
PV204 – FIREWALLS

iptables are the tables provided by the Linux kernel firewall (implemented as different Netfilter

modules) and the chains and rules it stores. Different kernel modules and programs are currently

used for different protocols; iptables applies to IPv4, ip6tables to IPv6, arptables to ARP, and ebtables

to Ethernet frames. For more details see: http://en.wikipedia.org/wiki/Iptables

In REHL or Fedora you can start/stop it by:

service iptables stop
service iptables start
service iptables restart

Firewall status can be inspected by:

iptables -n -L -v --line-numbers

Input/output can be listed by:

iptables -L INPUT -n -v
iptables -L OUTPUT -n -v --line-numbers

You can use the iptables command itself to stop the firewall, delete all rules and set default policy to

accept:

iptables -F
iptables -X
iptables -t nat -F
iptables -t nat -X
iptables -t mangle -F
iptables -t mangle -X
iptables -P INPUT ACCEPT
iptables -P OUTPUT ACCEPT
iptables -P FORWARD ACCEPT

Where,

-F : Deleting (flushing) all the rules.

-X : Delete chain.

-t table_name : Select table (nat or mangle) and delete/flush rules (default table is filter).

-P : Set the default policy (such as DROP or ACCEPT).

You can easily delete a chain rules – this example deletes the rule on line 4 (in the default table

filter):

iptables -D INPUT 4

Find source IP 202.54.1.1 and delete from rule:

iptables -D INPUT -s 202.54.1.1 -j DROP

Where,

-D : Delete one or more rules from the selected chain

Save and restore firewall rules to/from a file called /etc/iptables.rules

iptables-save > /etc/iptables.rules
iptables-restore < /etc/iptables.rules
service iptables restart

In some distributions you must put a line into /etc/rc.local to automatically load all firewall

chains.

To insert a new rule between lines 1 and 2 into INPUT chain, enter:

iptables -I INPUT 2 -s 202.54.1.2 -j DROP

All iptables chains have a default policy setting. If a packet doesn’t match any of the rules in a

relevant chain, it will match the default policy and will be handled according the default policy.

There are 3(4) basic tables with predefined chains in iptables:

1. Filter table – Filter is default table for iptables. It is where the bulk of the work in an iptables

firewall occurs. Avoid filtering in any other table as it may not work. So, if you don’t define

you own table, you’ll be using filter table.

2. NAT table – The Network Address Translation or nat table is used to translate the source or

destination field in packets. A system with a static IP should use Source Network Address

Translation (snat) since it uses fewer system resources. However, iptables also supports

hosts with a dynamic connection to the Internet with a masquerade feature. Masquerade

uses the current address on the interface for address translation.

3. Mangle table – Mangle table is for specialized packet alteration. It can be used to change the

Time to Live or TTL, change the Type of Service or TOS field, or mark packets for later

filtering.

These are 3 predefined chains in the filter table to which we can add rules for processing IP packets

passing through those chains. These chains are:

• INPUT - All packets destined for the host computer.

• OUTPUT - All packets originating from the host computer.

• FORWARD - All packets neither destined for nor originating from the host computer, but

passing through (routed by) the host computer. This chain is used if you are using your

computer as a router.

For the most time, we are going to be dealing with the INPUT chain to filter packets entering our

machine.

Rules are added in a list to each chain. A packet is checked against each rule in turn, starting at the

top, and if it matches that rule, then an action is taken such as accepting (ACCEPT) or dropping

(DROP) the packet. Once a rule has been matched and an action taken, then the packet is processed

according to the outcome of that rule and isn't processed by further rules in the chain. If a packet

passes down through all the rules in the chain and reaches the bottom without being matched

against any rule, then the default action for that chain is taken. This is referred to as the default

policy and may be set to either A

Iptables packet flow diagram:

passes down through all the rules in the chain and reaches the bottom without being matched

against any rule, then the default action for that chain is taken. This is referred to as the default

policy and may be set to either ACCEPT or DROP the packet.

passes down through all the rules in the chain and reaches the bottom without being matched

against any rule, then the default action for that chain is taken. This is referred to as the default

Matching packets (basic examples)

We need to be able to clearly define which packets we want to block and which we want to allow

through.

Address matching

The two most basic match conditions are:

1. source address of the packet

2. destination address of the packet

Note: These can either be individual IP addresses or a whole subnet.

If we wanted to block packets heading to 172.25.0.1 from anything on the 10.0.0.0/8 network, we

would do:

iptables -A INPUT -s 10.0.0.0/8 -d 172.25.0.1 -j DROP

Protocol matching

We can also match based on protocol used, (TCP, UDP, ICMP, etc.), as well as the specific port or

service type used by that protocol. As an example, a common usage is to block connections to port

113 via TCP, which is used by identd:

iptables -A INPUT -p tcp --dport 113 -j REJECT -- reject-with tcp-reset

Note: The tcp-reset REJECT option causes the client to reset the TCP connection to our system.

We can mix the protocol and source or destination address into one whole rule:

iptables -I INPUT -p tcp --dport 113 -s 10.0.0.0/8 -j ACCEPT

State matching

We can also specific a ‘match’ option, using the -m flag. This allows us to use a kernel module to

provide extra packet matching capabilities, the most popular usage of which is for connection

tracking matching.

The ‘state’ match has four different types of connection which we can match against:

1. ESTABLISHED: corresponds to a connection which is already up and running. If the

connection originated within our network, as soon as the packet passes through our firewall

on its way to the Internet, it is tracked as ESTABLISHED.

2. RELATED: is provided by a protocol helper module. The most common use for this is with FTP

by using the ip_conntrack_ftp.o module, which allows us to track FTP connections back into

our network properly, as when we download from a FTP server, it will try to make a TCP

connection back to our system.

3. NEW: means that the packet is part of a new connection, meaning that it has not yet been

tracked by the connection tracking system.

4. INVALID: means that the connection is in an invalid state, so generally these should be

dropped.

As a basic rule, we want to allow all ESTABLISHED and RELATED packets into our network, and

selectively allow NEW packets through depending on the destination port.

iptables -A INPUT -m state --state INVALID -j DRO P
iptables -A INPUT -m state --state NEW -j DROP
iptables -A INPUT -p tcp --dport 22 -m state --st ate NEW -j DROP
iptables -A INPUT -m state --state RELATED,ESTABL ISHED -j ACCEPT

Matching packets (more tips and examples)

Remember localhost

Lots of applications require access to the lo interface. Ensure that you set up your rules carefully so
that the lo interface is not disturbed:

iptables -A INPUT -i lo -j ACCEPT

Be stringent with your rules

 Try to make your rules as specific as possible for your needs. For example, I like to allow ICMP pings

on my servers so that I can run network tests against them. I could easily toss a rule into my INPUT

chain that looks like this:

iptables -A INPUT -p icmp -m icmp -j ACCEPT

However, I don’t want to simply allow all ICMP traffic. There have been some ICMP flaws from time

to time and I’d rather keep as low of a profile as possible. There are many types of ICMP control

messages, but I only want to allow echo requests:

iptables -A INPUT -p icmp -m icmp --icmp-type 8 - j ACCEPT

This will allow echo requests (standard ICMP pings), but it won’t explicitly allow any other ICMP

traffic to pass through the firewall.

Always comment strange rules

-m comment --comment "limit ssh access"

Drop Private Network Address On Public Interface

IP spoofing is nothing but to stop the following IPv4 address ranges for private networks on your

public interfaces. Packets with non-routable source addresses should be rejected using the following

syntax:

iptables -A INPUT -i eth1 -s 192.168.0.0/24 -j DR OP
iptables -A INPUT -i eth1 -s 10.0.0.0/8 -j DROP

Own chain (here named MYCHAIN) and jumping to them

iptables -N MYCHAIN
iptables -A MYCHAIN -m limit --limit 5/h --limit- burst 3 -j LOG --log-
prefix "Blacklist: "
iptables -A MYCHAIN -j DROP
iptables -A INPUT -i eth0 -s 192.168.0.2 -j MYCHA IN

Multiple ports and addresses

iptables -A INPUT -p tcp --dport 50:55 -m iprange --dst-range
192.168.0.1-192.168.0.10 -j ACCEPT

Time restrictions

iptables -A INPUT -m time --timestart 8:00 --time stop 18:00 --days
Mon,Tue,Wed,Thu,Fri -j ACCEPT

Logging(syslog: /var/log/syslog or /var/log/messages) of dropped packets

iptables -A INPUT -i eth1 -s 10.0.0.0/8 -j LOG -- log-prefix "IP_SPOOF A:"
iptables -A INPUT -i eth1 -s 10.0.0.0/8 -j DROP

Trusted MAC addresses

First we use -m mac to load the mac module and then we use --mac-source to specify the mac
address of the source IP address (192.168.0.4).

iptables -A INPUT -s 192.168.0.4 -m mac --mac-sou rce
00:70:FD:D1:E1:24 -j ACCEPT

SNAT

If the server has static IP 192.168.0.1 and wals to share Internet to other users:

iptables -t nat -A POSTROUTING -o eth0 -j SNAT -- to 192.168.0.1

If the server uses DHCP it is solved by MASQUERADE parameter:

echo "1" > /proc/sys/net/ipv4/ip_forward
iptables -A FORWARD -i eth1 -o eth0 -s 192.168.0. 22 -j ACCEPT
iptables -t nat -A POSTROUTING -o eth0 -j MASQUER ADE

Note: forwarding in kernel must be turned on and FORWARD chain in iptables must also allow this

forwarding (if the default policy do not allows it).

Note: the exact opposite is DNAT (e.g., server has two IPs and wants just one to be visible for internal

network).

NAT table and port redirecting

iptables -t nat -A PREROUTING -i eth1 –p tcp --dp ort 80 -j REDIRECT --to
3128

Mangle table and setting of TTL

iptables -t mangle -A PREROUTING -i eth0 -j TTL - -ttl-set 64

Some external links

Basic introduction: http://iptablesguru.blogspot.cz/

For examples see: http://www.cyberciti.biz/tips/linux-iptables-examples.html

Some best practices: http://rackerhacker.com/2010/04/12/best-practices-iptables/

Mini how-to: http://www.linode.com/wiki/index.php/Netfilter_IPTables_Mini_Howto

Other examples: http://wiki.centos.org/HowTos/Network/IPTables

