
IA158 Real Time Systems

Legway

Jan Dupal, Adrian Farmadin, Peter Kotvan, Vı́t Šesták

11. 5. 2014

1 Introduction

Our project is inspired by Segway, two-wheeled, self-balancing, battery-powered vehicle. [1] [2] As the Lego

robotic set did not contain gyroscopes we used light sensor for measuring the tilt of the robot as can be seen

on figure 1. The sensor is located under the Lego brick.

Figure 1: Legway

The communication with Lego brick is done over bluetooth. Initially we intended to use ultrasonic sensor

to avoid obstacles but later we decided to remove unnecessary parts to lower the centre of gravity to solve

our problems with balancing.

For different parts of the project our team used different programming languages. The main program

of the robot is written in NXC [3] which is a language very similar to C. Testing module for bluetooth

communication is written in Ruby and finally the application for controlling the segway is written in Scala.

Unfortunately during our work on this project we experienced display failure on Lego brick two times.

This caused delay in our work and the second malfunction prevented us from merging the codebases of team

members and from enough experimentation with controller parameters as our team used the display for

debugging purposes.

1



2 Controller

Control theory is a branch of science that studies the behavior of dynamical systems and describes the ways

of controlling them. To enable our robot to balance itself we had to implement basic PID controller with

with feedback loop. Figure 2 shows basic closed-loop controll system.

Figure 2: Feedback loop [4]

2.1 Discrete PID

We have chosen discrete version of PID controller because of it’s simplicity and easiness of implementation

however this type of controller is meant to be used with identified linear systems and we know that our

system is not linear and we have no means to identify it. We assumed that the robot will behave linearly

close to point of equilibrium since the equations describing the system can linearized using Taylor series and

terms with power of two and higher could be neglected.

Standard form of PID controller look is

u(t) = K

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

)
(1)

where e(t) is the error, the difference between required value and the output of the system and u(t) is the

controller output. Performing Laplace transformation [5] on (1) we get

G(s) = K

(
1 +

1

sTi
+ sTd

)
(2)

or the parallel form

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(3)

with its Laplace transform

G(s) = Kp +
Ki

s
+ sKd (4)

where we can simple convert the constants Kp = K, Ki = K
Ti

and Kd = KTd. These constants, sometimes

denoted P , I, D are the proportional gain, integral time and the derivative time respectively.

Since we need to use the controller in digital form we need to use discrete form of PID controller sometimes

called PSD controller with S denoting sum instead of integral. This can be achieved with Z-transform of the

equation (3). [7]

U(z) =

(
Kp +

Ki

1 − z−1
+Kd

(
1 − z−1

))
E(z) (5)

U(z) =

(
(Kp +Ki +Kd) + (−Kp − 2Kd) z−1 +Kdz

−2

1 − z−1

)
E(z) (6)

We have defined

2



Figure 3: PID controller in controll loop [6]

K1 = Kp +Ki +Kd

K2 = −Kp − 2Kd

K3 = Kd

to be able to derive difference equation from (6).

u[k] = u[k − 1] +K1e[k] +K2e[k − 1] +K3e[k − 2] (7)

In our final implementation of PSD controller we used slightly different equations that incorporate also

the sampling rate parameter Ts. [8]

There are several methods that could be used to determine the constants of PID controller for example

Ziegler-Nichols method or Cohen-Coon method. However these methods need more information about

controlled system than we had and they need ways to measure various parameters of the system. Hence we

tried to set parameters experimentally assuming that in the state of equilibrium there is zero error, so we

decided to set integral time to zero and change only proportional and derivative gain.

3 Bluetooth

In order to provide some kind of interactivity we’ve decided to include remote control. Bluetooth interface

was obvious choice as wired connection would affect stability of the vehicle.

3.1 Requirements

Our remote control is very simple. It just controls the requested speed of the Legway device. The actual

speed may be, however, different, which may be caused by various physical limits. For example, we can’t

switch from stopped Legway to full speed instantly.

3.2 Bluetooth with NXC

Although the brick is Bluetooth-enabled, NXC does not provide capability to use RFCOMM profile (i.e.

serial port emulation) directly. There is implemented a higher level protocol on top of RFCOMM. The

protocol distinguishes between ”master” (i.e. the device that initiated the connection) and ”slave” (i.e. the

other device).

The protocol allows us to send various commands such as run programs, play tones etc. The most

important part of the protocol are command queues. There are several message inboxes with a limited

capacity. All inboxes are stored on the ”slave” device. The ”master” device can push a new message and

3



poll for new messages. The ”slave” device does not send the ”master” any message until ”master” asks the

”slave” to do so. [9]

When ”master” is waiting for a message from ”slave”, it must poll. It can be a serious performance

issue in poorly designed protocols on top of that, especially with the poor Bluetooth radio device that has

a significant delay (around 100 ms) when switching between receive and send mode.

It was a surprise that NXC seems to support secured Bluetooth connections.

3.3 Legway specific challenges

3.3.1 Lost connection and delayed messages

There may be various issues with Bluetooth connections and remote control. In addition, even if we have a

secured connection, an adversary still may delay some packets, which could be generally harmful in realtime

environments, since executing a delayed command may do something undesired. The goal was to protect the

Legway from delayed commands and lost commands. When there is such connection related issue, Legway

does not know what the remote user intends to do. However, it can at least try to behave safely when such

issue occurs. We assume that the safest behavior in such case is stopping the Legway. It can of course

depend on the environment in the real world.

Fortunately, lost connection (even before timeout) and delayed commands can be detected by similar

mechanism:

1. The remote control should poll and periodically confirm that the connection is alive. If there is no

activity seen from the remote control (e.g connection has been lost, the remote control has run out of

battery energy or the remote control has a kernel panic), the Legway should stop.

2. All the messages from remote control should contain some time information that allows us to know

that the message is too old to be processed.

We have decided not to make special keep-alive messages in order to simplify the design. When a

connection is initiated, there is only one type of messages. These messages contain two values. The first one

is the requested speed (from -5 to 5). The second one is the ‘validUntil‘ value, which is a time. (We will

discuss the time later.) If the message is being processed after ‘validUntil‘, it is simply ignored. If there is

no new message until ‘validUntil‘ time instant, the requested speed is automatically set to zero in order to

prevent crashes etc., assuming a trouble with the connection.

3.3.2 Syncing the time

We don’t assume that both parties have configured the time correctly. We will however assume that both

clocks have the some speeds. We assume that Legway is too slow to experience noticeable time dilation

known from the theory of relativity.

So, we can measure time from the beginning of the communication. This is not so simple, however. There

are several ways to do that:

1. Assume that delays are negligible and start the time measurement on the initiator side after the ‘hello‘

message is sent. This is how it is implemented currently. It however allows an adversary in the middle

to delay the initial message and then make variable delay to other messages.

2. Wait for the system confirmation packet of the ‘hello‘ message and then start the time measurement.

(Assuming that we will require confirming the ‘hello‘ message.) This however does not guarantee us

that the application has processed the hello message. It does not even guarantee us that the application

is running.

4



3. After the ‘hello‘ message is sent, we will poll for a reply message. The the reply message is received, the

time measurement begins. The polling will definitely increase the connection time, but unlike the other

ways, this way is reliable. It guarantees that legwayT ime ≥ remoteControlT ime, which is required

for ‘validUntil‘ to work correctly in the defensive way. This is how we wished to implement it. We

haven’t this done, because the brick stopped working.

4 Scheduling

Naturally both PID Controller and Bluetooth remote control are timing-critical components. Failure in them

may cause:

1. Delay between two samples from the light sensor may cause a delay in reaction of motors, thus failing

to keep the vehicle in equilibrium.

2. Long period of mailbox fetching causes queue overflow, thus loss of commands.

3. Also timing is crucial for handling of lost connection – shorter period means quicker fall-back reaction

(i.e. halting the vehicle).

We have planned to setup scheduling with fixed periods and phase shifts of individual tasks. Initially

both components were developed (incl. scheduling) separately and later they were merged together. However

the malfunction prevented us from measuring execution time of individual tasks, thus we were unable to

prepare correct schedule for tasks.

4.1 PID

Experiments have shown that PID Controller task has to be run with period 5 to 10 ms (100 to 200 Hz)

in order to drive the motors properly. Although the CPU would be able perform the task with even higher

frequency, the period is fundamentally limited by the free play of the employed motors and gearboxes.

4.2 Bluetooth

Two tasks for responsible for remote control has to be scheduled:

Message receiving task periodically fetching the head of mailbox queue. As the NXT communication

protocol sends ACK to each message received from ’master’ device (thus switching radio from rx to tx

mode and back) it is unnecessary to execute this task with period shorter than 100 ms.

Command validity task ensures that issued commands have only time-limited influence on the system in

case of e.g. lost connection. In these cases this task sets requested velocity to zero.

To prevent race-conditions this task is also responsible for setting the requested velocity according

to received commands. Therefore this task should have period similar to the previous task, ideally

with slight phase shift to ensure the shortest time between receiving a message and setting velocity

parameter of PID.

The planned period was 100 ms (10 Hz) for both tasks with 50 ms phase shift. Thus tasks would be

altering with period 50 ms.

4.3 Debug tooling

Various kinds of debug output drawn on the integrated LCD screen proved to be very helpful part of the

development process. The period of these task can be set to quite high values (tenths to ones of second, 1

to 10 Hz) to affect the system least as possible.

5



5 Conclusion

As was already mentioned in introduction our work was slowed down by two failures of Lego Mindstorms

brick. That is why our project is not completely finished. During testing of the controller we experienced

that the sensor is sensitive to change of light conditions. The controlling mechanism alone worked but we

suspect that the motors could not deliver enough power soon enough to balance the robot before it falls

down. This problem could be probably fixed with better setting of PSD controller constants.

References

[1] Segway. 2014. url: http://www.segway.com/.

[2] Wikipedia. Segway. 2014. url: https://en.wikipedia.org/wiki/Segway_PT.

[3] NXC Documentation. 2014. url: http://bricxcc.sourceforge.net/nbc/nxcdoc/index.html.

[4] Wikipedia. Controll theory. 2014. url: https : / / en . wikipedia . org / wiki / Control _ theory #

Classical_control_theory.

[5] Wolfram. Laplace Transform. 2014. url: http://mathworld.wolfram.com/LaplaceTransform.html.

[6] Sensors and Sensing. 2014. url: http://bricxcc.sourceforge.net/nbc/nxcdoc/index.html.

[7] Wolfram. Z-Transform. 2014. url: http://mathworld.wolfram.com/Z-Transform.html.

[8] M. Huba, P. Hubinský, and K. Žáková. Teória automatického riadenia. Bratislava: Vydavatělstvo STU.

[9] NXT Direct Commands. 2005. url: http : / / ornella . iwr . uni - heidelberg . de / ROBOTICSLAB /

ROBPROJECTS/COMPLETED/NXT_DAME/data/nxt_direct_command.pdf.

6

http://www.segway.com/
https://en.wikipedia.org/wiki/Segway_PT
http://bricxcc.sourceforge.net/nbc/nxcdoc/index.html
https://en.wikipedia.org/wiki/Control_theory#Classical_control_theory
https://en.wikipedia.org/wiki/Control_theory#Classical_control_theory
http://mathworld.wolfram.com/LaplaceTransform.html
http://bricxcc.sourceforge.net/nbc/nxcdoc/index.html
http://mathworld.wolfram.com/Z-Transform.html
http://ornella.iwr.uni-heidelberg.de/ROBOTICSLAB/ROBPROJECTS/COMPLETED/NXT_DAME/data/nxt_direct_command.pdf
http://ornella.iwr.uni-heidelberg.de/ROBOTICSLAB/ROBPROJECTS/COMPLETED/NXT_DAME/data/nxt_direct_command.pdf

	Introduction
	Controller
	Discrete PID

	Bluetooth
	Requirements
	Bluetooth with NXC
	Legway specific challenges
	Lost connection and delayed messages
	Syncing the time


	Scheduling
	PID
	Bluetooth
	Debug tooling

	Conclusion

