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Discrete Sequences and Systems
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Discrete Sequences and Their Notation

 Signal processing

 Science of analyzing time-varying physical 

processes

 Continuous signal

 Continuous in time

 Continuous range of amplitude values

 Analog (continuous) signal processing

 Discrete-time signal

 Time variable is quantized

 Signal amplitude is quantized

 Because we represent all digital quantities with binary 

numbers, there’s a limit to the resolution

 Digital signal processing
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Discrete Sequences and Their Notation

 Example 

 A continuous sinewave

 Peak amplitude of 1

 Frequency fo

 fo is measured in hertz (Hz) = cycles/second

 t representing time in seconds

 fot has dimensions of cycles

 2πfot is an angle measured in radians

)2sin()( tftx o
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Discrete Sequences and Their Notation

continuous sinewave 

 sample it once 

every ts seconds 

using an analog-to-

digital converter

variable t is continuous

Index variable n is 

discrete and can have 

only integer values

x(n) is a discrete-time 

sequence of individual 

values: There is

nothing between dots 

of x(n)

)2sin()(

)2sin()(
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







x(t) and x(n) are 

referred to as time-

domain signals
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Discrete Sequences and Their Notation

 Discrete system

 A collection of hardware components, or software 

routines, that operate on a discrete-time signal 

sequence

 E.g., 1)(2)(  nxny
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Discrete Sequences and Their Notation

 Given samples of a discrete-time sinewave 

(e.g., Fig. 1-1(b)), find frequency of waveform 

they represent

 Possible to say sinewave repeats every 20 

samples

 Not possible to find exact sinewave frequency

 We need sample period ts to determine absolute 

frequency of discrete sinewave

 If ts = 0.05 milliseconds/sample

 Sinewave’s frequency = 1/(1 ms) = 1 kHz

dsmillisecon 1
sample

dsmillisecon 0.05

period

samples 20
period sinewave 
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Discrete Sequences and Their Notation

 Frequency domain

 To represent frequency content of discrete time-

domain signals

 Called spectrum
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Discrete Sequences and Their Notation

xsum(n) has a frequency 

component of fo Hz and a 

reduced-amplitude 

frequency component of 

2fo Hz

)22sin(4.0)2sin()()()( 21 sososum ntfntfnxnxnx  

Because x1(n) + x2(n) 

sinewaves have a phase 

shift of zero degrees 

relative to each other, no 

need to depict this phase 

relationship in Xsum(m)

(In general, phase 

relationships in 

frequency-domain 

sequences are important)
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Signal Amplitude, Magnitude, Power

 Amplitude of a variable

 Measure of how far, and in what direction, that 

variable differs from zero

 Can be either positive or negative

 Magnitude of a variable

 Measure of how far, regardless of direction, its 

quantity differs from zero

 Always positive
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Signal Amplitude, Magnitude, Power
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Signal Amplitude, Magnitude, Power

 In frequency domain, we are often interested 

in power level of signals

 Power of a signal is proportional to its amplitude 

(or magnitude) squared

 Assuming proportionality constant is one, power 

of a sequence in time or frequency domains are

 Often we want to know the difference in power 

levels of two signals in frequency domain

 Because of squared nature of power, two signals with 

moderately different amplitudes will have a much 

larger difference in their relative powers

22 |)(|)(,|)(|)( mXmXnxnx pwrpwr 
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Signal Amplitude, Magnitude, Power

 Because of their squared nature, plots of 

power values often involve showing both very 

large and very small values on same graph

 To make these plots easier to generate and 

evaluate, decibel scale is usually employed 
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Signal Processing Operational Symbols

 Block diagrams

 Are used to graphically depict the way digital 

signal processing operations are implemented

 Comprise an assortment of fundamental 

processing symbols
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Signal Processing Operational Symbols
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Discrete Linear Time-Invariant Systems

 Linear time-invariant (LTI) systems 

 Vast majority of discrete systems used in practice 

are LTI systems

 LTI systems are very accommodating when it 

comes to their analysis

 We can use straightforward methods to predict 

performance of any digital signal processing scheme 

as long as it’s linear and time invariant
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Discrete Linear Systems

 Linear

 A linear system’s output resulting from a sum of 

individual inputs is superposition (sum) of 

individual outputs

 Also, if inputs are scaled by constant factors c1

and c2, output sequence parts are scaled by 

those factors too

)()()()(

)()(

)()(
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inresults

inresults

inresults
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Discrete Linear Systems

linearity:

x3(n) input sequence is sum of 

a 1 Hz sinewave and a 3 Hz 

sinewave

thus y3(n) is sample-for-

sample sum of y1(n) and y2(n)

also output spectrum Y3(m) 

is sum of Y1(m) and Y2(m)
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Discrete Linear Systems
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Discrete Linear Systems

 Fig. 1-8(b)

 y1(n) is a cosine wave of 2 Hz and a peak 

amplitude of −0.5, added to a constant value 

(zero Hz) of 1/2

 Fig. 1-8(c)

 y2(n) contains a zero Hz and a 6 Hz component
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Discrete Linear Systems

 Fig. 1-8(d)

 x3(n) comprises sum of a 1 Hz and a 3 Hz 

sinewave

 Two additional sinusoids are present in y3(n) 

because of system’s nonlinearity, a 2 Hz cosine 

wave (amp=+1), a 4 Hz cosine wave (amp=−1)
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Time-Invariant Systems

 Time-invariant system

 A time delay (or shift) in input sequence causes 

an equivalent time delay in system’s output 

sequence

 k is some integer representing k sample period time 

delays

 For a system to be time invariant, above equation 

must hold true for any integer value of k and any 

input sequence

)()()()(

)()(
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Time-Invariant Systems

input sequence x′(n) is equal 

to sequence x(n) shifted to 

right by k = −4 samples

x′(n) = x(n − 4)

system is time invariant 

because y′(n) output sequence 

is equal to y(n) sequence 

shifted to right by four samples

y′(n) = y(n − 4)
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Commutative Property of LTI Systems

 LTI systems have a useful commutative 

property

 Their sequential order can be rearranged with no 

change in their final output
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Analyzing LTI Systems

 Unit impulse response of an LTI system

 System’s time-domain output sequence when 

input is a single unity-valued sample (unit 

impulse) preceded and followed by zero-valued 

samples

 System’s unit impulse response completely 

characterizes the system
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Analyzing LTI Systems
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Analyzing LTI Systems

 Knowing impulse response, we can 

determine system’s output for any input

 Output is equal to convolution of input sequence 

and system’s impulse response

 Moreover, we can find system’s frequency 

response by taking discrete Fourier transform of 

that impulse response
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Analyzing LTI Systems

a 4-point moving averager
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frequency magnitude response plot 

shows that moving averager has 

characteristic of a lowpass filter:

averager attenuates (reduces 

amplitude of) high-frequency signal 

content applied to its input


