Quality-Aware Design of Software Systems

Barbora Bühnová

Faculty of Informatics, Masaryk University Brno, Czech Republic

LASARIS SEMINAR

April 11, 2013

- Introduction
 - Motivation Focus of the Talk
- Overview of Existing Techniques Foundations Industrial Techniques Research Techniques
- 3 Palladio Approach Performance Analysis Reliability Analysis Combined Techniques
- 4 Conclusion Summary Challenges

- 1 Introduction

 Motivation

 Focus of the Talk
- Overview of Existing Techniques Foundations Industrial Techniques Research Techniques
- Palladio Approach Performance Analysis Reliability Analysis Combined Techniques
- 4 Conclusion Summary Challenges

Large-scale software systems with complex architecture

- support of critical business processes in enterprise inf. systems
- quality = customer trust & satisfaction = money

Different ways of understanding the quality

not only system correctness!

Other quality attributes

- performance
- reliability
- security
- energy consumption
- maintainability
- ... and many others

Focus of the talk

Focus

- Information systems with complex architectures
- Quality in terms of performance and reliability

Goal

 Formal techniques assisting software architects in the development of high-quality systems

- 2 Overview of Existing Techniques Foundations Industrial Techniques Research Techniques
- Palladio Approach Performance Analysis Reliability Analysis Combined Techniques
- Conclusion
 Summary
 Challenges

Performance

Outline

Performance reflects the ability of a software system to fulfil the requirements on fast response time and high throughput of the system while minimizing the usage of computational resources.

Overview of Existing Techniques

•000000000

Performance attributes

- response time
- throughput
- resource utilization

Reliability

Reliability is the probability that a software system will perform the required functionality according to the design restrictions without faults and failures in a given time span.

Reliability attributes

- probability of failure on demand
- mean time to failure

Performance vs. reliability

Introduction

Differences

- Conflicting objectives
- Tuning techniques
- Prediction questions

Similarities

- Quantitative quality attributes
- Both influenced by very similar architectural elements
- Architectural models and prediction techniques

Industrial techniques for performance/reliability assessment

After implementation (measurement-based)

- profiling and measurement of an implemented and deployed system
- pro low effort (no additional model needed)
- cons too late to revert initial design decisions

Before implementation (prototype-based)

- implement a prototype and measure its characteristics when deployed on the target platform
- pro supports early decisions
- cons very expensive, time consuming, hardware can be hardly changed, imprecise (many measurements needed for statistical validity)

dustrial techniques for performance/renability turning

After implementation

- faster/more reliable hardware (execution environment in general)
- redundancy (reliability), component derating (reliability)
- multi-threading (performance)
- code and architecture refactoring

During implementation

- fine-tuning of micro-level issues (performance)
- optimizing compilers (performance)
- error detection (reliability), fault tolerance (reliability)

Donald Knuth: "We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil" [1974]

Goals of ongoing research

Develop techniques with the following properties

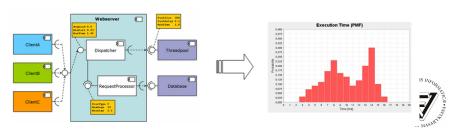
Overview of Existing Techniques

- integrate both quality assessment and tuning
- design-time techniques (model-based)
- integrated into the development process
- easy evaluation of different configurations (changing/updating) both software and hardware)
- automated quality assessment
- model-based prototype generation
- combination of formal models with UML

Additionally

- cost-effective (comparing to industrial techniques)
- time-effective (scalability of formal analysis)

Quality engineering techniques


Focus

Information systems with complex architectures

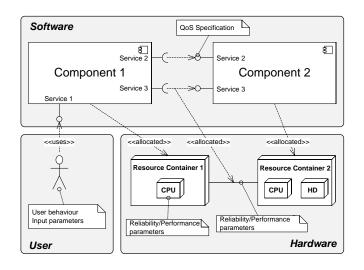
000000000

Implications

- Complex systems → formal methods may fail due to system size
- Defined architecture → compositional reasoning

Techniques for inf. systems with complex architectures

Architecture-driven analysis


- defined in a modular way
- each architectural entity seen as independent
- each element assigned with a (certified) quality information

 i.e. software component → service: QoS as response time
 or probability of failure-free operation
 - i.e. hardware component \rightarrow CPU: processing rate, mean time to failure/repair
- parameterized specification needed (due to independence) \rightarrow easy element reuse and update

Outline

Techniques for inf. systems with complex architectures

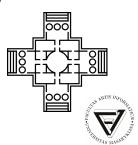
Palladio Approach

Techniques for inf. systems with complex architectures

The techniques support architecture design in:

- prediction of the expected values of performance and reliability attributes
- evaluation of alternative design decisions
- sensitivity analysis (as an effect of parameterization)
 - identification of crucial components (both software and hardware)
 - relaxing uncertainties (in input parameters, system usage)
- suggestions for design improvement (architecture optimization)
- trade-off analyses (performance and reliability as conflicting objectives)

- Overview of Existing Techniques Foundations Industrial Techniques Research Techniques
- Palladio Approach Performance Analysis Reliability Analysis Combined Techniques
- Conclusion
 Summary
 Challenges


Palladio – Software Architecture Simulation

Palladio - Software Architecture Simulation


- developed since 2003 as a research project of the Uni of Oldenburg
- currently developed by Karlsruhe Institute of Technology (KIT), FZI Research Center for Information Technology, and University of Paderborn
- Website http://www.palladio-simulator.com/

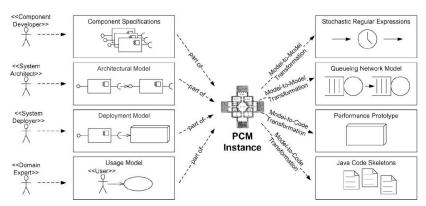
Palladio means

- Science and Research
- Consulting for Industry
- Free tooling

Palladio - Software Architecture Simulation

Palladio - Scenarios

Scenarios


- Sizing
- Scalability
- Load Balancing
- Configuration
- Optimization
- Design Alternatives

Analysis Dimensions

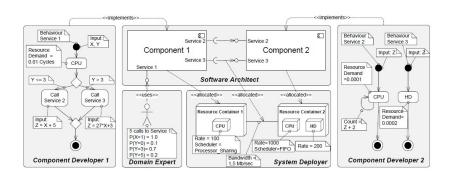
- Performance
- Reliability
- Maintainability
- Costs

Palladio - Analysis overview

Overview of Existing Techniques

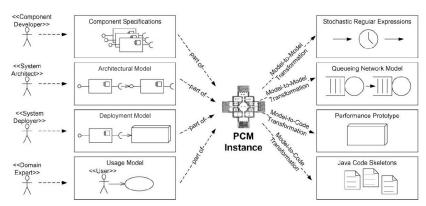
Performance analysis with Palladio

Performance is

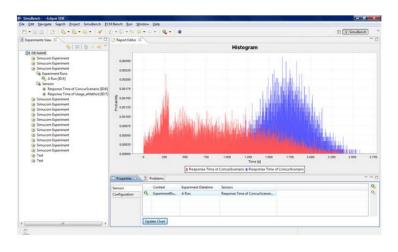

- response time
- throughput
- resource utilization

Influencing factors

- Required functionality (services)
- Execution environment
- Usage profile



Performance modelling in Palladio



Performance assessment in Palladio

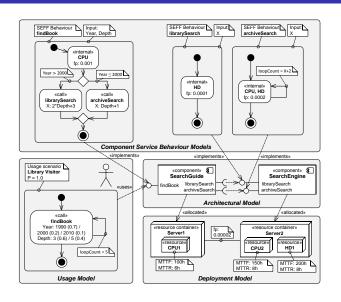
Performance assessment results

000000000

Outline

Reliability is

- software reliability (validity and correctness) e.g. probability of failure on demand
- hardware reliability (availability) e.g. mean time to failure
- system reliability (usage implied software failure influenced by employed hardware)


Influencing factors

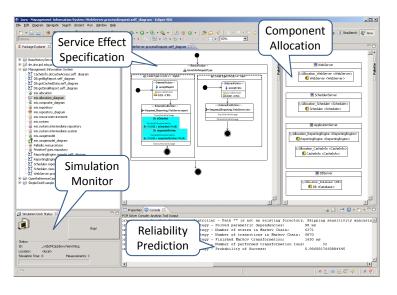
- Required functionality (services)
- Execution environment.
- Usage profile

00000000

Reliability modelling in Palladio

Reliability assessment in Palladio

Methods of evaluation


- Formal analysis (Markov model)
- Simulation (generated Java code)
- Sensitivity analysis

Types of reported results

- · Predicted reliability values
- Evaluation of alternative design decisions
- Identification of reliability-critical architectural elements

Reliability assessment in Palladio

Architecture optimization and trade-off analysis

Architecture optimization

- PreOpteryx sub-project within Palladio
- automated design improvement via architecture changes
- based on optimization algorithms (evolutionary-based in PreOpteryx)
- multi-objective optimization (performance, reliability, cost)
- degrees of freedom (HW/SW parameters, allocation, replication, ...)

Trade-off analysis

- reliability, performance and cost as conflicting objectives
- selection of the design alternative with the highest overall value

- Overview of Existing Techniques Foundations Industrial Techniques Research Techniques
- Palladio Approach Performance Analysis Reliability Analysis Combined Techniques
- 4 ConclusionSummaryChallenges

Summary

Overview of Existing Techniques

- Foundations
- Industrial Techniques
- Research Techniques

Palladio Approach

- Performance Analysis
- Reliability Analysis
- Combined Techniques

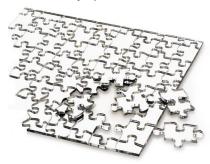
Challenges of design-time quality assessment

Performance

 high dependence on low-level details (platform dependent, e.g. scheduling strategies)

Reliability

 accuracy of the input data (failure probabilities and hardware availability)


Both

- knowledge gap between software engineers/architects and quality experts
- minimization of the modelling effort

Thank you

Thank you for your attention! Any questions?

