
Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

PB138 – Markup Languages

Tomáš Pitner

February 24, 2013

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Obsah

1 Specifications and validity of XML

2 Document Type Definition (DTD)

3 Physical Structure (Entities)

4 XML Base

5 XML Namespaces

6 XML Information Set

7 Canonical Form

8 Terms

9 Tree-based API

10 Event-based API

11 Pull-based APIs

12 Document Object Model (DOM)

13 Using DOM in Java

14 Alternative tree-based models

15 Tree and event-based access combinations

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Up-to-date Specifications of XML

Original Specification (W3C Recommendation) XML 1.0 at
W3C: http://www.w3.org/XML/

5th Edition (corrections, updates, no major changes At
Extensible Markup Language (XML) 1.0 (Fifth Edition)
(http://www.w3.org/TR/REC-xml)

commented version at XML.COM (Annotated XML):
http://www.xml.com/pub/a/axml/axmlintro.html

XML 1.1 (Second Edition) (http://www.w3.org/TR/xml11)
- changes induced by the introduction of UNICODE 3 , easier
normalization , the specification of handling procedure for
”end of line” characters . XML 1.1 is not bound to specific
version of UNICODE, but always on the latest version.

Tomáš Pitner PB138 – Markup Languages

http://www.w3.org/XML/
http://www.w3.org/TR/REC-xml
http://www.xml.com/pub/a/axml/axmlintro.html
http://www.w3.org/TR/xml11

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Which version to use?

Which version to use in new applications?
See W3C XML Core Working Group
(http://www.w3.org/XML/Core/#Publications) for the
answer:

unless writing a parser or a XML-generating app. (editor), use
XML 1.0 (backward-compatibility)

new parsers should ”know” XML 1.1

Tomáš Pitner PB138 – Markup Languages

http://www.w3.org/XML/Core/#Publications

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Validity of XML documents

To repeat: every XML document must be WELL-FORMED.

New: an XML doc can be VALID – which means a more strict
requirements than WELL-FORMEDNESS.
Usually, the conformance to a DTD (Document Type
Definition) of the doc is meant by the validity, or
more recently – conformance with an XML Schema or other
schema (RelaxNG, Schematron).

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Document Type Definition (DTD)

Document Type Definition (usage/reference to this definition
is then a Document Type Declaration).

Specified in the (core) XML standard 1.0.

Describes allowed element content, attribute presence and
content, their default values, defines used entities.

DTD might be either internal or external DTD (internal and
external subset) or ”mixed” – both.

A document conformant with a DTD is denoted as valid
(”platný” in Czech).

DTD and languages for similar purpose are denoted as
modeling languages – they model/define concrete markups.

Syntax of DTD IS NOT XML (in constrast to XML Schema
and many others modeling languages).

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Motivation for DTD, comparison, pros and contras

Problems with DTD?

Fundamental problem of DTD is its incompatibility with XML
Namespaces and

lack of modeling expressiveness – some constructs cannot be
constrained by DTD.

Direct, more powerful, but also more complex modeling
language is W3C XML Schema
(http://www.w3.org/XML/Schema).

Powerful and simpler alternatives of XML Schema are e.g.
RelaxNG (http://relaxng.org). (on Wikipedia:RELAX NG
(http://en.wikipedia.org/wiki/RELAX_NG))

Tomáš Pitner PB138 – Markup Languages

http://www.w3.org/XML/Schema
http://relaxng.org
http://en.wikipedia.org/wiki/RELAX_NG

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Why use DTD?

Why use DTD at all?

Simple. All parsers are fine with it.

Sufficient for many markups.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

DTD - tutorials

Webreview: http://www.webreview.com/2000/08_11/

developers/08_11_00_2.shtml

ZVON: http://www.zvon.org/xxl/DTDTutorial/
General/contents.html

XML DTD Tutorial (101): http://www.xml101.com/dtd/

W3Schools DTD Tutorial: http://www.w3schools.com
(http://www.w3school.com)

Tomáš Pitner PB138 – Markup Languages

http://www.webreview.com/2000/08_11/developers/08_11_00_2.shtml
http://www.webreview.com/2000/08_11/developers/08_11_00_2.shtml
http://www.zvon.org/xxl/DTDTutorial/General/contents.html
http://www.zvon.org/xxl/DTDTutorial/General/contents.html
http://www.xml101.com/dtd/
http://www.w3school.com

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

DTD in more details / 1

DTD declaration is placed immediately before the root element!

<!DOCTYPE root-elt-name External-ID [internal

part of DTD]>

Internal orexternal part (internal or external subset) might or
might not be present, or both can be present.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

DTD in more details / 2

External identifier can be either

PUBLIC "PUBLIC ID" "URI" (suitable for ”public”,
generally recognized DTDs) or

SYSTEM "URI" - for private- or other not-that-well
established DTDs (”URI” neednot be just real URL on
network, may also be a file on (local) filesystem, resolution
according to system where it is resolved)

The significancy of internal a external parts is the same (they must
not be in conflict - eg. two defeinitions of the same element).
DTD contains a list of definitions for individual elements, list of
attributes of them, entities, notations

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

DTD - conditional sections

For ”commenting out” portions of DTDs e.g. for experimenting.

<![IGNORE[this will be ignored]]>

<![INCLUDE[this will be included into DTD (i.e.

not ignored)]]>

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

DTD - element type definition / 1

Describes allowed content of the element, in form of <!ELEMENT
element-name ... >, where ... can be

EMPTY - for empty element which may be represented as
<element/> or <element></element> - the same logical
meaning

ANY - any element content allowed, i.e. text nodes, child
elements, ...

may contain child elements - <!ELEMENT element-name

(specification of child elements)>

may be mixed - containing both text and child elements given
by enumeration <!ELEMENT element-name (#PCDATA |

specification of child elements)*>.

for MIXED: the order or cardinality of concrete child elements
cannot be specified.

The star (*) is required - any cardinality is always allowed.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

DTD - element type definition / 2

For specifying the child elements, we use:

sequence operator (sekvence, follow with) ,

choice operator (výběru, select, choice) |

parenthesis () have usual meaning

various operators CANNOT be combined within a group ,|

the child elements cardinality (occurence) can be
specified/limited by ”star”, ”question mark”, ”plus” having
usual meaning.

No specifier means just one occurence allowed.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

DTD - attribute definition

Describes (data) type and/or implicit attribute values for the
respective element.
<!ATTLIST element-name attribute-name

attribute-value-type implicit-value>

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

DTD - definition of attribute value type

Allowed value types are as follows:

CDATA

NMTOKEN

NMTOKENS

ID

IDREF

IDREFS

ENTITY

ENTITIES

enumeration - eg. (hodnota1|hodnota2|hodnota3)

enumeration of notations - eg. NOTATION

(notace1|notace2|notace3)

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

DTD - cardinality of attributes

Attributes may have obligatory presence:

#REQUIRED - attribute is required

#IMPLIED - attribute is optional

#FIXED "fixed-value" - is required and must have the
value fixed-value

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

DTD - implicit attribute value

Attribute (incl. optional one) might have an implicit value:

"implicit value" - attribut is optional, but if not present,
then the implicit value is used instead.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Entity - declaration and usage

We distinguish:

declaration

reference (ie. use) of a (declared) entity.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

General entities may be

parsed - files with a (well formed) markup,

not-parsed - eg. binary files,

character entities - characters, eg. > refers to a char entity.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Parametric entities

only inside of DTD, somehow similar to ”macros” in pg.
languages

suitable eg. for declations of attribute lists (if long and
multiply used)

see DTD for HTML 4.01 -
http://www.w3.org/TR/html4/sgml/dtd.html

definition of a parametric entity is eg. <!ENTITY % heading

"H1|H2|H3|H4|H5|H6">

Tomáš Pitner PB138 – Markup Languages

http://www.w3.org/TR/html4/sgml/dtd.html

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

XML Base

XML Base (second edition), W3C Recommendation 28 Jan
2009: http://www.w3.org/TR/xmlbase/

Standard for evaluation of relative URLs in links to/from XML
docs. Facility similar to that of HTML BASE, for defining
base URIs for parts of XML documents.

Defines how to use a reserved attribute xml:base denoting
the base URI for relative URIs.

It complements with the XLink spec.

It works based on ”overriding” of XML base from parent
(ancestor) elements.

Tomáš Pitner PB138 – Markup Languages

http://www.w3.org/TR/xmlbase/

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

XML Base - example

Note the use of the reserved prefix xml:

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

XML Namespaces (jmenné prostory)

XML Namespaces (W3C Recommendation, currently
Namespaces in XML 1.0 (Third Edition) W3C
Recommendation 8 Dec 2009):
http://www.w3.org/TR/REC-xml-names

to new XML, there exists Namespaces in XML 1.1 W3C
Recommendation
(http: // www. w3. org/ TR/ xml-names11/) (Second
Edition) 16 August 2006. Andrew Layman, Richard Tobin,
Tim Bray, Dave Hollander
They define logical spaces for names of elements, attributes in
XML document.
They give the elements and attributes the ”third dimension”.
To each NS in XML, there is exactly one (”globally”) unique
identifier, given by URI (URIs is a superset of URLs).
NS corresponding to an URI does not anyhow relate to
content that would potentially be available under the URL
(”nothing is downloaded when processing NSs”.Tomáš Pitner PB138 – Markup Languages

http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/xml-names11/

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Prefixes and Equivalence of NSs /1

Instead of URIs for denoting a namespace in document, one
uses prefixes for these NS mapped to the respective URI
using xmlns:prefix="URI".
Element- or attribute-name containing colon (:) is denoted as
Qualified Name, QName.

Two NS are equal iff their URIs are one-to-one-character the
same (in UNICODE).

NS do not apply to text nodes.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Prefixes and Equivalence of NSs /2

Element/attribute need not be in a namespace.

NS prefix declaration or declaration or the implicit NS
recursively applies to all descendants (child elements, their
children etc.), unless another declaration ”remaps” the given
prefix.

One NS is co-called implicit (default) NS, declared by
attribute xmlns=

Default NSs are NOT applied to attributes!!!, thus attributes
without an explicit prefix do not belong to any NS.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Default NS – example

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<body>

<h1>Huráááá</h1>

</body>

</html>

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Explicit (prefixed) NS – example

<xhtml:html xmlns:xhtml="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<xhtml:body>

<xhtml:h1>Huráááá</xhtml:h1>

</xhtml:body>

</xhtml:html>

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Issues related to NS

NS are NOT compatible with DTD.
DTD strictly differentiates between eg. name xi:include and
include even if they belong to the same NS and should thus have
the same interpretation/meaning for applications.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

XML Information Set (XML Infoset) - goals

XML Infoset 2nd Edition W3C Recommendation First
published on 24 October 2001, revised 4 February 2004, John
Cowan, Richard Tobin,
http://www.w3.org/TR/xml-infoset/

Infoset describes ”what all info can we get from a node
(element, document, attribute...)”

In other words: an application should not rely on any other
info, such as attribute order etc.

Any well-formed XML document conformant to XML
Namespaces has its Infoset.

Tomáš Pitner PB138 – Markup Languages

http://www.w3.org/TR/xml-infoset/

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

XML Infoset - structure

Infoset comprises of Information items

Infoset relates to document with expanded (resolved) entities

We distinguish among infoset of document, element, attribut,
character, PI, not-expanded entity, not-analysed entity,
notation.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Canonical Form of XML Document

Canonical XML Version 1.0, W3C Recommendation 15 March
2001, http://www.w3.org/TR/xml-c14n

The goal of CF is to describe criteria and algorithm how to
define equivalence on XML documents that are ”logically” the
same and expose just differences in physical form (entities,
attribute order, char encoding)

Canonication ”wipes-out” differences that are not significant
for applications.

Canonication in inevitable in some important applications ,
e.g. electronic signature of XML data (when calculating
digest).

Tomáš Pitner PB138 – Markup Languages

http://www.w3.org/TR/xml-c14n

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Canonical Form - principles /1

Main principles for constructing the canonical form of an XML
document:

encoding in UTF-8

line breaks (CR, LF) normalized according to the algorithm
mentioned in XML 1.0 Spec.

attribute values normalized

references to character and parsed entites replaced by their
content

CDATA section also replaced by their content

prolog ”xml” and DTD removed

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Canonical Form - principles /2

whitespaces outside of the root element normalized

otherwise (except of line breaks), the whitespaces are
preserved

attribute values always in double quotes ”

special chars in attr. values replaced by refs to character
entities

superflous NS declarations removed

default attribute values added to all element where relevant

attributes and NS declarations will be ordered lexikographically

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Issues with Canonical Form

Certain information loss (mostly info from DTD):

not-parsed entity (eg. binary ones) are not accessible anymore
after canonicalization

notations

attribute types (incl. default values)

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

API Task

offer simple standardized XML access

connect application to the parser and applications together

XML processing without knowledge of physical document
structure (entities)

effective XML processing.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

XML APIs Fundamental Types

Tree-based API

Event-based API

API based on pulling events/elements off the document (Pull
API).

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Map XML Document to Memory Based Tree Structure

allows to traverse the entire DOM Tree

best-known - Document Object Model (DOM from W3C, see
http://www.w3.org/DOM (http://www.w3.org/DOM/))

Tomáš Pitner PB138 – Markup Languages

http://www.w3.org/DOM/

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Programming Language Specific Models

Java: JDOM - http://jdom.org

Java: dom4j - http://dom4j.org

Java: XOM - http://www.xom.nu

Python: 4Suite - http://4suite.org

PHP: SimpleXML - http://www.php.net/simplexml

Tomáš Pitner PB138 – Markup Languages

http://jdom.org
http://dom4j.org
http://www.xom.nu
http://4suite.org
http://www.php.net/simplexml

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Generate Sequence of Events while parsing the Document

technical realization - using callback methods

application implements handlers (processing the generated
events)

event-based API:

works on lower-level than tree-based
application should do more processing
saves memory - does not create any persistent objects.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Event Examples

start document, end document

start element, end element - contains the attributes as well.

processing instruction

comment

entity reference

Best-known event-based API - SAX
http://www.saxproject.org

Tomáš Pitner PB138 – Markup Languages

http://www.saxproject.org

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

SAX - Document Analysis Example

<?xml version="1.0"?>

<doc>

<para>Hello, world!</para>

<!-- that’s all folks -->

<hr/>

</doc>

generates following events:

start document

start element: doc {list of attributes: empty}

start element: para {list of attributes: empty} characters: Hello, world!

end element:

para comment: that’s all folks

start element: hr

end element: hr

end element: doc

end document Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

When to use event-based API?

Easier to parser programmer, more difficult to application
programmer.

No complete document available to application programmer.
He must keep the state of analysis him-self.

Suitable for tasks, that can be solved without the need of
entire document.

The fastest possible processing usually.

Difficulties while writing applications can be solved using
extensions like Streaming Transformations for XML (STX)
(http://stx.sourceforge.net)

Tomáš Pitner PB138 – Markup Languages

http://stx.sourceforge.net

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Optional SAX Parser Features

The SAX parser behavior can be controlled using so called features
a properties.

For optional SAX parser’s features see
http://www.saxproject.org/?selected=get-set

For more details on properties and features see Use properties
and features in SAX parsers (???) (IBM
DeveloperWorks/XML).

Tomáš Pitner PB138 – Markup Languages

http://www.saxproject.org/?selected=get-set
???

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

SAX filters

The SAX filters (implementation of org.xml.sax.XMLFilter
interface) can be programmed using the SAX API.
Such a class instance accepts input events, process them and sends
them to the output.
For more information on event filtering see Change the events
output by a SAX stream (http://www.ibm.com/
developerworks/xml/library/x-tipsaxfilter/) (IBM
DeveloperWorks/XML) for example.

Tomáš Pitner PB138 – Markup Languages

http://www.ibm.com/developerworks/xml/library/x-tipsaxfilter/
http://www.ibm.com/developerworks/xml/library/x-tipsaxfilter/

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Additional SAX References

Primary source - http://www.saxproject.org

SAX Tutorial on JAXP
http://java.sun.com/webservices/reference/

tutorials/jaxp/html/sax.html

Tomáš Pitner PB138 – Markup Languages

http://www.saxproject.org
http://java.sun.com/webservices/reference/tutorials/jaxp/html/sax.html
http://java.sun.com/webservices/reference/tutorials/jaxp/html/sax.html

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Pull-based APIs

Application does not process incoming events, but it pulls
data from the processed file.

Can be used when programmer knows the structure of an
input data and he can pull them off the file.

... opposite to event-based API.

Very comfortable to an application programmer, but
implementations are usually slower the push event-based APIs.

Java offers the XML-PULL parser API - see Common API for
XML Pull Parsing (http://www.xmlpull.org/) and also

newly develop API - Streaming API for XML (StAX)
(http://www.jcp.org/en/jsr/detail?id=173) developed
like a product of JCP (Java Community Process).

Tomáš Pitner PB138 – Markup Languages

http://www.xmlpull.org/
http://www.jcp.org/en/jsr/detail?id=173

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Streaming API for XML (StAX)

The API may become the part of the Java API for XML
Processing (JAXP) in the future.
Offers two ways to pull-based processing:

pulling the events using iterator - more comfortable

low-level access using so called cursor - faster.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

StAX - an Iterator Example

import java.io.FileNotFoundException;

import java.io.FileReader;

import javax.xml.namespace.QName;

import javax.xml.stream.XMLInputFactory;

import javax.xml.stream.XMLStreamConstants;

import javax.xml.stream.XMLStreamException;

import javax.xml.stream.XMLStreamReader;

public class ParseByIterator {

public static void main(String[] args) throws FileNotFoundException, XMLStreamException {

// Use reference implementation

System.setProperty("javax.xml.stream.XMLInputFactory", "com.bea.xml.stream.MXParserFactory"); // Create an input factory

XMLInputFactory xmlif = XMLInputFactory.newInstance(); // Create an XML stream reader

XMLStreamReader xmlr = xmlif.createXMLStreamReader(new FileReader("somefile.xml")); // Loop over XML input stream and process events

while (xmlr.hasNext()) {

processEvent(xmlr);

xmlr.next();

}

}

/**

* Process a single event

*

* @param xmlr - the XML stream reader

*/

private static void processEvent(XMLStreamReader xmlr) {

switch (xmlr.getEventType()) {

case XMLStreamConstants.START_ELEMENT:

processName(xmlr);

processAttributes(xmlr);

break;

case XMLStreamConstants.END_ELEMENT:

processName(xmlr);

break;

case XMLStreamConstants.SPACE:

case XMLStreamConstants.CHARACTERS:

int start = xmlr.getTextStart();

int length = xmlr.getTextLength();

String text = new String(xmlr.getTextCharacters(), start, length);

break;

case XMLStreamConstants.COMMENT:

case XMLStreamConstants.PROCESSING_INSTRUCTION:

if (xmlr.hasText()) {

String piOrComment = xmlr.getText();

}

break;

}

}

private static void processName(XMLStreamReader xmlr) {

if (xmlr.hasName()) {

String prefix = xmlr.getPrefix();

String uri = xmlr.getNamespaceURI();

String localName = xmlr.getLocalName();

}

}

private static void processAttributes(XMLStreamReader xmlr) {

for (int i = 0; i < xmlr.getAttributeCount(); i++) {

processAttribute(xmlr, i);

}

}

private static void processAttribute(XMLStreamReader xmlr, int index) {

String prefix = xmlr.getAttributePrefix(index);

String namespace = xmlr.getAttributeNamespace(index);

QName localName = xmlr.getAttributeName(index);

String value = xmlr.getAttributeValue(index);

}

}

Example from Tip: Use XML streaming parsers (http:
//www.ibm.com/developerworks/xml/library/x-tipstx)
(IBM DeveloperWorks, XML section).

Tomáš Pitner PB138 – Markup Languages

http://www.ibm.com/developerworks/xml/library/x-tipstx
http://www.ibm.com/developerworks/xml/library/x-tipstx

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

StAX - an Cursor Example

import java.io.FileNotFoundException;

import java.io.FileReader;

import javax.xml.namespace.QName;

import javax.xml.stream.XMLInputFactory;

import javax.xml.stream.XMLStreamConstants;

import javax.xml.stream.XMLStreamException;

import javax.xml.stream.XMLStreamReader;

public class ParseByIterator {

public static void main(String[] args) throws FileNotFoundException, XMLStreamException {

// Use reference implementation

System.setProperty("javax.xml.stream.XMLInputFactory", "com.bea.xml.stream.MXParserFactory"); // Create an input factory

XMLInputFactory xmlif = XMLInputFactory.newInstance(); // Create an XML stream reader X

XMLStreamReader xmlr = xmlif.createXMLStreamReader(new FileReader("somefile.xml")); // Loop over XML input stream and process events

while (xmlr.hasNext()) {

processEvent(xmlr);

xmlr.next();

}

}

/**

* Process a single event

*

* @param xmlr - the XML stream reader

*/

private static void processEvent(XMLStreamReader xmlr) {

switch (xmlr.getEventType()) {

case XMLStreamConstants.START_ELEMENT:

processName(xmlr);

processAttributes(xmlr);

break;

case XMLStreamConstants.END_ELEMENT:

processName(xmlr);

break;

case XMLStreamConstants.SPACE:

case XMLStreamConstants.CHARACTERS:

int start = xmlr.getTextStart();

int length = xmlr.getTextLength();

String text = new String(xmlr.getTextCharacters(), start, length);

break;

case XMLStreamConstants.COMMENT:

case XMLStreamConstants.PROCESSING_INSTRUCTION:

if (xmlr.hasText()) {

String piOrComment = xmlr.getText();

}

break;

}

}

private static void processName(XMLStreamReader xmlr) {

if (xmlr.hasName()) {

String prefix = xmlr.getPrefix();

String uri = xmlr.getNamespaceURI();

String localName = xmlr.getLocalName();

}

}

private static void processAttributes(XMLStreamReader xmlr) {

for (int i = 0; i < xmlr.getAttributeCount(); i++) {

processAttribute(xmlr, i);

}

}

private static void processAttribute(XMLStreamReader xmlr, int index) {

String prefix = xmlr.getAttributePrefix(index);

String namespace = xmlr.getAttributeNamespace(index);

QName localName = xmlr.getAttributeName(index);

String value = xmlr.getAttributeValue(index);

}

}

Sample from Tip: Use XML streaming parsers (http:
//www.ibm.com/developerworks/xml/library/x-tipstx)
(IBM DeveloperWorks, XML section).

Tomáš Pitner PB138 – Markup Languages

http://www.ibm.com/developerworks/xml/library/x-tipstx
http://www.ibm.com/developerworks/xml/library/x-tipstx

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Basic Interface to Process and Access the Tree
Representation of an XML Data

Three versions of DOM: DOM Level 1, 2, 3

DOM - does not depend on the XML Parsing.

Described using IDL + API descriptions for particular
programming languages (C++, Java, etc.)

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

HTML Documents Specific DOM

The HTML Core DOM is more less consolidated with the
XML DOM

Designated to CSS

Used for dynamic HTML programming (scripting using VB
Script, JavaScript, etc)

Contains the browser environment (windows, history, etc)
besides the document model itself.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

DOM references

JAXP Tutorial, part dedicated to the DOM Part III: XML and
the Document Object Model (DOM)
(http://java.sun.com/xml/jaxp/dist/1.1/docs/
tutorial/dom/index.html)

Portal dedicated to the DOM
http://www.oasis-open.org/cover/dom.html

DOM 1 Interface visual overview
http://www.xml.com/pub/a/1999/07/dom/index.html

Tutorial ”Understanding DOM (Level 2)” available
athttp://ibm.com/developer/xmlhttp://ibm.com/developer/xml
(http://ibm.com/developer/xml)

Tomáš Pitner PB138 – Markup Languages

http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/dom/index.html
http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/dom/index.html
http://www.oasis-open.org/cover/dom.html
http://www.xml.com/pub/a/1999/07/dom/index.html
http://ibm.com/developer/xml

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

DOM Implementation

Included in many parsers, the. Xerces
(http://xml.apache.org) parser for example.

Part of the JAXP (Java API for XML Processing) -
http://java.sun.com/xml/jaxp/index.html

Standalone implementations independent on parsers:

dom4j - http://dom4j.org
EXML (Electric XML) - http://www.themindelectric.net

Tomáš Pitner PB138 – Markup Languages

http://xml.apache.org
http://java.sun.com/xml/jaxp/index.html
http://dom4j.org
http://www.themindelectric.net

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

What do we need?

Native DOM support in the new Java versions (JDK and JRE) -
no need of additional library.
Applications need to import needed symbols (interfaces, classes,
etc.) mostly from package org.w3c.dom.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

What will we need often?

Most often used interfaces are:

Element corresponds to the element in a logical document
structure. It allows us to access name of the element,
names of attributes, child nodes (including textual
ones). Useful methods:

Node getParentNode() - returns the parent
node
String getTextContent() - returns textual
content of the element.
NodeList getElementsByTagName(String

name) - returns the list of ancestors (child nodes
and their ancestors) with the given name.

Node super interface of Element, corresponds to the
general node in a logical document structure, may
contain element, textual node, comment, etc.

NodeList a list of nodes (a result of calling
getElementsByTagName for example). It offers the
following methods for its processing:

int getLength() - returns the number of
nodes in a list
Node item(int index) - returns the node at
position index

Document corresponds to the document node (its a parent of a
root element)

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Example 1 - creating DOM tree from file

Example of method, reading a DOM tree from an XML file (see
Home work 1):

import java.io.IOException;

import java.net.URL;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;

import org.xml.sax.SAXException;

public class Uloha1 {

/**

* Constructor creating new instance of Uloha1 class by reading XML document

* on the given URL.

*/

private Uloha1(URL url) throws SAXException, ParserConfigurationException, IOException {

// We create new instance of factory class

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

// We get new instance of DocumentBuilder using the factory class.

DocumentBuilder builder = factory.newDocumentBuilder();

// We utilize the DocumentBuilder to process an XML document

// and we get document model in form of W3C DOM

Document doc = builder.parse(url.toString());

}

}

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Example 2 - DOM tree modification

Example of a method manipulating a document DOM tree (see
Homework 1):

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.NodeList;

public class Uloha1 {

Document doc;

/**

* ***

* Method for a salary modification. If the person’s salary is less then

* <code>minimum</code>, the salary will increased to

* <code>minimum>.

* No action is performed with the rest of persons.

*/

public void adjustSalary(double minimum) {

// get the list of salaries

NodeList salaries = doc.getElementsByTagName("salary");

for (int i = 0; i < salaries.getLength(); i++) {

// get the salary element

Element salaryElement = (Element) salaries.item(i);

// get payment

double salary = Double.parseDouble(salaryElement.getTextContent());

if (salary < minimum) {

// modify the text node/content of element

salaryElement.setTextContent(String.valueOf(minimum));

}

}

}

}

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Example 3 - storing a DOM tree into an XML file

Example of the method storing a DOM tree into a file (see
Homework 1)
The procedure utilizes a transformation we do not know yet. Let
use it as a black box.

import java.io.File;

import java.io.IOException;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerConfigurationException;

import javax.xml.transform.TransformerException;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

import org.w3c.dom.Document;

public class Uloha1 {

Document doc;

/**

* ***

* Method for a salary modification. If the person’s salary is less then

* <code>minimum</code>, the salary will increased to

* <code>minimum>.

* No action is performed with the rest of persons.

*/

public void serializetoXML(File output) throws IOException, TransformerConfigurationException, TransformerException {

// We create new instance of a factory class.

TransformerFactory factory = TransformerFactory.newInstance();

Transformer transformer = factory.newTransformer();

// The input is the document placed in a memory

DOMSource source = new DOMSource(doc);

// The transformation output is the output file

StreamResult result = new StreamResult(output);

// Let’s make the transformation

transformer.transform(source, result);

}

}

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

XML Object Model (XOM)

XOM (XML Object Model) created as an one man project
(author Elliote Rusty Harold).

It is an interface that strictly respect XML data logical model.

For motivation and specification see the XOM home page
(http://cafeconleche.org/XOM/).

You can get there the open-sourceXOM implementation
(http://cafeconleche.org/XOM/xom-1.0d24.zip) and

the API documentation
(http://cafeconleche.org/XOM/apidocs/) too.

Tomáš Pitner PB138 – Markup Languages

http://cafeconleche.org/XOM/
http://cafeconleche.org/XOM/xom-1.0d24.zip
http://cafeconleche.org/XOM/apidocs/

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Alternative parsers and tree models - NanoXML

Very small (in the mean of a code size) tree-based interface
and parser all in one

available as open-source at http://nanoxml.n3.net

adopted for mobile devices as well

not the best in the mean of a run-time speed and memory
efficiency.

Tomáš Pitner PB138 – Markup Languages

http://nanoxml.n3.net

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

DOM4J - practically good usable tree-based model

comfortable, fast and memory efficient tree-oriented interface

designed and optimized for Java

available as open-source at http://dom4j.org

perfect”cookbook”
(http://dom4j.org/cookbook/cookbook.html) available

dom4j is powerful, seetree-based models efficiency comparison
(http://www.ibm.com/developerworks/xml/library/
x-injava/)

Tomáš Pitner PB138 – Markup Languages

http://dom4j.org
http://dom4j.org/cookbook/cookbook.html
http://www.ibm.com/developerworks/xml/library/x-injava/
http://www.ibm.com/developerworks/xml/library/x-injava/

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Events → tree

Allow us either to skip or to filter out the ”uninteresting”
document part using the event monitoring and then

create memory-based tree from the ”interesting” part of a
document only and that part process.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Tree → events

We create an entire document tree (and process it) and

we go through the tree than and we generate events like while
reading the XML file.

It allows us easy integration of both processing types in a
single application.

Tomáš Pitner PB138 – Markup Languages

Specifications and validity of XML Document Type Definition (DTD) Physical Structure (Entities) XML Base XML Namespaces XML Information Set Canonical Form Terms Tree-based API Event-based API Pull-based APIs Document Object Model (DOM) Using DOM in Java Alternative tree-based models Tree and event-based access combinations

Virtual object models

Document DOM model is not memory places, but is created
on-demand while accessing particular nodes.

combines event-based and tree-based processing advantages
(speed and comfort)

Implementation is the Sablotron processor for example (see
http:

//www.xml.com/pub/a/2002/03/13/sablotron.html or
http:

//www.gingerall.org/charlie/ga/xml/p_sab.xml)

Tomáš Pitner PB138 – Markup Languages

http://www.xml.com/pub/a/2002/03/13/sablotron.html
http://www.xml.com/pub/a/2002/03/13/sablotron.html
http://www.gingerall.org/charlie/ga/xml/p_sab.xml
http://www.gingerall.org/charlie/ga/xml/p_sab.xml

	Specifications and validity of XML
	Document Type Definition (DTD)
	Physical Structure (Entities)
	XML Base
	XML Namespaces
	XML Information Set
	Canonical Form
	Terms
	Tree-based API
	Event-based API
	Pull-based APIs
	Document Object Model (DOM)
	Using DOM in Java
	Alternative tree-based models
	Tree and event-based access combinations

