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DFT Resolution, Zero Padding, Frequency-Domain Sampling

Zero padding
A method to improve DFT spectral estimation

Involves addition of zero-valued data samples to
an original DFT input seguence to increase total
number of input data samples

Investigating zero-padding technique illustrates
DFT’s property of frequency-domain sampling

When we sample a continuous time-domain function,
having a CFT, and take DFT of those samples, the
DFT results in a frequency-domain sampled
approximation of the CFT

The more points in DFT, the better DFT output
approximates CFT



DFT Resolution, Zero Padding, Frequency-Domain Sampling

< T >
— 0 &«— —>» oo
(@) /
f(1) Continuous
time
Continuous Fourier
transform of £(1)
(b)
1 1 1 1 ) S
1/T 2/T 3/T 4/T 5/T Continuous
frequency

Figure 3-20 Confinuous Fourier fransform: (a) continuous time-domain f(f) of @
tfruncated sinusoid of frequency 3/T; (b) continuous Fourier fransform
of (7).



DFT Resolution, Zero Padding, Frequency-Domain Sampling

Fig. 3-20
Because CFT is taken over an infinitely wide time
Interval, CFT has continuous resolution

Suppose we want to use a 16-point DFT to
approximate CFT of f(t) in Fig. 3-20(a)
16 discrete samples of f(t) are shown on left side of
Fig. 3-21(a)
Applying those time samples to a 16-point DFT results
In discrete frequency-domain samples, the positive
frequencies of which are represented on right side of
Fig. 3-21(a)
DFT output comprises samples of Fig. 3-20(b)'s CFT
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Figure 3-21 DFT frequency-domain sampling: (a) 16 input data samples and
N = 16; (b) 16 input data samples, 16 padded zeros, and N = 32; (¢)
16 input data samples, 48 padded zeros, and N = 64; (d) 16 input
data samples, 112 padded zeros, and N = 128,
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Fig. 3-21
If we append 16 zeros to input sequence and
take a 32-point DFT, we get output shown on
right side of (b)

DFT frequency sampling is increased by a factor of two
Adding 32 more zeros and taking a 64-point DFT,
we get output shown on right side of (c)

64-point DFT output shows true shape of CFT

Adding 64 more zeros and taking a 128-point
DFT, we get output shown on right side of (d)

DFT frequency-domain sampling characteristic is
obvious now



DFT Resolution, Zero Padding, Frequency-Domain Sampling
Fig. 3-21

Although zero-padded DFT output bin index of
main lobe changes as N increases, zero-padded
DFT output frequency associated with main lobe
remains the same

If we perform zero padding on L nonzero input
samples to get a total of N time samples for an N-
point DFT, zero-padded DFT output bin center
frequencies are related to original f, by

center frequency of themth bin = m s




DFT Resolution, Zero Padding, Frequency-Domain Sampling

Main lobe peak Frequency of main
Fig. no. | located at m = L = N = |lobe peak relative to f,
3-21(a) 3 16 16 3f, /16
3-21(b) 6 16 32 6f, /32 =3f,/ 16
3-21(c) 12 16 64 12f,/ 64 = 3f,/ 16
3-21(d) 24 16 128 24f, 1128 = 3f,/ 16




DFT Resolution, Zero Padding, Frequency-Domain Sampling

Zero padding

DFT magnitude expressions
I\/IreaI:AoN/2 and I\/Icomplex:Aol\I

don’t apply if zero padding is used

To perform zero padding on L nonzero samples of a
sinusoid whose freguency is located at a bin center to get
a total of N input samples, replace N with L above

To perform both zero padding and windowing on
iInput, do not apply window to entire input
Including appended zero-valued samples

Window function must be applied only to original nonzero
time samples; otherwise padded zeros will zero out and
distort part of window function, leading to erroneous
results
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Discrete-time Fourier transform (DTFT)

DTFT is continuous Fourier transform of an L-
point discrete time-domain seguence

On a computer we can’t perform DTFT because it
has an infinitely fine frequency resolution

But we can approximate DTFT by performing an N-
point DFT on an L-point discrete time sequence where
N>L

Done by zero-padding original time sequence and
taking DFT

10



DFT Resolution, Zero Padding, Frequency-Domain Sampling

Zero padding

Zero padding does not improve our ability to
resolve, to distinguish between, two closely
spaced signals in frequency domain

E.g., main lobes of various spectra in Fig. 3-21 do not
change in width, if measured in Hz, with increased
zero padding
To improve our true spectral resolution of two
signals, we need more nonzero time samples

To realize F,., Hz spectral resolution, we must
collect 1/F,., seconds, worth of nonzero time
samples for our DFT processing

11



DFT Processing Gain

Two types of processing gain associated with
DFTs
1) DFT’s processing gain
Using DFT to detect signal energy embedded in noise

DFT can pull signals out of background noise

This is due to inherent correlation gain that takes place
In any N-point DFT

2) Integration gain
Possible when multiple DFT outputs are averaged

12



DFT Processing Gain

Processing gain of a single DFT

A DFT output bin can be treated as a bandpass filter
(band center = mf,/N) whose gain can be increased and
whose bandwidth can be reduced by increasing the
value of N

Maximum possible DFT output magnitude increases as
number of points (N) increases

I\/IreaI:AoN/2 and Ivlcomplex:'a\ol\I

Also, as N increases, DFT output bin main lobes
become narrower

Decreasing a bandpass filter's bandwidth is useful in
energy detection because freguency resolution

improves in addition to filter’s ability to minimize amount
of background noise that resides within its passband |,




DFT Processing Gain

first 32 outputs of a
64-point DFT when
input tone is at center
of DFT’s m = 20th bin

because tone’s
original signal power is
below average noise
power level, it is
difficult to detect when
N =64

if we quadruple the
number of input
samples (N = 256), the
tone power is raised
above average
background noise
power as shown for m
=80

Figure 3-22 Single DFT processing gain: (a) N = 64; (b) N = 256; (c) N = 1024.
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DFT Processing Gain

Signal-to-noise ratio (SNR)

DFT's output signal-power level over the average
output noise-power level

DFT’s output SNR increases as N gets larger
because a DFT bin’s output noise standard
deviation (rms) value is proportional to\/N , and
DFT's output magnitude for the bin containing
signal tone is proportional to N

For real inputs, iIf N > N, an N-point DFT's output
SNR, Increases over N'-point DFT SNR, by:
SNRy =SNRy: +10log,,(N/N"

If we increase a DFT’s size from N'to N = 2N’, DFT’s
output SNR increases by 3 dB 15



DFT Processing Gain

% ? ! { ? ! Input SNR
30 ' ' ﬁ . =+6dB
1 - 0dB
25 : ;
(@) 20 : - —6.dB
15 i f-42dB
L } f -18dB
5 i i i i i -
0 200 400 600 800 1000 N
> i I " . Input SNR
' s =+6 dB
...+ 0dB
:EEZ—GdB
'152—12dB
- —18dB
5l== e ———m— IR -
10 10° 10° N

Figure 3-23 DFT processing gain versus number of DFT points N for various input
signal-to-noise ratios: (Q) linear N axis; (b) logarithmic N axis.



DFT Processing Gain

Integration gain due to averaging multiple
DFTs

Theoretically, we could get very large DFT
processing gains by increasing DFT size

Problem is that the number of necessary DFT
multiplications increases proportionally to N2
Larger DFTs become very computationally intensive
Because addition is easier and faster to perform
than multiplication, we can average outputs of

multiple DFTs to obtain further processing gain
and signal detection sensitivity

17



The DFT of Rectangular Functions

DFT of a rectangular function
One of the most prevalent and important

computations encountered in
Seen in sampling theory, wind

DSP

ow functions,

discussions of convolution, spectral analysis, and

In design of digital filters

DFT o0 = ,
rect. function sin(x/ N) X

sin(x) or sin(x) or sin(Nx/ 2)

sin(x/2)

18



The DFT of Rectangular Functions

DFT of a general rectangular function

A general rectangular function x(n) is defined as
N samples containing K unity-valued samples

x(n)
|

<< K >
1 H B H E E E R EE N EERm
— el el el —E-E $ el el -
A Ao ‘ Ao
N2 + 1 n=-n, n=-ng+(Kk-1) N/2

Figure 3-24 Rectangular function of width K samples defined over N samples
where K< N,
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The DFT of Rectangular Functions
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The DFT of Rectangular Functions
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The DFT of Rectangular Functions

K-1
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The DFT of Rectangular Functions

KA X(m)
(@)
0| /\V/\Vf\ : /\V/\V/\ | /\V/\V/\ ——
-N \/ \/ 0 \/ \/ N \/ \/ oN M
‘x)(rn
1.04 i) . K
081 L
0.64 r L]
0.4 4 /
®) 524 i \ .
0 1—!##1—;-;—ﬁa-tha4+k;—hhh|—thHa—H—1—q1—:—;q-H—1—q1->
02+ Tamp 0 Aat m
m=-N/K m=N/K
A 1x(m)|
1.04 o K
08T Main
0.6+ lobe ™S " N
(c) 04+ J \
0.2+ "y n®
g %y wu¥nm n i omEg gy al g g
(oS- RS- S B AP F ) S A ey i -y .

< 2NIK —> m

A W 2SS

lobes

Figure 3-25 The Dirichlet kernel of X(m): (a) periodic continuous curve on which
the X(m) samples lie; (b) X(m) amplitudes about the m = 0 sample;
(©) | X(m)| magnitudes about the m = 0 sample.



The DFT of Rectangular Functions

Dirichlet kernel (DFT of rectangular function)
Has a main lobe, centered about m = 0 point

Peak amplitude of main lobe is K
X(0) = sum of K unity-valued samples = K

Main lobe’s width = 2N/K e
X (m) = g JZm/N)no~(K-1)/2) sin(zmK / N)
sin(zm/N)

7N N

Meirst zero crossing = 7K K

Thus main lobe width is inversely proportional to K

A fundamental characteristic of Fourier transforms: the
narrower the function in one domain, the wider its

transform will be in the other domain
24



The DFT of Rectangular Functions
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The DFT of Rectangular Functions

the main and sidelobes
are clearly evident now
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Figure 3-27 DFT of a generalized rectangular function: (a) magnitude | X(m) |;

(b) phase angle in radians.
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The DFT of Rectangular Functions

DFT of a symmetrical rectangular function
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Figure 3-28 Rectangular x(n) with Ksamples centered about n = 0.
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The DFT of Rectangular Functions

DFT of a symmetrical rectangular function

_sin(zmK / N)

x(m) sin(zm/ N)

This DFT is itself a real function
So it contains no imaginary part or phase term

If X(n) is real and even, x(n) = x(—n), then X, (m) Is
nonzero and X;,,,(M) Is always zero

28



The DFT of Rectangular Functions
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Figure 3-29 DFT of a rectangular function centered about n = 0: (a) original x(n) ;
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The DFT of Rectangular Functions

Fig. 3-29 (64-point DFT)
Xeal(M) Is nonzero and X;,,,(M) is zero

ldentical magnitudes in Figs. 3-27(a) and 3-29(d)

Shifting K unity-valued samples to center merely
affects phase angle of X(m), not its magnitude (shifting
theorem of DFT)

Even though X;.,,,(m) Is zero in (c), phase angle
of X(m) is not always zero
X(m)'s phase angles in (e) are either +11, zero, or —11
el™ = el™™M = -1 we could easily reconstruct X,.,(m)
from |X(m)| and phase angle X, (m) if we must
X.eg(M) Is equal to |X(m)| with the signs of | X(m)|’s

alternate sidelobes reversed
30



The DFT of Rectangular Functions

another example of how DFT of a rectangular
function is a sampled version of Dirichlet kernel

a 64-point x(n) where 31
unity-valued samples are
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Figure 3-30 DFT of a symmetrical rectangular function with 31 unity values: (Q)
original x(n); (b) magnitude of X(m).
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The DFT of Rectangular Functions

DFT of an all-ones rectangular function

< K=N >

1IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIX(n)

) : Ao

—Ng = —(N—1)/2 (N-1)/2

Figure 3-31 Rectangular function with N unity-valued samples.

X (m) = g1/ N)no~(K-/2) sin(zmK / N)

sin(zm/ N)
K=N and .
n—(N-1)/2 X (m) = e J@AN)(N-D/2-(N-2)12) sin(zmN /N)
sin(zm/N)
_ gi2minyo) _SIn(zm)
sin(zm/ N)
All-onesform of th .
Diri&?li?l?gmgl(rygel) S X () = sin(zm)
sin(zm/ N)
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The DFT of Rectangular Functions
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Figure 3-32 All-ones function: (a) rectangular function with N = 64 unity-valued
samples; (b) DFT magnitude of the all-ones time function; (c) close-
up view of the DFT magnitude of an all-ones time function.



The DFT of Rectangular Functions

Fig. 3-32
Dirichlet kernel of X(m) in (b) is as narrow as it
can get

Main lobe’s first positive zero crossing occurs at
m = 64/64 = 1 sample in (b)

Peak value of | X(m)| =N =64

X(n) is all ones - |X(m)| is zero forallm # 0

The SinC funCtiOn All-onesform of the -
Dirichlet kemel (Type1) o y (Y — sin(zm)
sin(zm/ N)
Defines overall DFT frequency response to an input
sinusoidal sequence

Is also amplitude response of a single DFT bin

34



The DFT of Rectangular Functions

DFT of an all-ones rectangular function

All-onesform of the

sin(zm)

Dirichlet kemnel (Typel) \X(m _

All-onesform of the
Dirichlet kemel (Type2)
(when N is large)

sin(zm/ N)

-~
a issmall-sin(a)~a

All-onesform of the
Dirichlet kemel (Type3)
(normalized)

S X (M) ~ sin(zm) _N ~sin(zm)
zm/ N zm
s X (M) ~ sin(zm)
zm
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The DFT of Rectangular Functions
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Figure 3-34 DFT time and frequency axis dimensions: () fime-domain axis uses
tfime index n; (b) various representations of the DFI’s frequency axis.
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The DFT of Rectangular Functions

DFT f;()e(ci]suency Frequency Resolution of ﬁ]et’gre\fg;%? Frequency
representation variable X(m) X(m) axis range
Frequency in Hz f fJ/N fs -f/12 to f/2
Frequency in ff N 1 12 10 12
cycles/sample
Frequency in w 211/N 217 -TTto

radians/sample
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The DFT of Rectangular Functions

Alternate form of DFT of an all-ones
rectangular function
Using radians/sample frequency notation for DFT
axis leads to another prevalent form of DFT of all-
ones rectangular function
Letting normalized discrete frequency axis
variable be w = 2mm/N, then TTm = Nw/2

All-onesform of the

Dirichlet kernel (Typel) \X(m _ Siﬂ(ﬂl’ﬂ)

sin(zm/N)

All-onesform of the -
Dirichlet kemel (Typed) X (@) = sin(Nw/2)

sin(w/ 2)
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Interpreting DFT Using DTFT

Continuous & aperiodic

\ Continuous
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Figure 3-35 Time-domain signals and sequences, and the magnitudes of their
transforms in the frequency domain.
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Interpreting DFT Using DTFT

Fig. 3-35
(a) shows an infinite-length continuous-time
signal containing a single finite-width pulse

Magnitude of its continuous Fourier transform (CFT) is
continuous frequency-domain function X;(w)

continuous frequency variable w is radians per second

If CFT is performed on infinite-length signal of
periodic pulses in (b), result is line spectra known
as Fourier series X,(w)

X,(w) Fourier series is a sampled version of
continuous spectrum in (a)
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Fig. 3-35
(c) shows infinite-length discrete time sequence

X(n), containing several nonzero samples

We can perform a CFT of x(n) describing its spectrum
as a continuous frequency-domain function X;(w)

This continuous spectrum is called a discrete-time
Fourier transform (DTFT) defined by

X (@) = Zx(n)e‘j‘””

N=—0o0

w frequency variable is measured in radians/sample

41



Interpreting DFT Using DTFT

DTFT example
Time sequence: X, (n) = (0.75)"forn=0
Its DTFT Is )
X (@) = Z:x(n)e‘j‘“n

N=—o0

Xo(@)=> 0.75"e7 1" =" (0.75¢71)"
n=0 n=0

geometricseries . 1 . €
’Xoﬁw“

1-0.75e71?  el®_0.75

X,(Ww) is continuous and periodic with a period of
211, whose magnitude is shown in Fig. 3-36
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Figure 3-36 DTFT magnitude | X (w) |.

Verification of 21T periodicity of DTFT

-1
X(w+27k) = ZX(n)e_j(“)+2”k)” — ZX(n)e_j“)”e‘jZ”k”

N=—00 N=—00

= f:x(n)e‘j”In = X ()

N=—o0
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Continuous & aperiodic

\ Continuous
@ x,(1) —  CFT— X(©) & aperiodic
AAAAAAAAAAA Time 0 Freq
Continuous & periodic ‘Continuous impulses
x,(1) X,(0) /|2 & aperiodic
o ... CFT—P» | | (Fourier series)
® | | I - NN i 111
Time 0 Freq
Infinite-length aperiodic
discrete sequence
EEEEEEER ~ Continuous ,
2 SEREIRRE — DTFT —» '\ & periodic [
() i y é ﬁ
H-5-aaaas—————Ha-n-
| | . Time N 0 ©5 Freq
X1 (n) \ (-fs) (fs)
DFT
Discrete & periodic inth .
s i p--I--I---- <4 CFT— n X.(m) A Discrete o
(i SRI1ERL LY 1 [\ & periodic/
Tt EEl ‘ — CFT-» nie Tk ak
(@ =000 ETE R i Ry Y R VR
Time g 0 f. Freq

Figure 3-35 Time-domain signals and sequences, and the magnitudes of their
transforms in the frequency domain.
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Fig. 3-35 (cont.)

Transforms indicated in Figs. (a) through (c) are
pencil-and-paper mathematics of calculus

In a computer, using only finite-length discrete

seguences, we can only approximate CFT (the

DTFT) of infinite-length x(n) time sequence in (c)
That approximation is DFT, and it's the only Fourier
transform tool available

Taking DFT of x,(n), where x,(n) is a finite-length
portion of x(n), we obtain discrete periodic X;(m) in (d)

X,(m) is a sampled version of X;(w)
N1

Xl(m) = X3(a)) |a):27zm/N — le(n) e—jZnnm/N
n=0 45
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Fig. 3-35
X,(m) is also exactly equal to CFT of periodic
time sequence X,(n) in (d)

The DFT is equal to the continuous Fourier
transform (the DTFT) of a periodic time-domain
discrete sequence

If a function is periodic, its forward/inverse DTFT
will be discrete; if a function is discrete, its
forward/inverse DTFT will be periodic
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