
Introduction

The challenge of implementing Segway with LEGO
robotics has been taken up many times. First came Steve
Hassenplug’s LegWay using the RCX and two EOPD
sensors.

With the NXT, Philippe E. Hurbain built the
NXTWay using the NXT Light Sensor in a
way similar to Steve Hassenplug’s LegWay.

Laurens Valk has recently published a
Segway type robot that uses the HiTechnic

Gyro Sensor. He calls his creation the AnyWay.

Now it is our time to come up with the original implementation of segway using
LEGO robotics. We have called it Beerway.

Goals

The original goal was to implement gyro-stalilized remote control robot-segway
using Android phone with a robotic hand.
In the end, we implemented gyro-stalilized robot-segway using Android phone.
Remote control is working, but optimisation is needed.

Hardware used:
1) NXT brick
2) 2x motors for movement;
3) Samsung GT-N7000;
4) USB-OTG cable;
5) remote control device — web browser;

Software used:
LeJOS
Eclipse with Android and LeJOS plugins
Android 4.4
adb over wifi

Language:
Java

http://www.teamhassenplug.org/robots/legway/
http://www.laurensvalk.com/nxt-2_0-only/anyway
http://www.philohome.com/nxtway/nxtway.htm
http://www.teamhassenplug.org/robots/legway/
http://www.philohome.com/nxtway/nxtway.htm
http://www.nxtprograms.com/NXT2/segway/index.html

Project source code structure:

Beerway/GyroSensorApp — application running on the Android phone. Performs
like USB client. Executes gyro sensor data and web interface commands transmission
to the NXT device.

Beerway/NXTapp — application running on the NXT brick. Performs like USB
server. Executes gyro sensor data readings and commands received from the phone.

Code:
https://bitbucket.org/cloun/beerway/src

Documentation:
Documentation is in the standard javadoc format. Can be found at doc/ subdirectory
of source packages.

Example video:
https://www.youtube.com/watch?v=T9TtKiDFx3Y

How it works

Connection B is a http connection between user's browser and phone's micro web
server. User works with Beerway's web interface by calling http enpoints
implemented in the Beerway http server. They allow to move beerway forward,
backward and rotate it.

https://bitbucket.org/cloun/beerway/src

Connection A is a high speed low latent USB connection between phone and NXT
brick. It transmits gyro data from phone to the NXT brick and also commands from
web server to NXT controlling code.

Application flow

GyroSensorApp

When user opens GyroSensorApp, it creates BeerwayServer
and SegwayControl. BeerwayServer is a thread serving web requests from client's
browser. SegwayControl is an object which allows to control NXT brick over USB. It
registers AndroidGyroscope as a listener for gyro sensor changes. System thread
detects angle changes and calls AndroidGyroscope method with current angle.
AndroidGyroscope transmits these data via SegwayControl. BeerwayServer also
transmits driving commands via SegwayControl to the NXT brick.
SegwayControl uses modified LeJOS code with added support of USB under
Android. (Beerway/GyroSensorApp/src/lejos/pc/comm/NXTCommAndroidUSB.java
Beerway/GyroSensorApp/src/lejos/pc/comm/NXTCommFactory.java:NXTCommFac
tory.createNXTComm)
Before connecting NXT, the user should manually start
web server using application interface.

Then he should start NXTapp on the NXT brick.
Then he may connect phone to the NXT brick. After
physical connection is established, the user can start data
transfer using GyroSensorApp interface. After a click on
“Connect to NXT”, SegwayControl opens LCP
connection over USB. Application shows current USB
connection and web server statuses using text on the
main activity screen and popup windows. It creates
USB connection and starts sending gyro data every 16
milliseconds on average. Sometimes this can take 30
milliseconds, in this case Beerway has a nice chance to
fall down. We assume that this is because of garbage
collector launches on the phone and the NXT.

Opened connection triggers NXTapp's
code on the NXT brick. It starts
running a balancing thread and
listening to gyrosensor data. After a
couple of bips, the NXT brick should
start balancing. Then the user is able to
control Beerway through web browser.

So we have 3 threads running in paralel:
1) System thread(sends gyro sensor updates using SegwayControl instance)
2) UI thread(shows UI, creates SegwayControl, BeerwayServer instances and starts
BeerwayServer. Reacts to user actions, shows connection status using UI)
3) Web server thread(runs web server)

NXTapp

When the user turns on the NXT and starts the NXTapp, SegwayServer
 starts listening to USB connection. When USB connection is established, it creates
SegowayPilot instance. SegowayPilot allows to drive Beerway. SegowayPilot creates
two threads:
1) Segoway thread which runs balancing cycle.
2) MoveControlRegulator thread which corrects variables corresponding to Beerway
movement.

SegwayServer is a thread responsible for receiving data from USB stream.
It remembers commands coming from USB and writes gyro sensor data to the
RemoteGyroscope instance. RemoteGyroscope calculates current angular velocity
using previous and current angles received from the USB and times of previous and
current reception. Segoway thread uses RemoteGyroscope instance to hold the
Beerway.

SegwayController runs in the main application thread. It waits until the

SegwayServer has established the connection, then pulls comands from it and
executes them using SegowayPilot instance. SegwayController performs blocking
calls of SegowayPilot methods, the calls wait until robot is making current move
(forward, backward, rotate). Every movement has fixed completion time. So the
Beerway moves for specified time period and then waits for the next command from
the USB.

So we have 4 threads running in paralel:
1) SegwayServer
2) Main thread running SegwayController
3) Segoway thread
4) MoveControlRegulator thread

Segoway runs balancing code every 8 milliseconds. It executes for about 2
milliseconds. Gyrosensor data is actualized every 15-20 milliseconds. It is actually ok
to somehow hold the Beerway. The next step of project development should include
the optimization of gyrosensor data rate. It could be speeded up 1.5-2 times. Also it
should optimize data transfer protocol to use less bytes. It should make
communication less latent and robot more stable.

Comparison of phones' gyro sensors

http://stackoverflow.com/a/9748489/2791535

Actually we are lucky ones since we didn't know anything about phone's gyro sensor
in the beginning of the project and, as you can see above, most of the phones have
quite low rate of gyro sensor data measurements.

Samsung Galaxy Note

* Awake
 Fastest: 100 Hz
* Asleep
 The phone does not send anything. That's why application keeps screen turned on.
Original segway algorithm used in our code has been developed for 300Hz gyro
sensor.

Project flow/problems:
1) since it was discovered that BT connection has really high latency (sometimes up
to 1 sec) we decided to use USB-OTG connection.
2) broken brick slowed down our progress.
3) first of all we tried to run lejos code with balancing cycle on the Android. We
discovered a few problems.
We started from strange trace thrown by LeJOS
http://stackoverflow.com/questions/23049622/error-while-trying-establish-lejos-

http://stackoverflow.com/questions/23049622/error-while-trying-establish-lejos-usb-connection-on-android
http://stackoverflow.com/a/9748489/2791535

USB-connection-on-Android. The problem was in libusb absent in the Android.
Then we were trying to run Linux's libusb on Android because the original
implementation of LeJOS uses it. We managed to compile it, but did not succeed in
sending data over USB using it. Then we decided to implement
NXTCommAndroidUSB.java that solved the problem. Then we discovered that
Berway stability is very poor when balancing cycle runs on the phone.

This is because BaseMotor.forward() is blocking. It can make blocks up to 10msecs.
This causes balancing cycles run with a time shift between obtaining gyro sensor data
and actual motor's reaction to it. Also balancing cycles run much longer than original
10 milliseconds(average 16 msec max ~40sec). This makes robot very unstable. The
longest achieved standing time was about 5 seconds. A long play with coefitients has
been performed but with no luck.

Then we decided to move balancing code to NXT brick as in the original example.
And bingo — it has become very stable but only for 5 seconds and after that it fell
with exception..

We couldn't understand why this was happening. We thought that the problem was in
the new rewritten code. It has lead us to the wrong way of reasoning. As we
discovered after, the problem wasn't in our code but in LeJOS implementation.
We posted error on LeJOS forum
http://www.lejos.org/forum/viewtopic.php?f=7&t=6952

The error is caused by the fact that the LeJOS menu expects all USB communication
to follow the LCP protocol. Since the menu is fed non-LCP-conforming data, LeJOS
crashes after a while.

So we have solved this problem by sending data after the program on NXT has
started listening.
Then the web server was implemented.
True story:)

During this project we discovered that:
1) Android base 4.1.2 rom has 2-times higher rate of sensor updates than cyanogen
11(Android 4.4)
2) Phone's touchscreen works ok with adhesive tape glued to:)

References

Android documentation https://developer.Android.com/guide/index.html

LeJOS documentation http://www.lejos.org/nxt/nxj/tutorial/index.htm

Explanation of both the physics of the problem and the linear equation that makes a
solution possible on the NXT http://caxapa.ru/thumbs/320181/nxtway-g-1.pdf

https://developer.android.com/guide/index.html
http://www.lejos.org/forum/viewtopic.php?f=7&t=6952
http://stackoverflow.com/questions/23049622/error-while-trying-establish-lejos-usb-connection-on-android

	Introduction
	Goals
	How it works
	References

