cache

 ■ 1-bit Ready signal, saying the memory operation is complete



Note that the interface to memory is not a fixed number of cycles. We assume a 
memory controller that will notify the cache via the Ready signal when the mem-
ory read or write is finished.

Before describing the cache controller, we need to review finite-state machines, 
which allow us to control an operation that can take multiple clock cycles.

Finite-State Machines

To design the control unit for the single-cycle datapath, we used a set of truth tables 
that specified the setting of the control signals based on the instruction class. For a 
cache, the control is more complex because the operation can be a series of steps. 
The control for a cache must specify both the signals to be set in any step and the 
next step in the sequence. 

The most common multistep control method is based on finite-state machines,
which are usually represented graphically. A finite-state machine con sists of a set 
of states and directions on how to change states. The directions are defined by a 
next-state function, which maps the current state and the inputs to a new state. 
When we use a finite-state machine for control, each state also specifies a set of 
outputs that are asserted when the machine is in that state. The implemen tation  
of a finite-state machine usually assumes that all outputs that are not explicitly 
asserted are deasserted. Similarly, the correct operation of the datapath depends on 
the fact that a signal that is not explicitly asserted is deasserted, rather than acting 
as a don’t care.

Multiplexor controls are slightly different, since they select one of the inputs 
whether they are 0 or 1. Thus, in the finite-state machine, we always specify the 
setting of all the multiplexor controls that we care about. When we implement 
the finite-state machine with logic, setting a control to 0 may be the default and 
thus may not require any gates. A simple example of a finite-state machine appears 
in  Appendix C, and if you are unfamiliar with the concept of a finite-state 
machine, you may want to examine  Appendix C before proceeding.

A finite-state machine can be implemented with a temporary register that holds 
the current state and a block of combinational logic that determines both the data -
path signals to be asserted and the next state. Figure 5.33 shows how such an imple-
mentation might look.  Appendix D describes in detail how the finite-state 
machine is implemented using this structure. In  Section C.3, the combinational 
control logic for a finite-state machine is implemented both with a ROM (read-
only memory) and a PLA (programmable logic array). (Also see  Appendix C 
for a description of these logic elements.) 

finite-state machine 
A sequen tial logic 
function con sisting of a 
set of inputs and outputs, 
a next-state function 
that maps the cur rent 
state and the inputs to a 
new state, and an output 
function that maps the 
 current state and possibly 
the inputs to a set of  
asserted outputs.

next-state function 
A combi national function 
that,  given the inputs 
and the current state, 
determines the next state 
of a finite-state machine.
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Elaboration: The style of finite-state machine in this book is called a Moore machines, 
after Edward Moore. Its identifying characteristic is that the output depends only on the 
current state. For a Moore machine, the box labeled combinational control logic can be 
split into two pieces. One piece has the control output and only the state input, while the 
other has only the next-state output.

An alternative style of machine is a Mealy machine, named after George Mealy. The 
Mealy machine allows both the input and the current state to be used to determine 
the output. Moore machines have potential implementation advantages in speed and 
size of the control unit. The speed advantages arise because the control outputs, which 
are needed early in the clock cycle, do not depend on the inputs, but only on the current 
state. In  Appendix C, when the imple mentation of this finite-state machine is taken 
down to logic gates, the size advantage can be clearly seen. The potential disadvantage 
of a Moore machine is that it may require additional states. For example, in situations 
where there is a one-state difference between two sequences of states, the Mealy 
machine may unify the states by making the outputs depend on the inputs.

FIGURE 5.33 Finite-state machine controllers are typically implemented using a block 
of combinational logic and a register to hold the current state. The outputs of the combina-
tional logic are the next-state number and the control signals to be asserted for the current state. The inputs 
to the combinational logic are the current state and any inputs used to determine the next state. In this 
case, the inputs are the instruction register opcode bits. Notice that in the finite-state machine used in this 
chapter, the outputs depend only on the current state, not on the inputs. The Elaboration explains this in 
more detail. 

Combinational
control logic

Outputs

Inputs

State register
Next state

Datapath control outputs

Inputs from cache
datapath



FSM for a Simple Cache Controller

Figure 5.34 shows the four states of our simple cache controller:

 ■ Idle: This state waits for a valid read or write request from the processor, 
which moves the FSM to the Compare Tag state.

 ■ Compare Tag: As the name suggests, this state tests to see if the requested read 
or write is a hit or a miss. The index portion of the address selects the tag to 
be compared. If the data in the cache block referred to by the index portion of 
the address is valid and the tag portion of the address matches the tag, then the 
requested read or write is a hit. Either the data is read from the selected word 
or the writ ten to the selected word, and then the Cache Ready signal is set. If 
it is a write, the dirty bit is set to 1. Note that a write hit also sets the valid bit 
and the tag field; while it seems unnecessary, it is included because the tag is a 
single memory, so to change the dirty bit we also need to change the valid and 
tag fields. If it is a hit and the block is valid, the FSM returns to the idle state. A 
miss first updates the cache tag and then goes either to the Write-Back state, if 
the block at this location has dirty bit value of 1, or to the Allo cate state if it is 0. 
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FIGURE 5.34 Four states of the simple controller. 
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 ■ Write-Back: This state writes the 128-bit block to memory using the address 
composed from the tag and cache index. We remain in this state waiting for 
the Ready signal from memory. When the memory write is complete, the 
FSM goes to the Allocate state.

 ■ Allocate : The new block is fetched from memory. We remain in this state 
waiting for the Ready signal from memory. When the memory read is com-
plete, the FSM goes to the Compare Tag state. Although we could have gone 
to a new state to complete the operation instead of reusing the Compare Tag 
state, there is a good deal of overlap, including the update of the appropriate 
word in the block if the access was a write. 

This simple model could easily be extended with more states to try to improve 
performance. For example, the Compare Tag state does both the compare and the 
read or write of the cache data in a single clock cycle. Often the compare and cache 
access are done in separate states to try to improve the clock cycle time. Another 
optimization would be to add a write buffer so that we could save the dirty block 
and then read the new block first so that the processor doesn’t have to wait for two 
memory accesses on a dirty miss. The cache would then write the dirty block from 
the write buffer while the processor is operating on the requested data.

 Section 5.9, on the CD, goes into more detail about the FSM, showing the 
full controller in a hardware description language and a block diagram of this 
simple cache.

 5.8  
Parallelism and Memory Hierarchies: 
Cache Coherence

Given that a multicore multiprocessor means multiple processors on a single 
chip, these processors very likely share a common physical address space. Caching 
shared data introduces a new problem, because the view of memory held by 
two different processors is through their individual caches, which, without any 
additional precau tions, could end up seeing two different values. Figure 5.35 
illustrates the problem and shows how two different processors can have two 
different values for the same location. This difficulty is generally referred to as the 
cache coherence problem. 

Informally, we could say that a memory system is coherent if any read of a data 
item returns the most recently written value of that data item. This definition, 
although intuitively appealing, is vague and simplistic; the reality is much more 
complex. This simple definition contains two different aspects of memory system 
behavior, both of which are critical to writing correct shared memory programs. 
The first aspect, called coherence, defines what values can be returned by a read. 



The second aspect, called consistency, determines when a written value will be 
returned by a read. 

Let’s look at coherence first. A memory system is coherent if 

1. A read by a processor P to a location X that follows a write by P to X, with no 
writes of X by another processor occurring between the write and the read 
by P, always returns the value written by P. Thus, in Figure 5.35 above, if CPU 
A were to read X after time step 3, it should see the value 1.

2. A read by a processor to location X that follows a write by another proces sor 
to X returns the written value if the read and write are sufficiently sepa rated 
in time and no other writes to X occur between the two accesses. Thus, in 
Figure 5.35, we need a mechanism so that the value 0 in the cache of CPU B 
is replaced by the value 1 after CPU A stores 1 into memory at address X in 
time step 3.

3. Writes to the same location are serialized; that is, two writes to the same 
location by any two processors are seen in the same order by all processors. 
For example, if CPU B stores 2 into memory at address X after time step 3, 
processors can never read the value at location X as 2 and then later read 
it as 1.

The first property simply preserves program order—we certainly expect this 
property to be true in uniprocessors, for example. The second property defines 
the notion of what it means to have a coherent view of memory: if a processor 
could continuously read an old data value, we would clearly say that memory was 
incoherent. 

The need for write serialization is more subtle, but equally important. Suppose 
we did not serialize writes, and processor P1 writes location X followed by P2 
writing location X. Serializing the writes ensures that every processor will see the 

FIGURE 5.35 The cache coherence problem for a single memory location (X), read and 
written by two processors (A and B). We initially assume that neither cache contains the variable and 
that X has the value 0. We also assume a write-through cache; a write-back cache adds some additional but 
similar complications. After the value of X has been written by A, A’s cache and the memory both con tain the 
new value, but B’s cache does not, and if B reads the value of X, it will receive 0! 

Time
step Event

Cache  contents for 
CPU A

Cache  contents 
for CPU B

Memory 
contents for 
location X

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A stores 1 into X 1 0 1
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write done by P2 at some point. If we did not serialize the writes, it might be the 
case that some processor could see the write of P2 first and then see the write of 
P1, maintaining the value written by P1 indefinitely. The simplest way to avoid 
such difficulties is to ensure that all writes to the same location are seen in the same 
order; this property is called write serialization. 

Basic Schemes for Enforcing Coherence

In a cache coherent multiprocessor, the caches provide both  migration and replica-
tion of shared data items: 

 ■ Migration: A data item can be moved to a local cache and used there in a 
transparent fashion. Migration reduces both the latency to access a shared 
data item that is allocated remotely and the bandwidth demand on the shared 
memory. 

 ■ Replication: When shared data are being  simultaneously read, the caches 
make a copy of the data item in the local cache. Replication reduces both 
latency of access and contention for a read shared data item. 

Supporting this migration and replication is critical to performance in access ing 
shared data, so many multiprocessors introduce a hardware protocol to main tain 
coherent caches. The protocols to maintain coherence for multiple processors are 
called cache coherence proto cols. Key to implementing a cache coherence proto col is 
tracking the state of any sharing of a data block. 

The most popular cache coherence protocol is snooping. Every cache that has a 
copy of the data from a block of physical memory also has a copy of the sharing 
status of the block, but no centralized state is kept. The caches are all accessible via 
some broadcast medium (a bus or network), and all cache controllers monitor or 
snoop on the medium to determine whether or not they have a copy of a block that 
is requested on a bus or switch access. 

In the following section we explain snooping-based cache coherence as imple-
mented with a shared bus, but any communication medium that broadcasts cache 
misses to all processors can be used to implement a snooping-based coherence 
scheme. This broadcasting to all caches makes snooping protocols simple to 
implement but also limits their scalability. 

Snooping Protocols 
One method of enforcing coherence is to ensure that a processor has exclusive 
access to a data item before it writes that item. This style of protocol is called a write 
invalidate protocol  because it invalidates copies in other caches on a write. Exclusive 
access ensures that no other readable or writable copies of an item exist when the 
write occurs: all other cached copies of the item are invalidated. 



Figure 5.36 shows an example of an invalidation protocol for a snooping bus with 
write-back caches in action. To see how this protocol ensures coherence,  con sider 
a write followed by a read by another processor: since the write requires exclu-
sive access, any copy held by the reading processor must be invalidated (hence the 
protocol name). Thus, when the read occurs, it misses in the cache, and the cache 
is forced to fetch a new copy of the data. For a write, we require that the writing 
processor have exclusive access, preventing any other processor from being able to 
write simultaneously. If two processors do attempt to write the same data simulta-
neously, one of them wins the race, causing the other proces sor’s copy to be invali-
dated. For the other processor to complete its write, it must obtain a new copy of 
the data, which must now contain the updated value. There fore, this protocol also 
enforces write serialization. 

FIGURE 5.36 An example of an invalidation protocol working on a snooping bus for a 
single cache block (X) with write-back caches. We assume that neither cache initially holds X and 
that the value of X in memory is 0. The CPU and memory contents show the value after the processor and 
bus activity have both completed. A blank indicates no activity or no copy cached. When the second miss 
by B occurs, CPU A responds with the value canceling the response from memory. In addition, both the 
contents of B’s cache and the memory contents of X are updated. This update of memory, which occurs 
when a block becomes shared, simplifies the protocol, but it is possible to track the ownership and force the 
write-back only if the block is replaced. This requires the introduction of an additional state called “owner,” 
which indicates that a block may be shared, but the owning processor is responsible for updating any other 
processors and memory when it changes the block or replaces it. 

Processor activity Bus activity
Contents of  

CPU A’s cache
Contents of  

CPU B’s cache

Contents of  
memory  

location X

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes a 1 to X Invalidation for X 1 0

CPU B reads X Cache miss for X 1 1 1

One insight is that block size plays an important role in cache coherency. For 
example, take the case of snooping on a cache with a block size of eight words, 
with a single word alternatively writ ten and read by two processors. Most proto cols 
exchange full blocks between processors, thereby increasing coherency bandwidth 
demands. 

Large blocks can also cause what is called false shar ing: when two unrelated 
shared variables are located in the same cache block, the full block is exchanged 
between processors even though the processors are accessing different variables. 
Programmers and compilers should lay out data carefully to avoid false 
sharing.

Hardware/ 
Software 
Interface

false sharing When two 
unre  lated shared variables 
are located in the same 
cache block and the 
full block is exchanged 
between  processors even 
though the  processors 
are accessing dif ferent 
variables.
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Elaboration: Although the three properties on page 535 are sufficient to ensure 
coherence, the question of when a written value will be seen is also important. To see 
why, observe that we cannot require that a read of X in Figure 5.35 instantaneously 
sees the value writ ten for X by some other pro cessor. If, for example, a write of X on 
one processor precedes a read of X on another processor very shortly beforehand, it 
may be impossible to ensure that the read returns the value of the data written, since 
the written data may not even have left the pro cessor at that point. The issue of exactly 
when a written value must be seen by a reader is defined by a memory consistency 
model. 

We make the following two assumptions. First, a write does not complete (and allow 
the next write to occur) until all processors have seen the effect of that write. Second, 
the processor does not change the order of any write with respect to any other memory 
access. These two con ditions mean that if a processor writes location X followed by 
location Y, any processor that sees the new value of Y must also see the new value 
of X. These restrictions allow the processor to reorder reads, but forces the processor 
to finish a write in program order.

Elaboration: Since input can change memory behind the caches and since output 
could need the latest value in a write back cache, there is also a cache coherency problem 
for I/O with the caches of a single processor as well as just between caches of multiple 
processors. The cache coherence problem for multiprocessors and I/O (see Chapter 6), 
although similar in origin, has different characteristics that affect the appropriate solution. 
Unlike I/O, where multiple data copies are a rare event—one to be avoided whenever 
possi ble—a program running on multiple proces sors will normally have copies of the 
same data in several caches.

Elaboration: In addition to the snooping cache coherence protocol where the status 
of shared blocks is distributed, a directory-based cache coherence protocol keeps the 
sharing sta tus of a block of physical memory in just one location, called the directory. 
Directory-based coherence has slightly higher implementation overhead than snooping, 
but it can reduce traffic between caches and thus scale to larger processor counts.

   Advanced Material: Implementing 
Cache Controllers

This section on the CD shows how to implement control for a cache, just as we 
implemented control for the single-cycle and pipelined datapaths in Chapter 4. This 
section starts with a description of finite-state machines and the implemention of 
a cache controller for a simple data cache, including a description of the cache 
controller in a hardware description language. It then goes into details of an 
example cache coherence protocol and the difficulties in implementing such a 
protocol.

5.9
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FIGURE 5.37 An Intel Nehalem die processor photo with the components labeled. This 
13.5 by 19.6 mm die has 731 million transistors. It contains four processors that each have private 32-KB 
instruction and 32-LKB instruction caches and a 512-KB L2 cache. The four cores share an 8-MB L3 cache. 
The two 128-bit memory channels are to DDR3 DRAM. Each core also has a two-level TLB. The memory 
controller is now on the die, so there is no separate north bridge chip as in Intel Clovertown. 
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 5.10 
 Real Stuff: the AMD Opteron X4 
(Barcelona) and Intel Nehalem Memory 
Hierarchies

In this section, we will look at the memory hierarchy in two modern microproces sors:  
the AMD Opteron X4 (Barcelona) processor and the Intel Nehalem. Figure 5.37 
shows the Intel Nehalem die photo, and Figure 1.9 in Chapter 1 shows the AMD 
Opteron X4 die photo. Both have secondary and tertiary caches on the main 
processor die. Such integration reduces access time to the lower-level caches and 
also reduces the number of pins on the chip, since there is no need for a bus to an 
external secondary cache. Both have on-chip memory controllers, which reduces 
the latency to main memory.
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The Memory Hierarchies of the Nehalem and Opteron

Figure 5.38 summarizes the address sizes and TLBs of the two processors. Note that 
the AMD Opteron X4 (Barcelona) has four TLBs and that the virtual and physical 
addresses do not have to match the word size. The X4 implements only 48 of the 
potential 64 bits of its virtual space and 48 of the potential 64 bits of its physical 
address space. Nehalem has three TLBs, and the virtual address is 48 bits and the 
physical address is 44 bits.

Characteristic Intel Nehalem AMD Opteron X4 (Barcelona)

Virtual address 48 bits 48 bits

Physical address 44 bits 48 bits

Page size 4 KB, 2/4 MB 4 KB, 2/4 MB

TLB organization 1 TLB for instructions and 1 TLB for 
data per core

Both L1 TLBs are four-way set 
associative, LRU replacement

The L2 TLB is four-way set 
associative, LRU replacement

L1 I-TLB has 128 entries for small 
pages, 7 per thread for large pages

L1 D-TLB has 64 entries for small 
pages, 32 for large pages

The L2 TLB has 512 entries

TLB misses handled in hardware

1 L1 TLB for instructions and 1 L1 TLB for 
data per core

Both L1 TLBs fully associative, LRU 
replacement

1 L2 TLB for instructions and 1 L2 TLB for 
data per core

Both L2 TLBs are four-way set associative, 
round-robin

Both L1 TLBs have 48 entries

Both L2 TLBs have 512 entries

TLB misses handled in hardware

FIGURE 5.38 Address translation and TLB hardware for the Intel Nehalem and AMD 
Opteron X4. The word size sets the maximum size of the virtual address, but a processor need not use all 
bits. Both processors provide support for large pages, which are used for things like the operating system 
or mapping a frame buffer. The large-page scheme avoids using a large number of entries to map a single 
object that is always present. Nehalem supports two hardware-supported threads per core (see Section 7.5 
in Chapter 7). 

Figure 5.39 shows their caches. Each processor in the X4 has its own L1 64-KB 
instruction and data caches and its own 512-KB L2 cache. The four pro cessors 
share a single 2-MB L3 cache. Nehalem has a similar structure, with each proces sor 
having its own L1 32-KB instruction and data caches and its own 512-KB L2 cache, 
and the four processors share a single 8-MB L3 cache.

Figure 5.40 shows the CPI, miss rates per thousand instructions for the L1 and 
L2 caches, and DRAM accesses per thousand instructions for Opteron X4 running 
the SPECint 2006 benchmarks. Note that the CPI and cache miss rates are highly 
correlated. The correlation coefficient of the set of CPIs and the set of L1 misses 
per 1000 instructions is 0.97. Although we don’t have the actual L3 misses, we can 
infer the effectiveness of L3 by the reduction in DRAM accesses versus L2 misses. 
While a few programs benefit significantly from the 2-MB L3 cache—h264avc, 
hmmer, and bzip2—most do not.



Characteristic Intel Nehalem AMD Opteron X4 (Barcelona)

L1 cache organization Split instruction and data caches Split instruction and data caches

L1 cache size 32 KB each for instructions/data per 
core

64 KB each for instructions/data 
per core

L1 cache associativity 4-way (I), 8-way (D) set associative 2-way set associative

L1 replacement Approximated LRU replacement LRU replacement

L1 block size 64 bytes 64 bytes

L1 write policy Write-back, Write-allocate Write-back, Write-allocate

L1 hit time (load-use) Not Available 3 clock cycles

L2 cache organization Unified (instruction and data) per core Unified (instruction and data) per core

L2 cache size 256 KB (0.25 MB) 512 KB (0.5 MB)

L2 cache associativity 8-way set associative 16-way set associative

L2 replacement Approximated LRU replacement Approximated LRU replacement

L2 block size 64 bytes 64 bytes

L2 write policy Write-back, Write-allocate Write-back, Write-allocate

L2 hit time Not Available 9 clock cycles

L3 cache organization Unified (instruction and data) Unified (instruction and data) 

L3 cache size 8192 KB (8 MB), shared 2048 KB (2 MB), shared

L3 cache associativity 16-way set associative 32-way set associative

L3 replacement Not Available Evict block shared by fewest cores

L3 block size 64 bytes 64 bytes

L3 write policy Write-back, Write-allocate Write-back, Write-allocate

L3 hit time Not Available 38 (?)clock cycles

FIGURE 5.39 First-level, second-level, and third-level caches in the Intel Nehalem and 
AMD Opteron X4 2356 (Barcelona). 

Techniques to Reduce Miss Penalties

Both the Nehalem and the Opteron X4 have additional optimizations that allow 
them to reduce the miss penalty. The first of these is the return of the requested 
word first on a miss, as described in the Elaboration on page 473. Both allow the 
processor to continue to execute instructions that access the data cache during 
a cache miss. This  technique, called a nonblocking cache, is commonly used by 
designers who are attempting to hide the cache miss latency by using out-of-order 
pro cessors. They implement two flavors of nonblocking. Hit under miss allows addi-
tional cache hits during a miss, while miss under miss allows multiple outstanding 
cache misses. The aim of the first of these two is hiding some miss latency with 
other work, while the aim of the second is overlapping the latency of two different 
misses.

Overlapping a large fraction of miss times for multiple outstanding misses 
requires a high-bandwidth memory system capable of handling multiple misses in 
parallel. In desktop systems, the memory may only be able to take limited advan-
tage of this capability, but large servers and multiprocessors often have memory 
systems capable of handling more than one outstanding miss in parallel. 

nonblocking cache 
A cache that allows 
the processor to make 
references to the cache 
while the cache is 
 handling an earlier miss.
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Both microprocessors prefetch instructions and have a built-in hardware prefetch 
mechanism for data accesses. They look at a pattern of data misses and use this 
information to try to predict the next address to start fetching the data before the 
miss occurs. Such techniques generally work best when accessing arrays in loops.

A significant challenge facing cache designers is to support processors like the 
Nehalem and Opteron X4, which can execute more than one memory instruction 
per clock cycle. Multiple requests can be supported in the first-level cache by two 
different techniques. The cache can be multiported, allowing more than one simul-
taneous access to the same cache block. Multiported caches, however, are often 
too expensive, since the RAM cells in a multiported memory must be much larger 
than single-ported cells. The alternative scheme is to break the cache into banks 
and allow multiple, independent accesses, provided the accesses are to different 
banks. The technique is similar to interleaved main memory (see Figure 5.11).The 
Opteron X4 L1 data cache supports two 128-bit reads per clock cycle and has eight 
banks.

Nehalem and most other processors follow the policy of inclusion in their mem-
ory hierarchy. This means that a copy of all data in the higher level caches can also 
be found in the lower-level caches. In contrast, the AMD processors follow the 
policy of exclusion in their first- and second-level cache, meaning that a cache block 
can only be found in the first- or second-level caches, but not both. Hence, on an 
L1 miss when a block is fetched from L2 to L1, the block replaced is sent back to 
the L2 cache. 

FIGURE 5.40 CPI, miss rates, and DRAM accesses for the Opteron model X4 2356 
(Barcelona) mem ory hierarchy running SPECint2006. Alas, the L3 miss counters did not work on 
this chip, so we only have DRAM accesses to infer the effectiveness of the L3 cache. Note that this figure is for 
the same sys tems and benchmarks as Figure 1.20 in Chapter 1. 

 
Name

 
CPI

L1 D cache 
misses/1000 instr

L2 D cache 
misses/1000 instr

DRAM 
accesses/1000 instr

perl 0.75 3.5 1.1 1.3

bzip2 0.85 11.0 5.8 2.5

gcc 1.72 24.3 13.4 14.8

mcf 10.00 106.8 88.0 88.5

go 1.09 4.5 1.4 1.7 

hmmer 0.80 4.4 2.5 0.6

sjeng 0.96 1.9 0.6 0.8

libquantum 1.61 33.0 33.1 47.7

h264avc 0.80 8.8 1.6 0.2 

omnetpp 2.94 30.9 27.7 29.8

astar 1.79 16.3 9.2 8.2 

xalancbmk 2.70 38.0 15.8 11.4

Median 1.35 13.6 7.5 5.4



The sophisticated memory hierarchies of these chips and the large fraction of 
the dies dedicated to caches and TLBs show the significant design effort expended 
to try to close the gap between processor cycle times and memory latency.

Elaboration: The shared L3 cache of Opteron X4 does not always follow exclu sion. 
Since the data blocks can be shared between several processors in the L3 cache, it 
only removes the cache block from L3 if no other processors are sharing it. Hence, the 
L3 cache proto col recognizes whether or not the cache block is being shared or only 
used by a single proces sor.

Elaboration: Just as Opteron X4 does not follow the conventional inclusion property, 
it also has a novel relationship between the levels of the memory hierarchy. Instead of 
the memory feeding the L2 cache that in turn feeds the L1 cache, the L2 cache only 
holds data that has been evicted from the L1 cache. Thus, the L2 cache can be called a 
victim cache, since it only holds blocks displaced from L1 (“victims”). Similarly, L3 cache 
is a victim cache for the L2 cache, only con taining blocks that spill over from L2. If an 
L1 miss is not found in the L2 cache but found in the L3 cache, the L3 cache supplies 
the data directly to L1 cache. Hence, an L1 miss can be ser viced by an L2 hit or an L3 
hit or memory.

 5.11 Fallacies and Pitfalls

As one of the most naturally quantitative aspects of computer architecture, the 
memory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Not 
only have there been many fallacies propagated and pitfalls encountered, but some 
have led to major negative outcomes. We start with a pitfall that often traps students 
in exercises and exams.

Pitfall: Forgetting to account for byte addressing or the cache block size in simu-
lating a cache. 

When simulating a cache (by hand or by computer), we need to make sure we 
account for the effect of byte addressing and multiword blocks in determining 
into which cache block a given address maps. For example, if we have a 32-byte 
direct-mapped cache with a block size of 4 bytes, the byte address 36 maps into 
block 1 of the cache, since byte address 36 is block address 9 and (9 modulo 8) = 1.
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On the other hand, if address 36 is a word address, then it maps into block  
(36 mod 8) = 4. Make sure the problem clearly states the base of the address. 

In like fashion, we must account for the block size. Suppose we have a cache 
with 256 bytes and a block size of 32 bytes. Into which block does the byte address 
300 fall? If we break the address 300 into fields, we can see the answer:

31 30 29 . . . . . . . . . 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 . . . . . . . . . 0 0 0 1 0 0 1 0 1 1 0 0

Cache block 
number

Block offset

Block address

Byte address 300 is block address

 ⎣   300 � 
32

   ⎦  = 9

The number of blocks in the cache is

 ⎣   256 � 
32

   ⎦  = 8

Block number 9 falls into cache block number (9 modulo 8) = 1. 
This mistake catches many people, including the authors (in earlier drafts) and 

instructors who forget whether they intended the addresses to be in words, bytes, 
or block numbers. Remember this pitfall when you tackle the exercises.

Pitfall: Ignoring memory system behavior when writing programs or when gener-
ating code in a compiler.

This could easily be written as a fallacy: “Programmers can ignore memory hierar-
chies in writing code.” We illustrate with an example using matrix multiply, to 
complement the sort comparison in Figure 5.18.

Here is the inner loop of the version of matrix multiply from Chapter 3: 

for (i=0; i!=500; i=i+1) 
   for (j=0; j!=500; j=j+1) 
      for (k=0; k!=500; k=k+1) 
         x[i][j] = x[i][j] + y[i][k] * z[k][j];

When run with inputs that are 500 × 500 double precision matrices, the CPU 
runtime of the above loop on a MIPS CPU with a 1-MB secondary cache was 
about half the speed compared to when the loop order is changed to k,j,i (so i 
is innermost)! The only difference is how the program accesses memory and the 
ensuing effect on the memory hierarchy. Further compiler optimizations, using a 
technique called blocking, can result in a runtime that is another four times faster 
for this code! 



Pitfall: Having less set associativity for a shared cache than the number of cores or 
threads sharing that cache.

Without extra care, a parallel program running on 2n processors or threads can 
easily allocate data structures to addresses that would map to the same set of a 
shared L2 cache. If the cache is at least 2n-way associative, then these accidental 
conflicts are hidden by the hardware from the program. If not, programmers 
could face apparently mysterious performance bugs—actually due to L2 conflict 
misses—when migrating from, say, a 16-core design to 32-core design if both use 
16-way associative L2 caches.

Pitfall: Using average memory access time to evaluate the memory hierarchy of an 
out-of-order processor.

If a processor stalls during a cache miss, then you can separately calculate the 
memory-stall time and the processor execution time, and hence evaluate the mem-
ory hierarchy independently using average memory access time (see page 478).

If the processor continues to execute instructions, and may even sustain more 
cache misses during a cache miss, then the only accurate assessment of the mem-
ory hierarchy is to simulate the out-of-order processor along with the memory 
hierarchy.

Pitfall: Extending an address space by adding segments on top of an unsegmented 
address space.

During the 1970s, many programs grew so large that not all the code and data 
could be addressed with just a 16-bit address. Computers were then revised to 
offer 32-bit addresses, either through an unsegmented 32-bit address space (also 
called a flat address space) or by adding 16 bits of segment to the existing 16-bit 
address. From a marketing point of view, adding segments that were programmer-
visible and that forced the programmer and compiler to decompose programs into 
segments could solve the addressing problem. Unfortunately, there is trouble any 
time a programming language wants an address that is larger than one segment, 
such as indices for large arrays, unrestricted pointers, or reference parameters. 
Moreover, adding segments can turn every address into two words—one for the 
segment number and one for the segment offset—causing problems in the use of 
addresses in registers.

Pitfall: Implementing a virtual machine monitor on an instruction set architec ture 
that wasn’t designed to be virtualizable.

Many architects in the 1970s and 1980s weren’t careful to make sure that all instruc-
tions reading or writing information related to hardware resource information 
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were privileged. This laissez-faire attitude causes problems for VMMs for all of 
these architectures, including the x86, which we use here as an example.

Figure 5.41 describes the 18 instructions that cause problems for virtualization 
[Robin and Irvine, 2000]. The two broad classes are instructions that

 ■ Read control registers in user mode that reveals that the guest operating sys-
tem is running in a virtual machine (such as POPF, mentioned earlier)

 ■ Check protection as required by the segmented architecture but assume that 
the operating system is running at the highest privilege level

To simplify implementations of VMMs on the x86, both AMD and Intel have 
proposed extensions to the architecture via a new mode. Intel’s VT-x provides 
a new execution mode for running VMs, an architected definition of the VM 
state, instructions to swap VMs rapidly, and a large set of parameters to select 
the cir cumstances where a VMM must be invoked. Altogether, VT-x adds 11 new 
instructions for the x86. AMD’s Pacifica makes similar proposals.

An alternative to modifying the hardware is to make small modifications to the 
operating system to avoid using the troublesome pieces of the architecture. This 

Problem category Problem x86 instructions

Access sensitive registers without 
trapping when running in user mode 

Store global descriptor table register (SGDT) 
Store local descriptor table register (SLDT) 
Store interrupt descriptor table register (SIDT)
Store machine status word (SMSW)
Push flags (PUSHF, PUSHFD)
Pop flags (POPF, POPFD)

When accessing virtual memory 
mechanisms in user mode, instructions 
fail the x86 protection checks

Load access rights from segment descriptor (LAR)
Load segment limit from segment descriptor (LSL)
Verify if segment descriptor is readable (VERR)
Verify if segment descriptor is writable (VERW)
Pop to segment register (POP CS, POP SS, . . .)
Push segment register (PUSH CS, PUSH SS, . . .)
Far call to different privilege level (CALL)
Far return to different privilege level (RET)
Far jump to different privilege level (JMP)
Software interrupt (INT)
Store segment selector register (STR)
Move to/from segment registers (MOVE)

FIGURE 5.41 Summary of 18 x86 instructions that cause problems for virtualization 
[Robin and Irvine, 2000]. The first five instructions in the top group allow a program in user mode to 
read a control register, such as a descriptor table registers, without causing a trap. The pop flags instruction 
modifies a control register with sensitive information but fails silently when in user mode. The protection 
checking of the segmented architecture of the x86 is the downfall of the bottom group, as each of these 
instructions checks the privilege level implicitly as part of instruction execution when reading a control 
reg ister. The checking assumes that the OS must be at the highest privilege level, which is not the case for 
guest VMs. Only the Move to segment register tries to modify control state, and protection checking foils it 
as well. 



technique is called paravirtualization, and the open source Xen VMM is a good 
example. The Xen VMM provides a guest OS with a virtual machine abstraction 
that uses only the easy-to-virtualize parts of the physical x86 hardware on which 
the VMM runs. 

 5.12 Concluding Remarks

The difficulty of building a memory system to keep pace with faster processors is 
underscored by the fact that the raw material for main memory, DRAMs, is essen-
tially the same in the fastest computers as it is in the slowest and cheapest. 

It is the principle of locality that gives us a chance to overcome the long  
latency of memory access—and the soundness of this strategy is demonstrated at  
all levels of the memory hierarchy. Although these levels of the hierarchy look 
quite differ ent in quantitative terms, they follow similar strategies in their opera-
tion and exploit the same properties of locality. 

Multilevel caches make it possible to use more cache optimizations more easily 
for two reasons. First, the design parameters of a lower-level cache are different 
from a first-level cache. For example, because a lower-level cache will be much 
larger, it is possible to use larger block sizes. Second, a lower-level cache is not 
constantly being used by the processor, as a first-level cache is. This allows us to 
consider having the lower-level cache do something when it is idle that may be 
useful in preventing future misses. 

Another trend is to seek software help. Efficiently managing the memory hier-
archy using a variety of program transformations and hardware facilities is a major 
focus of compiler enhancements. Two different ideas are being explored. One idea 
is to reorganize the program to enhance its spatial and temporal locality. This 
approach focuses on loop-oriented programs that use large arrays as the major 
data structure; large linear algebra problems are a typical example. By restructuring 
the loops that access the arrays, substantially improved locality—and, therefore, 
cache performance—can be obtained. The discussion on page 544 showed how 
effective even a simple change of loop structure could be. 

Another approach is prefetching. In prefetching, a block of data is brought 
into the cache before it is actually referenced. Many microprocessors use hardware 
prefetching to try to predict accesses that may be difficult for software to notice.

A third approach is special cache-aware instructions that optimize memory 
transfer. For example, the microprocessors in Section 7.10 in Chapter 7 use an 
optimization that does not fetch the contents of a block from memory on a write 
miss because the program is going to write the full block. This optimization 
significantly reduces memory traffic for one kernel.

prefetching A technique 
in which data blocks 
needed in the future are 
brought into the cache 
early by the use of special 
instructions that specify 
the address of the block.
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As we will see in Chapter 7, memory systems are a central design issue for parallel 
processors. The growing importance of the memory hierarchy in determining 
system performance means that this important area will continue to be a focus of 
both designers and researchers for some years to come.

    Historical Perspective and Further 
Reading

This history section  gives an overview of memory technologies, from mercury 
delay lines to DRAM, the invention of the memory hierarchy, protection mech-
anisms, and virtual machines, and concludes with a brief history of operating 
 systems, including CTSS, MULTICS, UNIX, BSD UNIX, MS-DOS, Windows, and 
Linux.

 5.14 Exercises
Contributed by Jichuan Chang, Jacob Leverich, Kevin Lim, and Parthasarathy Ranganathan  
(all of Hewlett-Packard)

Exercise 5.1
In this exercise we consider memory hierarchies for various applications, listed in 
the following table.

a. Software version control

b. Making phone calls

5.1.1 [10] <5.1> Assuming both client and server are involved in the process, 
first name the client and server systems. Where can caches be placed to speed up 
the process? 

5.1.2 [10] <5.1> Design a memory hierarchy for the system. Show the typical 
size and latency at various levels of the hierarchy. What is the relationship between 
cache size and its access latency? 

5.1.3 [15] <5.1> What are the units of data transfers between hierarchies? What 
is the relationship between the data location, data size, and transfer latency? 

5.13



5.1.4 [10] <5.1, 5.2> Communication bandwidth and server processing band-
width are two important factors to consider when designing a memory hierarchy. 
How can the bandwidths be improved? What is the cost of improving them?

5.1.5 [5] <5.1, 5.8> Now consider multiple clients simultaneously accessing the 
server. Will such scenarios improve the spatial and temporal locality? 

5.1.6 [10] <5.1, 5.8> Give an example of where the cache can provide out-of-date 
data. How should the cache be designed to mitigate or avoid such issues?

Exercise 5.2
In this exercise we look at memory locality properties of matrix computation. The 
following code is written in C, where elements within the same row are stored 
contiguously.

a. for (I=0; I<8; I++) 
  for (J=0; J<8000; J++) 
    A[I][J]=B[I][0]+A[J][I];

b. for (J=0; J<8000; J++) 
   for (I=0; I<8; I++) 
    A[I][J]=B[I][0]+A[J][I];

5.2.1 [5] <5.1> How many 32-bit integers can be stored in a 16-byte cache line?

5.2.2 [5] <5.1> References to which variables exhibit temporal locality?

5.2.3 [5] <5.1> References to which variables exhibit spatial locality?

Locality is affected by both the reference order and data layout. The same compu-
tation can also be written below in Matlab, which differs from C by contiguously 
storing matrix elements within the same column.

a. for I=1:8 
  for J=1:8000 
    A(I,J)=B(I,0)+A(J,I); 
  end 
end

b. for J=1:8000 
  for I=1:8 
    A(I,J)=B(I,0)+A(J,I); 
  end 
end
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5.2.4 [10] <5.1> How many 16-byte cache lines are needed to store all 32-bit 
matrix elements being referenced?

5.2.5 [5] <5.1> References to which variables exhibit temporal locality?

5.2.6 [5] <5.1> References to which variables exhibit spatial locality?

Exercise 5.3
Caches are important to providing a high-performance memory hierarchy to pro-
cessors. Below is a list of 32-bit memory address references, given as word addresses.

a. 3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186, 253

b. 21, 166, 201, 143, 61, 166, 62, 133, 111, 143, 144, 61

5.3.1 [10] <5.2> For each of these references, identify the binary address, the tag, 
and the index given a direct-mapped cache with 16 one-word blocks. Also list if 
each reference is a hit or a miss, assuming the cache is initially empty.

5.3.2 [10] <5.2> For each of these references, identify the binary address, the 
tag, and the index given a direct-mapped cache with two-word blocks and a total 
size of 8 blocks. Also list if each reference is a hit or a miss, assuming the cache is 
initially empty.

5.3.3 [20] <5.2, 5.3> You are asked to optimize a cache design for the given 
references. There are three direct-mapped cache designs possible, all with a total of 
8 words of data: C1 has 1-word blocks, C2 has 2-word blocks, and C3 has 4-word 
blocks. In terms of miss rate, which cache design is the best? If the miss stall time 
is 25 cycles, and C1 has an access time of 2 cycles, C2 takes 3 cycles, and C3 takes  
5 cycles, which is the best cache design?

There are many different design parameters that are important to a cache’s overall 
performance. The table below lists parameters for different direct-mapped cache 
designs.

Cache Data Size Cache Block Size Cache Access Time 

a. 32 KB 2 words 1 cycle

b. 32 KB 4 words 2 cycle

5.3.4 [15] <5.2> Calculate the total number of bits required for the cache listed 
in the table, assuming a 32-bit address. Given that total size, find the total size 



of the closest direct-mapped cache with 16-word blocks of equal size or greater. 
Explain why the second cache, despite its larger data size, might provide slower 
performance than the first cache.

5.3.5 [20] <5.2, 5.3> Generate a series of read requests that have a lower miss 
rate on a 2 KB 2-way set associative cache than the cache listed in the table. Iden-
tify one possible solution that would make the cache listed in the table have 
an equal or lower miss rate than the 2 KB cache. Discuss the advantages and 
disadvantages of such a solution.

5.3.6 [15] <5.2> The formula shown on page 457 shows the typical method 
to index a direct-mapped cache, specifically (Block address) modulo (Number 
of blocks in the cache). Assuming a 32-bit address and 1024 blocks in the cache, 
consider a different indexing function, specifically (Block address[31:27] XOR 
Block address[26:22]). Is it possible to use this to index a direct-mapped cache? If 
so, explain why and discuss any changes that might need to be made to the cache. 
If it is not possible, explain why.

Exercise 5.4
For a direct-mapped cache design with a 32-bit address, the following bits of the 
address are used to access the cache.

Tag Index Offset

a. 31–10 9–5 4–0

b. 31–12 11–6 5–0

5.4.1 [5] <5.2> What is the cache line size (in words)?

5.4.2 [5] <5.2> How many entries does the cache have? 

5.4.3 [5] <5.2> What is the ratio between total bits required for such a cache 
implementation over the data storage bits? 

Starting from power on, the following byte-addressed cache references are recorded.

Address 0 4 16 132 232 160 1024 30 140 3100 180 2180

5.4.4 [10] <5.2> How many blocks are replaced?

5.4.5 [10] <5.2> What is the hit ratio? 
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5.4.6 [20] <5.2> List the final state of the cache, with each valid entry represented 
as a record of <index, tag, data>. 

Exercise 5.5
Recall that we have two write policies and write allocation policies, and their com-
binations can be implemented either in L1 or L2 cache.

L1 L2

a. Write through, non-write allocate Write back, write allocate

b. Write through, write allocate Write back, write allocate

5.5.1 [5] <5.2, 5.5> Buffers are employed between different levels of memory 
hierarchy to reduce access latency. For this given configuration, list the possible 
buffers needed between L1 and L2 caches, as well as L2 cache and memory. 

5.5.2 [20] <5.2, 5.5> Describe the procedure of handling an L1 write-miss, 
considering the component involved and the possibility of replacing a dirty block.

5.5.3 [20] <5.2, 5.5> For a multilevel exclusive cache (a block can only reside in 
one of the L1 and L2 caches), configuration, describe the procedure of handling an 
L1 write-miss, considering the component involved and the possibility of replacing 
a dirty block.

Consider the following program and cache behaviors. 

Data Reads per 
1000 Instructions 

Data Writes per 
1000 Instructions 

Instruction 
Cache Miss Rate 

Data Cache 
Miss Rate 

Block Size 
(byte) 

a. 250 100 0.30% 2% 64

b. 200 100 0.30% 2% 64

5.5.4 [5] <5.2, 5.5> For a write-through, write-allocate cache, what are the 
minimum read and write bandwidths (measured by byte per cycle) needed to 
achieve a CPI of 2?

5.5.5 [5] <5.2, 5.5> For a write-back, write-allocate cache, assuming 30% 
of replaced data cache blocks are dirty, what are the minimal read and write 
bandwidths needed for a CPI of 2?

5.5.6 [5] <5.2, 5.5> What are the minimal bandwidths needed to achieve the 
performance of CPI=1.5?



Exercise 5.6
Media applications that play audio or video files are part of a class of workloads 
called “streaming” workloads; i.e., they bring in large amounts of data but do not 
reuse much of it. Consider a video streaming workload that accesses a 512 KB 
working set sequentially with the following address stream:

0, 2, 4, 6, 8, 10, 12, 14, 16, …

5.6.1 [5] <5.5, 5.3> Assume a 64 KB direct-mapped cache with a 32-byte line. 
What is the miss rate for the address stream above? How is this miss rate sensitive 
to the size of the cache or the working set? How would you categorize the misses 
this workload is experiencing, based on the 3C model? 

5.6.2 [5] <5.5, 5.1> Re-compute the miss rate when the cache line size is 16 bytes, 
64 bytes, and 128 bytes. What kind of locality is this workload exploiting?

5.6.3 [10] <5.10> “Prefetching” is a technique that leverages predictable address 
patterns to speculatively bring in additional cache lines when a particular cache 
line is accessed. One example of prefetching is a stream buffer that prefetches 
sequentially adjacent cache lines into a separate buffer when a particular cache line 
is brought in. If the data is found in the prefetch buffer, it is considered as a hit and 
moved into the cache and the next cache line is prefetched. Assume a two-entry 
stream buffer and assume that the cache latency is such that a cache line can be 
loaded before the computation on the previous cache line is completed. What is the 
miss rate for the address stream above?

Cache block size (B) can affect both miss rate and miss latency. Assuming a 
1-CPI machine with an average of 1.35 references (both instruction and data) per  
instruction, help find the optimal block size given the following miss rates for vari-
ous block sizes.

8 16 32 64 128

a. 4% 3% 2% 1.5% 1%

b. 8% 7% 6% 5% 4%

5.6.4 [10] <5.2> What is the optimal block size for a miss latency of 20×B cycles?

5.6.5 [10] <5.2> What is the optimal block size for a miss latency of 24+B cycles?

5.6.6 [10] <5.2> For constant miss latency, what is the optimal block size?
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Exercise 5.7
In this exercise, we will look at the different ways capacity affects overall perfor-
mance. In general, cache access time is proportional to capacity. Assume that main 
memory accesses take 70 ns and that memory accesses are 36% of all instructions. 
The following table shows data for L1 caches attached to each of two processors, 
P1 and P2.

L1 Size L1 Miss Rate L1 Hit Time 

a. P1 2 KB 8.0% 0.66 ns

P2 4 KB 6.0% 0.90 ns

b. P1 16 KB 3.4% 1.08 ns

P2 32 KB 2.9% 2.02 ns

5.7.1 [5] <5.3> Assuming that the L1 hit time determines the cycle times for P1 
and P2, what are their respective clock rates?

5.7.2 [5] <5.3> What is the AMAT for P1 and P2?

5.7.3 [5] <5.3> Assuming a base CPI of 1.0 without any memory stalls, what is 
the total CPI for P1 and P2? Which processor is faster?

For the next three problems, we will consider the addition of an L2 cache to P1 to 
presumably make up for its limited L1 cache capacity. Use the L1 cache capacities 
and hit times from the previous table when solving these problems. The L2 miss 
rate indicated is its local miss rate.

L2 Size L2 Miss Rate L2 Hit Time 

a. 1 MB 95% 5.62 ns

b. 8 MB 68% 23.52 ns

5.7.4 [10] <5.3> What is the AMAT for P1 with the addition of an L2 cache? Is 
the AMAT better or worse with the L2 cache?

5.7.5 [5] <5.3> Assuming a base CPI of 1.0 without any memory stalls, what is 
the total CPI for P1 with the addition of an L2 cache?

5.7.6 [10] <5.3> Which processor is faster, now that P1 has an L2 cache? If P1 is 
faster, what miss rate would P2 need in its L1 cache to match P1’s performance? 
If P2 is faster, what miss rate would P1 need in its L1 cache to match P2’s 
performance?



Exercise 5.8
This exercise examines the impact of different cache designs, specifically compar-
ing associative caches to the direct-mapped caches from Section 5.2. For these 
exercises, refer to the table of address streams shown in Exercise 5.3.

5.8.1 [10] <5.3> Using the references from Exercise 5.3, show the final cache 
contents for a three-way set associative cache with two-word blocks and a total size 
of 24 words. Use LRU replacement. For each reference identify the index bits, the 
tag bits, the block offset bits, and if it is a hit or a miss.

5.8.2 [10] <5.3> Using the references from Exercise 5.3, show the final cache 
contents for a fully associative cache with one-word blocks and a total size of 8 
words. Use LRU replacement. For each reference identify the index bits, the tag bits, 
and if it is a hit or a miss.

5.8.3 [15] <5.3> Using the references from Exercise 5.3, what is the miss rate for a 
fully associative cache with two-word blocks and a total size of 8 words, using LRU 
replacement? What is the miss rate using MRU (most recently used) replacement? 
Finally what is the best possible miss rate for this cache, given any replacement 
policy?

Multilevel caching is an important technique to overcome the limited amount of 
space that a first level cache can provide while still maintaining its speed. Consider 
a processor with the following parameters:
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a. 1.5 2 GHz 100 ns 7% 12 cycles 3.5% 28 cycles 1.5%

b. 1.0 2 GHz 150 ns 3% 15 cycles 5.0% 20 cycles 2.0%

5.8.4 [10] <5.3> Calculate the CPI for the processor in the table using: 1) only a 
first level cache, 2) a second level direct-mapped cache, and 3) a second level eight-
way set associative cache. How do these numbers change if main memory access 
time is doubled? If it is cut in half?
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5.8.5 [10] <5.3> It is possible to have an even greater cache hierarchy than two 
levels. Given the processor above with a second level, direct-mapped cache, a 
designer wants to add a third level cache that takes 50 cycles to access and will 
reduce the global miss rate to 1.3%. Would this provide better performance? In 
general, what are the advantages and disadvantages of adding a third level cache?

5.8.6 [20] <5.3> In older processors such as the Intel Pentium or Alpha 21264, 
the second level of cache was external (located on a different chip) from the main 
processor and the first level cache. While this allowed for large second level caches, 
the latency to access the cache was much higher, and the bandwidth was typically 
lower because the second level cache ran at a lower frequency. Assume a 512 KB off-
chip second level cache has a global miss rate of 4%. If each additional 512 KB of 
cache lowered global miss rates by 0.7%, and the cache had a total access time of 50 
cycles, how big would the cache have to be to match the performance of the second 
level direct-mapped cache listed in the table? Of the eight-way set associative cache?

Exercise 5.9
For a high-performance system such as a B-tree index for a database, the page size 
is determined mainly by the data size and disk performance. Assume that on aver-
age a B-tree index page is 70% full with fix-sized entries. The utility of a page is its 
B-tree depth, calculated as log2(entries). The following table shows that for 16-byte 
entries, and a 10-year-old disk with a 10 ms latency and 10 MB/s transfer rate, the 
optimal page size is 16K.

Page Size (KB)
Page Utility or B-Tree Depth  

(Number of Disk Accesses Saved) 
Index Page Access 

Cost (ms) Utility/Cost 

2 6.49 (or log2(2048/16×0.7)) 10.2 0.64

4 7.49 10.4 0.72

8 8.49 10.8 0.79

16 9.49 11.6 0.82

32 10.49 13.2 0.79

64 11.49 16.4 0.70

128 12.49 22.8 0.55

256 13.49 35.6 0.38

5.9.1 [10] <5.4> What is the best page size if entries now become 128 bytes?

5.9.2 [10] <5.4> Based on 5.9.1, what is the best page size if pages are half full?

5.9.3 [20] <5.4> Based on 5.9.2, what is the best page size if using a modern disk 
with a 3 ms latency and 100 MB/s transfer rate? Explain why future servers are 
likely to have larger pages. 



Keeping “frequently used” (or “hot”) pages in DRAM can save disk accesses, but 
how do we determine the exact meaning of “frequently used” for a given system? 
Data engineers use the cost ratio between DRAM and disk access to quantify the 
reuse time threshold for hot pages. The cost of a disk access is $Disk /accesses_per_
sec, while the cost to keep a page in DRAM is $DRAM_MB/page_size. The typical 
DRAM and disk costs and typical database page sizes at several time points are 
listed below:

Year
DRAM Cost 

($/MB) Page Size (KB)
Disk Cost  
($/disk)

Disk Access Rate 
(access/sec)

1987 5000 1 15000 15

1997 15 8 2000 64

2007 0.05 64 80 83

5.9.4 [10] <5.1, 5.4> What are the reuse time thresholds for these three technology 
generations?

5.9.5 [10] <5.4> What are the reuse time thresholds if we keep using the same 4K 
page size? What’s the trend here? 

5.9.6 [20] <5.4> What other factors can be changed to keep using the same 
page size (thus avoiding software rewrite)? Discuss their likeliness with current 
technology and cost trends. 

Exercise 5.10
As described in Section 5.4, virtual memory uses a page table to track the mapping 
of virtual addresses to physical addresses. This exercise shows how this table must 
be updated as addresses are accessed. The following table is a stream of virtual ad-
dresses as seen on a system. Assume 4 KB pages, a 4-entry fully associative TLB, and 
true LRU replacement. If pages must be brought in from disk, increment the next 
largest page number.

a. 4669, 2227, 13916, 34587, 48870, 12608, 49225

b. 12948, 49419, 46814, 13975, 40004, 12707, 52236

TLB

Valid Tag Physical Page Number

1 11 12

1 7 4

1 3 6

0 4 9
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Page table

Valid Physical Page or in Disk

1 5

0 Disk

0 Disk

1 6

1 9

1 11

0 Disk

1 4

0 Disk

0 Disk

1 3

1 12

5.10.1 [10] <5.4> Given the address stream in the table, and the initial TLB and 
page table states shown above, show the final state of the system. Also list for each 
reference if it is a hit in the TLB, a hit in the page table, or a page fault.

5.10.2 [15] <5.4> Repeat Exercise 5.10.1, but this time use 16 KB pages instead 
of 4 KB pages. What would be some of the advantages of having a larger page size? 
What are some of the disadvantages?

5.10.3 [15] <5.3, 5.4> Show the final contents of the TLB if it is 2-way set 
associative. Also show the contents of the TLB if it is direct mapped. Discuss the 
importance of having a TLB to high performance. How would virtual memory 
accesses be handled if there were no TLB? 

There are several parameters that impact the overall size of the page table. Listed 
below are several key page table parameters.

Virtual Address Size Page Size Page Table Entry Size 

a. 32 bits 8 KB 4 bytes 

b. 64 bits 8 KB 6 bytes

5.10.4 [5] <5.4> Given the parameters in the table above, calculate the total 
page table size for a system running 5 applications that utilize half of the memory 
available.



5.10.5 [10] <5.4> Given the parameters in the table above, calculate the total 
page table size for a system running 5 applications that utilize half of the memory 
available, given a two level page table approach with 256 entries. Assume each entry 
of the main page table is 6 bytes. Calculate the minimum and maximum amount 
of memory required.

5.10.6 [10] <5.4> A cache designer wants to increase the size of a 4 KB virtually 
indexed, physically tagged cache. Given the page size listed in the table above, is it 
possible to make a 16 KB direct-mapped cache, assuming 2 words per block? How 
would the designer increase the data size of the cache?

Exercise 5.11
In this exercise, we will examine space/time optimizations for page tables. The fol-
lowing table shows parameters of a virtual memory system.

Virtual Address (bits) Physical DRAM Installed Page Size PTE Size (byte) 

a. 43 16 GB 4 KB 4

b. 38 8 GB 16 KB 4

5.11.1 [10] <5.4> For a single-level page table, how many page table entries 
(PTEs) are needed? How much physical memory is needed for storing the page 
table? 

5.11.2 [10] <5.4> Using a multilevel page table can reduce the physical memory 
consumption of page tables, by only keeping active PTEs in physical memory. How 
many levels of page tables will be needed in this case? And how many memory 
references are needed for address translation if missing in TLB? 

5.11.3 [15] <5.4> An inverted page table can be used to further optimize space 
and time. How many PTEs are needed to store the page table? Assuming a hash 
table implementation, what are the common case and worst case numbers of 
memory references needed for servicing a TLB miss?

The following table shows the contents of a 4-entry TLB.

Entry-ID Valid VA Page Modified Protection PA Page

1 1 140 1 RW 30

2 0 40 0 RX 34

3 1 200 1 RO 32

4 1 280 0 RW 31

 5.14 Exercises 559



560 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5.11.4 [5] <5.4> Under what scenarios would entry 2’s valid bit be set to zero? 

5.11.5 [5] <5.4> What happens when an instruction writes to VA page 30? When 
would a software managed TLB be faster than a hardware managed TLB?

5.11.6 [5] <5.4> What happens when an instruction writes to VA page 200?

Exercise 5.12
In this exercise, we will examine how replacement policies impact miss rate. 
 Assume a 2-way set associative cache with 4 blocks. You may find it helpful to 
draw a table like those found on page 482 to solve the problems in this exercise, as 
demonstrated below on the address sequence “0, 1, 2, 3, 4.”

Address of Memory 
Block Accessed 

Hit or 
Miss 

Evicted 
Block 

Contents of Cache Blocks after Reference

Set 0 Set 0 Set 1 Set 1

0 Miss Mem[0]

1 Miss Mem[0] Mem[1]

2 Miss Mem[0] Mem[2] Mem[1]

3 Miss Mem[0] Mem[2] Mem[1] Mem[3]

4 Miss 0 Mem[4] Mem[2] Mem[1] Mem[3]

…

The following table shows address sequences.

Address Sequence 

a. 0, 2, 4, 8, 10, 12, 14, 16, 0

b. 1, 3, 5, 1, 3, 1, 3, 5, 3

5.12.1 [5] <5.3, 5.5> Assuming an LRU replacement policy, how many hits does 
this address sequence exhibit?

5.12.2 [5] <5.3, 5.5> Assuming an MRU (most recently used) replacement policy, 
how many hits does this address sequence exhibit?

5.12.3 [5] <5.3, 5.5> Simulate a random replacement policy by flipping a coin. 
For example, “heads” means to evict the first block in a set and “tails” means 
to evict the second block in a set. How many hits does this address sequence 
exhibit?



5.12.4 [10] <5.3, 5.5> Which address should be evicted at each replacement to 
maximize the number of hits? How many hits does this address sequence exhibit if 
you follow this “optimal” policy?

5.12.5 [10] <5.3, 5.5> Describe why it is difficult to implement a cache 
replacement policy that is optimal for all address sequences.

5.12.6 [10] <5.3, 5.5> Assume you could make a decision upon each memory 
reference whether or not you want the requested address to be cached. What impact 
could this have on miss rate?

Exercise 5.13
To support multiple virtual machines, two levels of memory virtualization are need-
ed. Each virtual machine still controls the mapping of virtual address (VA) to physi-
cal address (PA), while the hypervisor maps the physical address (PA) of each virtual 
machine to the actual machine address (MA). To accelerate such mappings, a soft-
ware approach called “shadow paging” duplicates each virtual machine’s page tables 
in the hypervisor, and intercepts VA to PA mapping changes to keep both copies 
consistent. To remove the complexity of shadow page tables, a hardware approach 
called nested page table (or extended page table) explicitly supports two classes of 
page tables (VA⇨PA and PA⇨MA) and can walk such tables purely in hardware.

Consider the following sequence of operations:

(1) Create process; (2) TLB miss; (3) page fault; (4) context switch; 

5.13.1 [10] <5.4, 5.6> What would happen for the given operation sequence for 
shadow page table and nested page table, respectively? 

5.13.2 [10] <5.4, 5.6> Assuming an x86-based 4-level page table in both guest 
and nested page table, how many memory references are needed to service a TLB 
miss for native vs. nested page table?

5.13.3 [15] <5.4, 5.6> Among TLB miss rate, TLB miss latency, page fault rate, 
and page fault handler latency, which metrics are more important for shadow page 
table? Which are important for nested page table?

The following table shows parameters for a shadow paging system.

TLB Misses per 1000 
Instructions

NPT TLB Miss 
Latency 

Page Faults per 
1000 Instructions

Shadowing Page 
Fault Overhead

0.2 200 cycles 0.001 30,000 cycles 
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5.13.4 [10] <5.6> For a benchmark with native execution CPI of 1, what are 
the CPI numbers if using shadow page tables vs. NPT (assuming only page table 
virtualization overhead)? 

5.13.5 [10] <5.6> What techniques can be used to reduce page table shadowing 
induced overhead? 

5.13.6 [10] <5.6> What techniques can be used to reduce NPT induced overhead? 

Exercise 5.14
One of the biggest impediments to widespread use of virtual machines is the per-
formance overhead incurred by running a virtual machine. The table below lists 
various performance parameters and application behavior.

 
 
 
 
 

Base CPI

 
Priviliged 

O/S 
Accesses 
per 10,000 

Instructions

 
 

Performance 
Impact to 

Trap to the 
Guest O/S

 
 
 

Performance 
Impact to Trap 

to VMM 

 
 

I/O 
Accesses 
per 10,000 

Instructions

I/O Access 
Time 

(Includes 
Time to Trap 

to Guest  
O/S)

a. 1.5 120 15 cycles 175 cycles 30 1100 cycles

b. 1.75 90 20 cycles 140 cycles 25 1200 cycles

5.14.1 [10] <5.6> Calculate the CPI for the system listed above assuming that 
there are no accesses to I/O. What is the CPI if the VMM performance impact 
doubles? If it is cut in half? If a virtual machine software company wishes to obtain 
a 10% performance degradation, what is the longest possible penalty to trap to the 
VMM?

5.14.2 [10] <5.6> I/O accesses often have a large impact on overall system 
performance. Calculate the CPI of a machine using the performance characteristics 
above, assuming a non-virtualized system. Calculate the CPI again, this time 
using a virtualized system. How do these CPIs change if the system has half the 
I/O accesses? Explain why I/O bound applications have a smaller impact from 
virtualization.

5.14.3 [30] <5.4, 5.6> Compare and contrast the ideas of virtual memory and 
virtual machines. How do the goals of each compare? What are the pros and cons 
of each? List a few cases where virtual memory is desired, and a few cases where 
virtual machines are desired.



5.14.4 [20] <5.6> Section 5.6 discusses virtualization under the assumption that 
the virtualized system is running the same ISA as the underlying hardware. However, 
one possible use of virtualization is to emulate non-native ISAs. An example of this 
is QEMU, which emulates a variety of ISAs such as MIPS, SPARC, and PowerPC. 
What are some of the difficulties involved in this kind of virtualization? Is it possible 
for an emulated system to run faster than on its native ISA?

Exercise 5.15
In this exercise, we will explore the control unit for a cache controller for a pro-
cessor with a write buffer. Use the finite state machine found in Figure 5.34 as a 
starting point for designing your own finite state machines. Assume that the cache 
controller is for the simple direct-mapped cache described on page 529, but you 
will add a write buffer with a capacity of one block.

Recall that the purpose of a write buffer is to serve as temporary storage so that 
the processor doesn’t have to wait for two memory accesses on a dirty miss. Rather 
than writing back the dirty block before reading the new block, it buffers the dirty 
block and immediately begins reading the new block. The dirty block can then be 
written to main memory while the processor is working.

5.15.1 [10] <5.5, 5.7> What should happen if the processor issues a request that 
hits in the cache while a block is being written back to main memory from the write 
buffer?

5.15.2 [10] <5.5, 5.7> What should happen if the processor issues a request that 
misses in the cache while a block is being written back to main memory from the 
write buffer?

5.15.3 [30] <5.5, 5.7> Design a finite state machine to enable the use of a write 
buffer.

Exercise 5.16
Cache coherence concerns the views of multiple processors on a given cache block. 
The following table shows two processors and their read/write operations on two 
different words of a cache block X (initially X[0] = X[1] = 0).

P1 P2

a. X[0] ++; X[1] = 3; X[0] = 5; X[1] +=2;

b. X[0] =10; X[1] = 3; X[0] = 5; X[1] +=2;
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5.16.1 [15] <5.8> List the possible values of the given cache block for a correct 
cache coherence protocol implementation. List at least one more possible value of 
the block if the protocol doesn’t ensure cache coherency. 

5.16.2 [15] <5.8> For a snooping protocol, list a valid operation sequence on 
each processor/cache to finish the above read/write operations. 

5.16.3 [10] <5.8> What are the best-case and worst-case numbers of cache 
misses needed to execute the listed read/write instructions?

Memory consistency concerns the views of multiple data items. The following ta-
ble shows two processors and their read/write operations on different cache blocks 
(A and B initially 0). 

P1 P2

a. A = 1; B = 2; A+=2; B++; C = B; D = A; 

b. A = 1; B = 2; A=5; B++; C = B; D = A; 

5.16.4 [15] <5.8> List the possible values of C and D for an implementation that 
ensures both consistency assumptions on page 538. 

5.16.5 [15] <5.8> List at least one more possible pair of values for C and D if 
such assumptions are not maintained. 

5.16.6 [15] <5.2, 5.8> For various combinations of write policies and write 
allocation policies, which combinations make the protocol implementation simpler? 

Exercise 5.17
Both Barcelona and Nehalem are chip multiprocessors (CMPs), having multiple 
cores and their caches on a single chip. CMP on-chip L2 cache design has interest-
ing trade-offs. The following table shows the miss rates and hit latencies for two 
benchmarks with private vs. shared L2 cache designs. Assume L1 cache misses once 
every 32 instructions.

Private Shared

Benchmark A misses-per-instruction 0.30% 0.12%

Benchmark B misses-per-instruction 0.06% 0.03%



The next table shows hit latencies.

Private Cache Shared Cache Memory 

a. 5 20 180

b. 10 50 120

5.17.1 [15] <5.10> Which cache design is better for each of these benchmarks? 
Use data to support your conclusion.

5.17.2 [15] <5.10> Shared cache latency increases with the CMP size. Choose the 
best design if the shared cache latency doubles. Off-chip bandwidth becomes the 
bottleneck as the number of CMP cores increases. Choose the best design if off-
chip memory latency doubles. 

5.17.3 [10] <5.10> Discuss the pros and cons of shared vs. private L2 caches 
for both single-threaded, multi-threaded, and multiprogrammed workloads, and 
reconsider them if having on-chip L3 caches. 

5.17.4 [15] <5.10> Assume both benchmarks have a base CPI of 1 (ideal L2 
cache). If having non-blocking cache improves the average number of concurrent 
L2 misses from 1 to 2, how much performance improvement does this provide over 
a shared L2 cache? How much improvement can be achieved over private L2? 

5.17.5 [10] <5.10> Assume new generations of processors double the number of 
cores every 18 months. To maintain the same level of per-core performance, how 
much more off-chip memory bandwidth is needed for a 2012 processor? 

5.17.6 [15] <5.10> Consider the entire memory hierarchy. What kinds of 
optimizations can improve the number of concurrent misses?

Exercise 5.18
In this exercise we show the definition of a web server log and examine code opti-
mizations to improve log processing speed. The data structure for the log is defined 
as follows:

struct entry { 
  int  srcIP;    // remote IP address 
  char URL[128]; // request URL (e.g., “GET index.html”) 
  long long refTime;  // reference time  
  int  status;   // connection status 
  char browser[64]; // client browser name 
} log [NUM_ENTRIES];
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Some processing functions on a log are:

a. topK_sourceIP (int hour);

b. browser_histogram (int srcIP); // browsers of a given IP

5.18.1 [5] <5.11> Which fields in a log entry will be accessed for the given log 
processing function? Assuming 64-byte cache blocks and no prefetching, how 
many cache misses per entry does the given function incur on average?

5.18.2 [10] <5.11> How can you reorganize the data structure to improve cache 
utilization and access locality? Show your structure definition code. 

5.18.3 [10] <5.11> Give an example of another log processing function that 
would prefer a different data structure layout. If both functions are important, how 
would you rewrite the program to improve the overall performance? Supplement 
the discussion with code snippet and data. 

For the problems below, use data from “Cache Performance for SPEC CPU2000 
Benchmarks” (http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/) for 
the pairs of benchmarks shown in the following table.

a. Mesa / gcc

b. mcf / swim

5.18.4 [10] <5.11> For 64 KB data caches with varying set associativities, what 
are the miss rates broken down by miss types (cold, capacity, and conflict misses) 
for each benchmark?

5.18.5 [10] <5.11> Select the set associativity to be used by a 64 KB L1 data cache 
shared by both benchmarks. If the L1 cache has to be directly mapped, select the set 
associativity for the 1 MB L2 cache. 

5.18.6 [20] <5.11> Give an example in the miss rate table where higher set 
associativity actually increases miss rate. Construct a cache configuration and 
reference stream to demonstrate this. 



§5.1, page 457: 1 and 4. (3 is false because the cost of the memory hierarchy varies 
per computer, but in 2008 the highest cost is usually the DRAM.)
§5.2, page 475: 1 and 4: A lower miss penalty can enable smaller blocks, since you 
don’t have that much latency to amortize, yet higher memory bandwidth usually 
leads to larger blocks, since the miss penalty is only slightly larger.
§5.3, page 491: 1.
§5.4, page 517: 1-a, 2-c, 3-b, 4-d.
§5.5, page 525: 2. (Both large block sizes and prefetching may reduce compulsory 
misses, so 1 is false.)

Answers to  
Check Yourself
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