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The Discrete Fourier Transform (2)
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DFT Resolution, Zero Padding, Frequency-Domain Sampling

 Zero padding

 A method to improve DFT spectral estimation

 Involves addition of zero-valued data samples to 

an original DFT input sequence to increase total 

number of input data samples

 Investigating zero-padding technique illustrates 

DFT’s property of frequency-domain sampling

 When we sample a continuous time-domain function, 

having a CFT, and take DFT of those samples, the 

DFT results in a frequency-domain sampled 

approximation of the CFT

 The more points in DFT, the better DFT output 

approximates CFT
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DFT Resolution, Zero Padding, Frequency-Domain Sampling



4

DFT Resolution, Zero Padding, Frequency-Domain Sampling

 Fig. 3-20

 Because CFT is taken over an infinitely wide time 

interval, CFT has continuous resolution

 Suppose we want to use a 16-point DFT to 

approximate CFT of f(t) in Fig. 3-20(a)

 16 discrete samples of f(t) are shown on left side of 

Fig. 3-21(a)

 Applying those time samples to a 16-point DFT results 

in discrete frequency-domain samples, the positive 

frequencies of which are represented on right side of 

Fig. 3-21(a)

 DFT output comprises samples of Fig. 3-20(b)’s CFT
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DFT Resolution, Zero Padding, Frequency-Domain Sampling
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DFT Resolution, Zero Padding, Frequency-Domain Sampling

 Fig. 3-21

 If we append 16 zeros to input sequence and 

take a 32-point DFT, we get output shown on 

right side of (b)

 DFT frequency sampling is increased by a factor of two

 Adding 32 more zeros and taking a 64-point DFT, 

we get output shown on right side of (c)

 64-point DFT output shows true shape of CFT

 Adding 64 more zeros and taking a 128-point 

DFT, we get output shown on right side of (d)

 DFT frequency-domain sampling characteristic is 

obvious now
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DFT Resolution, Zero Padding, Frequency-Domain Sampling

 Fig. 3-21

 Although zero-padded DFT output bin index of 

main lobe changes as N increases, zero-padded 

DFT output frequency associated with main lobe 

remains the same

 If we perform zero padding on L nonzero input 

samples to get a total of N time samples for an N-

point DFT, zero-padded DFT output bin center 

frequencies are related to original fs by

N

fm
m sbin th   theoffrequency center 
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DFT Resolution, Zero Padding, Frequency-Domain Sampling

Fig. no.

Main lobe peak 

located at m = L = N =

Frequency of main 

lobe peak relative to fs

3-21(a) 3 16 16 3fs / 16

3-21(b) 6 16 32 6fs / 32 = 3fs / 16

3-21(c) 12 16 64 12fs / 64 = 3fs / 16

3-21(d) 24 16 128 24fs / 128 = 3fs / 16
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DFT Resolution, Zero Padding, Frequency-Domain Sampling

 Zero padding

 DFT magnitude expressions

don’t apply if zero padding is used

 To perform zero padding on L nonzero samples of a 

sinusoid whose frequency is located at a bin center to get 

a total of N input samples, replace N with L above

 To perform both zero padding and windowing on 

input, do not apply window to entire input 

including appended zero-valued samples

 Window function must be applied only to original nonzero 

time samples; otherwise padded zeros will zero out and 

distort part of window function, leading to erroneous 

results

NAMNAM ocomplexoreal       and     2/
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DFT Resolution, Zero Padding, Frequency-Domain Sampling

 Discrete-time Fourier transform (DTFT)

 DTFT is continuous Fourier transform of an L-

point discrete time-domain sequence

 On a computer we can’t perform DTFT because it 

has an infinitely fine frequency resolution

 But we can approximate DTFT by performing an N-

point DFT on an L-point discrete time sequence where 

N > L

 Done by zero-padding original time sequence and 

taking DFT
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DFT Resolution, Zero Padding, Frequency-Domain Sampling

 Zero padding

 Zero padding does not improve our ability to 

resolve, to distinguish between, two closely 

spaced signals in frequency domain

 E.g., main lobes of various spectra in Fig. 3-21 do not

change in width, if measured in Hz, with increased 

zero padding

 To improve our true spectral resolution of two 

signals, we need more nonzero time samples

 To realize Fres Hz spectral resolution, we must 

collect 1/Fres seconds, worth of nonzero time 

samples for our DFT processing
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DFT Processing Gain

 Two types of processing gain associated with 

DFTs

 1) DFT’s processing gain

 Using DFT to detect signal energy embedded in noise

 DFT can pull signals out of background noise

 This is due to inherent correlation gain that takes place 

in any N-point DFT

 2) integration gain

 Possible when multiple DFT outputs are averaged
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DFT Processing Gain

 Processing gain of a single DFT

 A DFT output bin can be treated as a bandpass filter 

(band center = mfs/N) whose gain can be increased and 

whose bandwidth can be reduced by increasing the 

value of N

 Maximum possible DFT output magnitude increases as 

number of points (N) increases

 Also, as N increases, DFT output bin main lobes 

become narrower

 Decreasing a bandpass filter’s bandwidth is useful in 

energy detection because frequency resolution 

improves in addition to filter’s ability to minimize amount 

of background noise that resides within its passband

NAMNAM ocomplexoreal       and     2/
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DFT Processing Gain

DFT of a spectral tone 

(a constant-frequency 

sinewave) added to 

random noise.

Output power levels 

are normalized so that 

the highest bin output 

power is set to 0 dB

first 32 outputs of a 

64-point DFT when 

input tone is at center 

of DFT’s m = 20th bin

because tone’s 

original signal power is 

below average noise 

power level, it is 

difficult to detect when 

N = 64

if we quadruple the 

number of input 

samples (N = 256), the 

tone power is raised 

above average 

background noise 

power as shown for m

= 80
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DFT Processing Gain

 Signal-to-noise ratio (SNR)

 DFT’s output signal-power level over the average 

output noise-power level

 DFT’s output SNR increases as N gets larger 

because a DFT bin’s output noise standard 

deviation (rms) value is proportional to      , and 

DFT’s output magnitude for the bin containing 

signal tone is proportional to N

 For real inputs, if N > N′, an N-point DFT’s output 

SNRN increases over N′-point DFT SNRN′ by:

 If we increase a DFT’s size from N′ to N = 2N′, DFT’s 

output SNR increases by 3 dB

N

)'(log10 10' NNSNRSNR NN 
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DFT Processing Gain
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DFT Processing Gain

 Integration gain due to averaging multiple 

DFTs

 Theoretically, we could get very large DFT 

processing gains by increasing DFT size

 Problem is that the number of necessary DFT 

multiplications increases proportionally to N2

 Larger DFTs become very computationally intensive

 Because addition is easier and faster to perform 

than multiplication, we can average outputs of 

multiple DFTs to obtain further processing gain 

and signal detection sensitivity
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The DFT of Rectangular Functions

 DFT of a rectangular function

 One of the most prevalent and important 

computations encountered in DSP

 Seen in sampling theory, window functions, 

discussions of convolution, spectral analysis, and 

in design of digital filters
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The DFT of Rectangular Functions

 DFT of a general rectangular function

 A general rectangular function x(n) is defined as 

N samples containing K unity-valued samples
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The DFT of Rectangular Functions

















































 





1

0

)(

)1(210)(

)1()(2)(1)(0)(

))1(()2()1()(

)1(

/2

)1(

/2

2/

1)2/(

/2

)(

]...[

...

...

)(

1

)()(

K

p

qpjnjq

Kjqqjqjqjnjq

Kjqnjqqjnjqqjnjqqjnjq

Knjqnjqnjqnjq

Kn

nn

nqj

Nmq

Kn

nn

Nmnj

N

Nn

Nmnj

eeqX

eeeee

eeeeeeee

eeee

eqX

e

enxmX

o

o

oooo

oooo

o

o

o

o









21

The DFT of Rectangular Functions
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The DFT of Rectangular Functions
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The DFT of Rectangular Functions
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The DFT of Rectangular Functions

 Dirichlet kernel (DFT of rectangular function)

 Has a main lobe, centered about m = 0 point

 Peak amplitude of main lobe is K

 X(0) = sum of K unity-valued samples = K

 Main lobe’s width = 2N/K

 Thus main lobe width is inversely proportional to K

 A fundamental characteristic of Fourier transforms: the 

narrower the function in one domain, the wider its 

transform will be in the other domain
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The DFT of Rectangular Functions
64-point DFT of 64-sample 

rectangular function, with 11 

unity values (N = 64 and K = 11)

it’s easier to 

comprehend the 

true spectral 

nature of X(m) 

by viewing its 

absolute 

magnitude, 

provided in Fig. 

3-27(a)
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The DFT of Rectangular Functions
the main and sidelobes

are clearly evident now

K = 11  peak value of 

main lobe = 11

width of main lobe = 

N/K = 64/11 = 5.82
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The DFT of Rectangular Functions

 DFT of a symmetrical rectangular function
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The DFT of Rectangular Functions

 DFT of a symmetrical rectangular function

 This DFT is itself a real function

 So it contains no imaginary part or phase term

 If x(n) is real and even, x(n) = x(−n), then Xreal(m) is 

nonzero and Ximag(m) is always zero
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The DFT of Rectangular Functions
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The DFT of Rectangular Functions

 Fig. 3-29 (64-point DFT)

 Xreal(m) is nonzero and Ximag(m) is zero

 Identical magnitudes in Figs. 3-27(a) and 3-29(d)

 Shifting K unity-valued samples to center merely 

affects phase angle of X(m), not its magnitude (shifting 

theorem of DFT)

 Even though Ximag(m) is zero in (c), phase angle 

of X(m) is not always zero

 X(m)’s phase angles in (e) are either +π, zero, or −π

 ejπ = ej(−π) = −1 we could easily reconstruct Xreal(m) 

from |X(m)| and phase angle Xø(m) if we must

 Xreal(m) is equal to |X(m)| with the signs of |X(m)|’s 

alternate sidelobes reversed
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The DFT of Rectangular Functions
another example of how DFT of a rectangular 

function is a sampled version of Dirichlet kernel

a 64-point x(n) where 31 

unity-valued samples are 

centered about n = 0 

index location

by broadening x(n), i.e., 

increasing K, we’ve narrowed 

Dirichlet kernel of X(m)

31
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The DFT of Rectangular Functions

 DFT of an all-ones rectangular function
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The DFT of Rectangular Functions
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The DFT of Rectangular Functions

 Fig. 3-32

 Dirichlet kernel of X(m) in (b) is as narrow as it 

can get

 Main lobe’s first positive zero crossing occurs at 

m = 64/64 = 1 sample in (b) 

 Peak value of |X(m)| = N = 64

 x(n) is all ones  |X(m)| is zero for all m ≠ 0

 The sinc function

 Defines overall DFT frequency response to an input 

sinusoidal sequence

 Is also amplitude response of a single DFT bin
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The DFT of Rectangular Functions

 DFT of an all-ones rectangular function
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The DFT of Rectangular Functions
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The DFT of Rectangular Functions

DFT frequency 

axis 

representation

Frequency 

variable

Resolution of 

X(m)

Repetition

interval of 

X(m)

Frequency 

axis range

Frequency in Hz f fs/N fs -fs/2 to fs/2

Frequency in 

cycles/sample
f/fs 1/N 1 -1/2 to 1/2

Frequency in 

radians/sample
ω 2π/N 2π -π to π
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The DFT of Rectangular Functions

 Alternate form of DFT of an all-ones 

rectangular function

 Using radians/sample frequency notation for DFT 

axis leads to another prevalent form of DFT of all-

ones rectangular function

 Letting normalized discrete frequency axis 

variable be ω = 2πm/N, then πm = Nω/2
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Interpreting DFT Using DTFT
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Interpreting DFT Using DTFT

 Fig. 3-35

 (a) shows an infinite-length continuous-time 

signal containing a single finite-width pulse

 Magnitude of its continuous Fourier transform (CFT) is 

continuous frequency-domain function X1(ω)

 continuous frequency variable ω is radians per second

 If CFT is performed on infinite-length signal of 

periodic pulses in (b), result is line spectra known 

as Fourier series X2(ω)

 X2(ω) Fourier series is a sampled version of 

continuous spectrum in (a)
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Interpreting DFT Using DTFT

 Fig. 3-35

 (c) shows infinite-length discrete time sequence 

x(n), containing several nonzero samples

 We can perform a CFT of x(n) describing its spectrum 

as a continuous frequency-domain function X3(ω)

 This continuous spectrum is called a discrete-time 

Fourier transform (DTFT) defined by

 ω frequency variable is measured in radians/sample
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Interpreting DFT Using DTFT

 DTFT example

 Time sequence: xo(n) = (0.75)n for n ≥ 0

 Its DTFT is

 Xo(ω) is continuous and periodic with a period of 

2π, whose magnitude is shown in Fig. 3-36
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Interpreting DFT Using DTFT

 Verification of 2π periodicity of DTFT
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Interpreting DFT Using DTFT
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Interpreting DFT Using DTFT

 Fig. 3-35 (cont.)

 Transforms indicated in Figs. (a) through (c) are 

pencil-and-paper mathematics of calculus

 In a computer, using only finite-length discrete 

sequences, we can only approximate CFT (the 

DTFT) of infinite-length x(n) time sequence in (c)

 That approximation is DFT, and it’s the only Fourier 

transform tool available

 Taking DFT of x1(n), where x1(n) is a finite-length 

portion of x(n), we obtain discrete periodic X1(m) in (d)

 X1(m) is a sampled version of X3(ω)
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Interpreting DFT Using DTFT

 Fig. 3-35

 X1(m) is also exactly equal to CFT of periodic 

time sequence x2(n) in (d)

 The DFT is equal to the continuous Fourier 

transform (the DTFT) of a periodic time-domain 

discrete sequence

 If a function is periodic, its forward/inverse DTFT 

will be discrete; if a function is discrete, its 

forward/inverse DTFT will be periodic


