
Project report
REAL TIME SYSTEMS - PROJECT

Merta Michal, Rábek Martin, Valúšek Matej, Vlasák Michal

May 11, 2014

Task

Purpose of our robot is to hold a ball - and if somebody takes it away, find
it and then move back to starting position.

Workflow

At the start, robot is holding the ball in its claws. It measures the intensity
of brightness, using its light sensor and if that brightness increases signifi-
cantly, we assume, that the ball is missing and robot starts to search for it.
He moves forward by a specified amount and then starts to look around - 90
degrees to left and 90 degrees to right. If he doesn’t find the ball, he moves
forward again and whole procedure is repeated. If the robot doesn’t find
the ball till the third iteration, he gives up and returns back to its starting
position.

If the robots see something, what is closer than given threshold, dur-
ing his phase of looking around, he stops in that direction, opens his claws
and moves this way by a portion of distance to the object he saw. Then
he starts to look around again, but in smaller angle - just to be sure, that
he is still moving towards the object. When the object is near, the robot
close the claws and starts to measure the light brightness. Once it get suffi-
ciently near to the brightness at the beginning (when he held the ball), the
robot assumes, that the ball was found, and he returns back to its starting
position.

1



Movement

Part of the project was to design API (Application Programming Interface)
for movement subroutines, e.g. move on for desired centimeters and rotate
by given angle. Resulting subroutines are named according to their func-
tion - go_forward(int cm), go_back(int cm), rotate_left(int angle),
rotate_right(int angle).

With this approach, there is high efficiency of reduced lines of code
because only thing you need is to call one of these subroutines with an
attribute. Distances were debugged and tested and full control over them
is with predefined macro functions CM2DEG(x) and AN2DEG(x) - so you can
simply adjust movement API for specific type of surface. In fact, because
movement is independent and robot backtracks each move, there is no need
for distances or angles to be highly precisely defined. In earlier version, we
also used AN2DEG macro, but synchronized rotating of robot wasn’t working
as it should, so we had to rewrite it and use another method instead. So
while moving forward and backward is programmed utilizing the synchro-
nized rotation of motors, rotating is programmed using timed rotations,
when the motor is started and after a certain amount of time it’s turned
off. This approach allows us to stop the rotation of robot from another
task. That’s something not possible with synchronized motor movement,
because that method is “thread-safe” so it is unpreemtable and no other
thread can acces motors at this time. Only possibility would be to use a
method for setting the remaining angle of motor rotations, but this method
is available only in newer firmware (which we didn’t have).

Movement API suffers from several inaccuracies which could not be re-
solved. First is caused by third wheel which brings some latency to move-
ment operations because some time is needed to rotate it into movement
direction. Secondly, it may appear that robot does not move straight for-
ward but it slightly changes angle of move - this is caused by motors and
weight of robot. These two inaccuracies highly influences the destination
position backtracking operation.

Backtracking

Each move performed by robot is stored into stack. This stack contains com-
plete history of all performed actions. Actions are stored during performa-
tion of subroutines turn_left, turn_right and go_forward. Subroutine

2



push_action stores action on stack.
Each movement in stack is represented as two integers - first one rep-

resents operation code and second one is argument (angle or distance).
When operation is about to be inserted on stack, there is always performed
merge with operation on the top of stack - if these operations are of the
same kind. For example actions go_forward(10) and go_forward(20) are
in result stored as go_forward(30). This reduces number of steps per-
formed during backtracking.

When the ball is found (or not found during third iteration of search
task), robot starts to backtrack. Robot reads all actions from the stack and
performs them in the opposite manner in order to reach the starting posi-
tion. Main problem with this aproach is parallelism during ball searching
- task search can stop the motors, but by that time, the action is already
stored on the stack. Attempt to solve this problem is based on subtrac-
tion of the amount of time taken by action up to the point of interruption.
However, this process doesn’t work correctly, because of problems with pre-
cision of motors, estimations in navigation in space, rounding errors and
inaccuracy of time measuring.

Concurrency

Concurrency is used, when robot rotates and search the space around him,
and simultaneously checks, whether he “see” something - and if it is the
case, robot stops. Programming this in one task would significantly slower
the operation of rotate because it is time demanding to compute if robot
sees something. Thereby, there exist two parallel tasks - search() and
rotate().

Since the tasks are parallel and are simultaneously accessing one vari-
able (which defines whether the ball was found) it can happen that even
though ball is found in search task, the rotating tasks continues to turn
around. This resulted in mistakes such as either the robot missed the ball
completely because the search angle was lowered or he hit the ball and
misplaced it. Therefore after finding the ball we added a slight rotation to
the left side (robot searches from left to right) so that the miscalculations
can be minimized.

3



Changes from abstract

Robot is not placed in the garage. Because then, he would find the garage,
instead of the ball. So the garage can be drawn on the floor/table - you can
imagine one, for convenience. Robot does not walk in rectangles around
the garage. Instead of it, he walks toward and search his surroundings in
a given radius. It is better for demonstration purposes and we believe, that
extension to walk-in-rectangle would be easy, but would serve no purpose
at this time.

Complications

Ultrasonic sensor Sometimes it happened that robot did overlook the ball
during movement. This resulted in catching the ball into one side
of opened claws and robot started rotating desperately. There were
also situations, when even though the ball was not placed in robot’s
surrounding, ultrasonic sensor saw something and robot was trying
to get it.

Wheels Two motor wheels together with third light wheel bring some in-
accuracies to the movement subroutines as described earlier.

Display Most of the time it was impossible to see anything on the display.
Its best times were, when the display was both poor and blinking.
Thus, robot display must have been controlled via Bricx CC IDE.

IDE and drivers We have been using Bricx CC and official drivers from
included Lego Mindstorm CDs. Initially, it took some time to make
drivers to work on Windows 7/8 64bit operating system. Some mem-
bers of our team had problems of seeing the connected robot with
Bricx, via USB. This was caused by improper and incorrect official
Lego Mindstorm drivers. Fortunately, this was fixed with drivers ac-
cessible on homepage of Bricx CC project.

Obsolete firmware It does not support some methods for movement and
tasks.

4



Teamwork

Working in team has been smooth, with no problems. Team was able to
meet together whenever needed, decide what to do, assign tasks to individ-
ual members and solve many emerging issues. Every individual contributed
to project in these areas:

Merta Michal Programmer, Designer, Safety inspector

Rábek Martin Programmer, Movement specialist

Valúšek Matej Designer, Tester, Debugger

Vlasák Michal Programmer, Designer

5


