
Java Memory Model

Into the core of concurrent 

programming

March 2013



Java Memory Model

Before we start

Maybe you ask already…

Why should I know anything about that?

There is a plenty of answers – choose for yourself:
• Sadly, many developers lack even essential pieces of knowledge like this 

one – but you might not anymore… which makes you special and cool

• You can prevent yourself from making dumb and hard-to-find errors 

(which the others do)

• You could write better code then: not only correct, but also more efficient

• After all, it is an interesting topic ;-)

Slide 1



Java Memory Model

Outline of the lecture

I. Introduction

II. Rules for programming in concurrent environment

III. Java Memory Model explained

IV. Sharing in concurrent environment

V. Summary for the basic topics

VI. Shortly about some advanced topics

Slide 2

Rather ask 
immediately than 
never. You might miss 
your best opportunity.



Java Memory Model

A bit of theory: what is…
…a thread (of execution)

• The smallest sequence of instructions that can be managed 
independently by a (system) scheduler and execute independently as well

• It is an active entity, unlike a process, it actually “runs”

…a process
• An instance of a program that is being executed

• A collection of various resources (including memory) and a container for 
threads

• It’s a passive entity, a process without threads would do nothing

…a shared resource
• A resource accessible to multiple processes, or rather to multiple threads

…concurrency
• A property of systems in which several computations are executing in 

parallel (potentially interacting with each other)

Slide 3



Java Memory Model

Sharing a resource (or a state)

When sharing a resource…

…multiple threads may access it

When accessing at the same time

…a conflict may occur

When a conflict occurs…

…the outcome is indeterminate

Preventing parallel access 

prevents the conflict and prevents 

threads from ruining the balance

That’s why locks were invented
• To prevent unwanted access ;-)

• To make an action appear atomic

Slide 4

int balance;

Thread A

int amount = …

balance = balance + amount;

Thread B

int amount = …

balance = balance + amount;

A shared piece 

of memory



Java Memory ModelSlide 5

About concurrent programming

“Perhaps surprisingly, concurrent programming isn't so 
much about threads or locks, any more than civil 
engineering is about rivets and I-beams.

Writing thread-safe code is, at its core, about 
managing access to state, and in particular to 
shared, mutable state.”

Alright, this is important, but there is something more yet
We’ll have to deal with threads and locks for a while to find it out

Let’s write a lock – a very, very simple lock
Can you?



Java Memory Model

A very simple lock
The compareAndSet() operation 

must compare a value in a variable 

and set it to a given value 

atomically

That’s trick, I admit… but:

such an operation is supported by 

the hardware usually (so called 

CAS instructions)

there are solutions that can work 

without that (Peterson’s algorithm, 

Dekker’s algorithm)

Slide 6

int owner;

A shared piece of 

memory – the 
instance of Lock

Lock.lock():

int tid = currentThreadId();

while !compareAndSet(&owner, 0, tid);

Lock.unlock():

int tid = currentThreadId();

if (!compareAndSet(&owner, tid, 0)) {

throw new Error(…);

}



Java Memory Model

Sharing… revisited

If the lock works, the conflict is 
avoided…

…so we are safe, right?

Right?

Slide 7

int balance;

Lock L;

Thread A

int amount = …

L.lock();

balance = balance + amount;

L.unlock();

Thread B

int amount = …

L.lock();

balance = balance + amount;

L.unlock();

A shared piece 

of memory



Java Memory Model

We would certainly be safe…

if there is a single CPU

or if all memory operations are 

synchronous

Otherwise thread A may see another 

value at the same memory address than 

thread B (because of the caches)

We have to consider memory 

visibility for particular threads

Having all memory access synchronous 

is too harsh and inefficient, but it might 

be sufficient to synchronize just 

something…

About memory architecture

Slide 8

processor 

core
cache(s)

processor 

core
cache(s)

processor 

core
cache(s)

memory

m
e
m

o
ry

 b
u
s

Executing thread B

Executing thread A



Java Memory Model

Concurrent troubles
Here we come to the basic rules of concurrent programming:

All actions must be considered with the respect to their mutual 
order, i.e. with the respect to their executors and the observers
The visibility of the changes is essential

For concurrent programming, we need to ensure a well-defined 
ordering of all actions and the visibility of their effects

“What happens before this and can we see the result here?”

A total ordering is defined naturally when having a single thread only
• All actions and their effects are ordered sequentially in the program order

A partial ordering can be defined for multiple threads easily
• Actions and their effects can be ordered sequentially, but just in a thread’s 

local scope

• An ordering with the respect to the other threads can be defined by using 
special actions which ensure visibility of the effects of the past local 
actions, which are atomic and which have guaranteed mutual order

Slide 9



Java Memory ModelSlide 10

Java Memory Model in a picture

Everything 
before the 
unlock on L…

…is visible to 
everything 
after the lock 
on L

y = 1

x = 1

L.unlock()

L.lock()

Thread A

i = x

j = y

L.lock()

L.unlock()

Thread B

tim
e
 flo

w



Java Memory ModelSlide 11

Before and after… formally
Java Memory Model defines a partial ordering called happens-before:

“If action A happens before action B, then action B can see the results 
of action A (whether or not A and B occur in different threads)”

The (basic) rules for the “happens-before” relation:
Program order rule: each action in a thread happens before every action in that 
thread that comes later in the program order

Lock rule: an unlock of a lock happens before every subsequent lock on that 
same lock (this applies on library locks as well as on intrinsic locks)

Volatile variable rule: a write to a volatile field happens before every 
subsequent read of that same field (this applies on atomic variables too)

Thread start rule: a request to start a thread happens before every action in the 
started thread

Thread termination rule: any action in a thread happens before any other 
thread detects that thread has terminated

Interruption rule: a thread requesting interruption on another thread happens 
before the interrupted thread detects the interrupt

Finalizer rule: the end of a constructor of an object happens before the start of 
the finalizer for that object



Java Memory ModelSlide 12

Benefits of Java Memory Model

Java Memory Model implies directly:
Locks provide both atomicity and visibility
Volatile variables provide just the visibility
Atomic variables (see later) provide the visibility and limited 
atomicity

“Piggybacking” technique
• The strength of “happens-before” allows to piggyback sometimes 

on the visibility guarantees that are implied by the existing 
“happens-before” enforcement

• This technique is quite fragile, but can gain some performance 
and allows e.g. safe using of various thread-safe collections in a 
natural way as a side-effect

Reasonable price for achieving thread safety measured 
by the complexity and the imposed performance penalty



Java Memory ModelSlide 13

Stale data
If a thread reads data from a memory place without ensuring the 
proper visibility guarantee, it may load stale data (the data which are 
not fresh because of a change performed by another thread in the 
memory place)

What are the consequences?
• Usually bad enough – it is the common cause of race conditions and 

other hazards… stale data can spoil anything

But… there is something to know anyway: “out-of-thin-air” safety
This kind of safety tells that stale data can only contain the data written 
by a thread in the past (although not telling which thread and how old 
the data might be – you just know the data are not random)

It does not apply on double and long values (see JVM internals)

± It applies on all other values (including references, but not objects!)

± This kind of safety has a use, e.g., for hash code caching technique



Java Memory ModelSlide 14

Escape… and publication

Publishing an object means making it available to code 
outside of the object’s current scope

Publishing an object may indirectly publish others

Publishing can compromise encapsulation, break invariants… 
(recall e.g. leaking references to an object’s internals)

When an object is published when it should not have 
been, it is said to have escaped

It brings many hazards: abusing or misusing the object, 
accessing an incomplete instance (if the object escapes during 
its construction), viewing an inconsistent state of the object 
(publishing without considering memory visibility) etc.

Never allow an object to escape, always ensure safe 
publication



Java Memory Model

Safe publication: considerations
Initialization safety: final field semantics

“A thread that can only see a reference to an object after 
that object has been completely initialized is guaranteed 
to see the correctly initialized values for that object's 
final fields”

This is another huge point in favor of (true) immutability and a 
help for other objects too (especially for achieving at least the 
effective immutability)

What to watch carefully?
Construction time: leaking incomplete instance

Fields: inspect what is loaded and stored

Return values: the most common way for an escape

Method arguments: often not realized that they accept values

Inner (non-static) class instances: contain the implicit 
reference to the outer instance

Slide 15



Java Memory Model

Safe publication: techniques
What is safe then?

A properly constructed object can be published by…
Initializing the object reference in a static initializer

Storing a reference to it into a volatile field or an atomic 
reference instance (e.g. AtomicReference)

Storing a reference to it into a final field of a properly 
constructed object

Storing a reference to it into a properly synchronized field
• Either using explicit lock or using some form of piggybacking
• Various thread-safe library collections can be included here

Then reading from such a reference source provides a safely 
published object

Slide 16



Java Memory Model

Safe publication: summary

Immutable objects can be published through 
any mechanism

± Effectively immutable objects must be safely 
published

Mutable objects must be safely published 
and must be either thread-safe or guarded 
(see later)

Always document the publishing requirement 
and the policy how to deal with the instances 
– it’s a part of the contract

Slide 17



Java Memory Model

Confinement: overview

Confining some data ~ preventing the data from 
sharing

When an object is confined to a thread, its usage becomes 
thread-safe even if the confined object itself is not

No sharing, no synchronization → this is the cheapest way

It allows to use safely the code which is not thread-safe

It can help to avoid deadlocks and overwhelming complexity

± It is just the matter of design and implementation
• The compiler is not helpful at all

Used very often, in many cases implicitly or “by the way”

Slide 18



Java Memory Model

Confinement: techniques

Confining to dedicated privileged threads
• Original and typical use, common for GUI frameworks, database connections…

Stack confinement
• The data are reachable through the local variables only → confined intrinsically

Instance confinement
• Encapsulating a thread-unsafe instance to provide thread-safe access to it

Ad-hoc thread confinement
• Delegating the execution of some single-threaded code to a single thread while 

sharing the data is avoided during the execution

• Correct memory visibility is required!

Thread locals
• Every thread can use the same “global” way to access a private copy of some data

Slide 19



Java Memory Model

Common sharing policies
Thread confinement
• A thread-confined object is owned exclusively by a thread

• Only the owning thread can access the object

Shared read-only
• A shared read-only object can be accessed by multiple threads without 

additional synchronization, but can’t be modified by any thread

Shared thread-safe
• A thread-safe object performs synchronization internally

• Multiple threads can freely access it through its public interface without 
further synchronization

Guarded
• A guarded object can be accessed only with a specific lock held

• Guarded objects include those that are encapsulated within other thread-
safe objects and published objects that are known to be guarded

Slide 20



Examples

Let’s explore some common idioms



Java Memory ModelSlide 22

Idioms: double-checked locking
Prior Java 5: broken (insufficient volatile support)

Still often implemented wrong or misunderstood; this is a correct code 
snippet applied on a singleton (the original common use case):

public final class ResourceFactory {

private static volatile Resource INSTANCE;

public static Resource getInstance() {
Resource result = INSTANCE;

if (result == null) {
synchronized (ResourceFactory.class) {

result = INSTANCE;
if (result == null) {

result = new Resource(…);
…
INSTANCE = result;

}
}

}

return result;
}

}

!

?

?

?



Java Memory Model

Why volatile is necessary?
Imagine Resource implementation like this:

public final class Resource {

…

private String data;

public Resource(…) {
…
data = …
…

}

public String getData() {
return data;

}
}

The instance is effective immutable only
• Such an instance requires already safe publication which does not occur if 
INSTANCE in the double-locking idiom has not volatile semantics

Slide 23

Idioms: double-checked locking

Guaranteed visibility without volatile

consuming 
thread

creating 
thread

ResourceFactory.INSTANCE

Resource instance

!



Java Memory ModelSlide 24

Idioms: lazy initialization holder
Double-checked locking was broken before and implemented often 
incorrectly → for singletons (the common use case) a safer idiom 
was developed

public final class ResourceFactory {

private static class ResourceHolder {
public static final Resource RESOURCE

= new Resource();
}

public static Resource getResource() {
return ResourceHolder.RESOURCE;

}
}

This idiom uses the class-loading & initialization process to ensure 
the safe publication and synchronization of the resource construction
Unfortunately, it is usable for singletons only as it relies on the class 
instantiation (and Class instances are singletons)

?



Java Memory ModelSlide 25

Idioms: final wrapper
Let’s consider such a class:

public final class FinalValue<T> {

private final T value;

public FinalValue(T instance) {
value = instance;

}

public T value() {
return value;

}
}

Such a class can be used for an alternative to double-checked 
locking, thanks to the special semantics of final fields

…but it does not perform necessarily better than using a volatile variable

…and it is even less explicit and known, use with care!



Java Memory ModelSlide 26

Idioms: using final wrapper
Using the FinalValue class which was sketched on the previous slide:

public final class ResourceFactory implements Factory<Resource> {

private FinalValue<Resource> instance;

@Override
public Resource getInstance() {

FinalValue<Resource> result = instance;

if (result == null) {
synchronized (this) {

if (instance == null) {
instance = new FinalValue<>(new MyResource());

}

result = instance;
}

}

return result.value();
}

}

The local variable result is required for the correctness!

Not a well-established idiom, but a good example for final fields



Summary

What you should certainly remember



Java Memory Model

Summary of the essentials
Actions’ mutual order and visibility of their effects are essential

• The order must be always proved using the memory model’s 
rules

Basic rules for happens-before
• Especially “lock” and “volatile” rules

Limit mutability, strive for true immutability – use final
• Highly recommended, little known, frequently neglected
• Limiting mutability is always a good idea anyway

Always consider confinement
• Often the cheapest and least complicated option

Never allow an object to escape, publish safely + document
• Watch out what becomes available outside an instance

Slide 28



Some extra stuff

For those who understand everything



Java Memory Model

About atomic variables

Classes in java.util.concurrent.atomic

They have volatile read/write semantics (i.e. form 
happens-before relation as volatile does)

Extra compound operations

• Compare-and-set operations

• Change-and-get for AtomicInteger and 
AtomicLong

• Marking and stamping for Atomic*Reference

The atomic variables are important means for 
light-weight synchronization and non-blocking 
techniques

Slide 30



Java Memory ModelSlide 31



Java Memory ModelSlide 32

Questions?

Petr Doležal

petr.dolezal@atos.net


