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Introduction

Infinite Impulse response (lIR) digital filters

Are fundamentally different from FIR filters

FIR filter output samples depend only on past input
samples

Each IR filter output sample depends on previous input
samples and previous filter output samples

lIR filters have memory of past outputs (require feedback)
As In all feedback systems, perturbations at IIR
filter input could cause filter output to become
unstable and oscillate indefinitely
Infinite iImpulse response

lIR filters have more complicated structures (block
diagrams), are harder to design and analyze, and
do not have linear phase responses




Introduction

Why use an lIR filter?

Because they are very efficient

lIR filters require far fewer multiplications per filter
output sample to achieve a given frequency magnitude
response

From a hardware standpoint, IIR filters can be very

fast, allowing us to build real-time IIR filters that
operate over much higher sample rates than FIR filters




Introduction

where the 19-tap FIR filter requires
19 multiplications per filter output
sample, the 4th-order IIR filter
requires only 9 multiplications for
each filter output sample

|H(m)| for a 19-tap FIR filter

\ A |H(m)| for a 4th-order IIR filter

reduced passband ripple
and a sharper filter roll-
off, with less than half the
multiplication workload

| ] i -
—f4/8 fo/8 req (m)

Figure 6-1 Comparison of the frequency magnitude responses of a 19-tap low-
pass FIR filter and a 4th-order lowpass IIR filter.



Introduction

IR vs. FIR

An FIR filter's frequency response with very steep

transition regions requires a very long impulse
response

The maximum number of FIR filter taps we can
have (length of impulse response) depends on

how fast our hardware can perform the required
number of multiplications and additions to get a
filter output before the next input sample arrives

lIR filters can be designed to have impulse
responses longer than their number of taps

Thus, IIR filters can give much better filtering for a
given number of multiplications per output sample




An Introduction to IR Filters

If IR filter’s input suddenly becomes all
Zeros, Its output could remain nonzero
forever

This I1s because of feedback structure of their
delay units, multipliers, and adders



An Introduction to IR Filters
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Figure 6-2 FIR digital filter structures: (a) traditional FIR filter structure; (b) re-
arranged, but equivalent, FIR filter structure.



An Introduction to IR Filters

y(n) = b(0)x(n) +bL)x(n—1) +b(2)x(n—2) + b(3)x(n —3)

/

difference equation
describing this IIR
filter
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Feedforward calculations Feedback calculations

Figure 6-3 IR digital filter structure showing feedforward and feedback calculations.
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An Introduction to IR Filters

How determine a(k) and b(k) IIR filter coefficients

Window method of lowpass FIR filter design

Define frequency response of desired FIR filter - take
iInverse Fourier transform - shift that transform result
- we get filter’'s time-domain impulse response

Due to the nature of transversal FIR filters, the desired
h(k) filter coefficients turn out to be exactly equal to the
Impulse response sequence

Following that same procedure with IIR filters

Desired frequency response of IIR filter = inverse
Fourier transform - time-domain impulse response

But there’s no direct method for computing IIR filter’s
a(k) and b(k) coefficients from impulse response

FIR filter design techniques cannot be used here




An Introduction to IR Filters

Standard IIR filter design techniques

Fall into three basic classes: impulse invariance,
bilinear transform, and optimization methods

These design methods use a discrete sequence,
mathematical transformation process known as
the z-transform whose origin is Laplace transform
used in analyzing of continuous systems

10



The Laplace Transform

Laplace transform

A mathematical method of solving linear
differential equations

Process of using Laplace transform

A time-domain differential equation is written that
describes input/output relationship of a physical
system

The differential equation is Laplace transformed,
converting it to an algebraic equation

Standard algebraic techniques are used to determine
desired output function’s equation in Laplace domain

The desired Laplace output equation is, then, inverse
Laplace transformed to yield the desired time-domain
output function’s equation 11




The Laplace Transform

Laplace transform of a continuous time-
domain function f(t)

F(s) = j f(t)eStdt
0

Variable s is the complex numbers =0 + jw
f(t) is defined only for positive time (t > 0)

Systems where system conditions for negative time (t
< 0) are not needed (one-sided ) are referred to as
causal systems

Causal systems may have initial conditions att =0

that must be taken into account, but we don’t need

to know what the system was doing priortot =0
12



The Laplace Transform

S=0+|w
o Is a real number
w is frequency in radians/second

e~st s dimensionless = s has dimension of
1/time, or frequency

Laplace variable s is often called a complex frequency

13



The Laplace Transform

Laplace transform
F(s) = j f(t) e Stdt
0

—1 t -
oSt _ g=(otjo)t _ g-otg-jot _ e 1? _ cos(wt) . sin(wt)
a a a eO't a eat eat
e Wt is a unity-magnitude phasor rotating clockwise
around origin of a complex plane at a frequency of w

radians/second

eot |s a real number whose valueisone att=0

As t increases, et gets larger (when o is positive), and
complex et phasor’s magnitude gets smaller as phasor
rotates on complex plane

The tip of that phasor traces out a curve spiraling in
toward origin of complex plane 14




The Laplace Transform

real part of F(s), for
a particular value of
S, is correlation of
f(t) with a cosine
wave of frequency
w and a damping
factor of o, and
imaginary part of
F(s) is correlation
of f(t) with a
sinewave of
frequency w and a
damping factor of o

Figure 6-4 Real part (cosine) of various e~ functions, where s = ¢ + jo, to be cor-
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The Laplace Transform

s-plane
If we associate each of different values of
complex s variable with a point on a complex
plane, called s-plane, we could plot real part of
F(s) correlation as a surface above (or below)
that s-plane and generate a second plot of
Imaginary part of F(s) correlation as a surface
above (or below) s-plane

We can also graph magnitude |F(s)| as a function
of s

16



The Laplace Transform

d®y(t) dy(t) dx(t)
a +a +any(t) =b, —= + b, x(t
27 412 17 gt oY(t) =Dy dt oX(t)
x(t) y(t)

. System |——®

Figure 6-5 Systfem described by EqQ. (6-6). The system’s input and outfput are the
continuous-time functions x(t) and y(f) respectively.

We’'ll use Laplace transform toward
our goal of figuring out what the y(t)
output will be for any given x(t) input
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The Laplace Transform

d(eSt) st dz(eSt) _ ~2ASt dg(eSt) __ ~3aSt dn(eSt) .

= Se > s°e 3 s e’ . -
dt dt dt dt
d’y(t) _ dy(t) dx(t)
a +a +a,Yy(t) =D + by X(t
27 12 1 4t oY(t) =Dy dt oX(t)

If we let x(t) and y(t) befunctionsof e, x(e* Yand y(e*')

/7

a,s°y(e®) +a.sy(e®) +a,y(e®") = bysx(e®') + byx(e®!)
or (a,5° +a,;5+4a,)y(e™) = (bs+by)x(Ee*)
Y(s) yE*)  bs+b

transfer function H(s) = = ==
X(s) x(*) a,s°+as+a,

b;S + by

a,5° +a,5+a,

Y (s) = X(s) = X(S)H (s)

S

n

€

st
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The Laplace Transform

Y(s) yE*) = bs+b
X(s) x(e*) a,s®+as+a

transfer function H(s) =

Y (s) = X (s) 513”’0 — X (s)H ()
a,5° +a,S+a,

X(s)

; System

H(s)

Figure 6-6 Linear system described by Egs. (6-10) and (6-11). The system’s input
is the Laplace function X(s), itfs output is the Laplace function Y(s),
and the system transfer function is H(s).
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The Laplace Transform

Laplace analysis technique is based on
system’s x(t) input being some function of est,
or x(est)
All practical x(t) input functions can be
represented with complex exponentials, e.qg.,
A constant, ¢ = ce®
Sinusoids, sin(wt) = (el*t - e Y)/2j or cos(wt) = (el“t +
eTiwt)/2
A monotonic exponential, e®
An exponentially varying sinusoid, e 8 cos(wt)

20



The Laplace Transform

System’s transfer function H(s)

If we know H(s), we can take Laplace transform
of any x(t) input to determine X(s), multiply that
X(s) by H(s) to get Y(s), and then inverse Laplace
transform Y(s) to yield time-domain expression
for the output y(t)

Not needed because it's H(s) in which we're interested

Being able to express H(s) mathematically or
graph the surface |H(s)| as a function of s will tell
us two important properties we need to know
about system:

|s system stable

And if so, what is its frequency response 21



The Laplace Transform

Poles and zeros on s-plane and stability

A system is stable if, given any bounded input,
the output will always be bounded

Instability would result in a filter output that’s not
at all representative of filter input—a situation
we'd like to avoid if we can

Example

Y(s) by Dbyl

System's Laplace transfer function = H;(s) = = —
X(s) @&s+a, S+ay/y

If s = —a,/a,, denominator equals zero and H,(s) would
have an infinite magnitude

This s = —ay/a, point on s-plane is called a pole
22



The Laplace Transform

If the system described by H, were at rest and we disturbed it with an
impulse like x(t) input at time t = 0, its continuous time-domain y(t)
output would be the damped exponential curve shown in (b)

the pole is located distance of pole from

exactly on negative o =0 axis, ag/a, for : |

portion of real o axis our H,(s), gives the i) e siElle
decay rate of y(t) because its y(t)
impulse response output approaches

zero as time passes
Ajo AV
c =—a,/ay = (by/a)e —ao/a1t

\ s-plane :
c

(@) (b)

Time

Figure 6-7 Descriptions of H,(s): (a) pole located at s=0 + jo = -gy/a, + jO on the
s-plane; (b) fime-domain y(t) impulse response of the system.
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The Laplace Transform

intersection of
vertical o = 0 plane
(jw axis plane) and
|H,(s)| surface,
gives us frequency
magnitude response
|H,(w)| of system

Laplace transform is
a more general case
of Fourier transform
because if 0 = 0,
then s = jw

Figure 6-8

ay

Further depictions of H,(s): (a) pole located at ¢ = -a,/a, on the splane;
©) |H,(9)| surface; (c) curve showing the intersection of the | H,(s)| sur-
face and the vertical ¢ = 0 plane. This is the conventional depiction of the
| H,(w) | frequency magnitude response.
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The Laplace Transform

Example: 2nd-order transfer function H,(s)
¥ Y (s) b;S (b, /a,)s
2 (%)= X(s) a,s’+as+a, s +(a,/a,)s+a,/a
2 1 0 1 2 0 2
As
(s+p)s+p7)

where A=b; /a,, P= Preat + JPimag - P* = Preai — JPimag

2 b |b%-4ac b |b?-4ac
f(s)=as“ +bs+c=| s+—+ ] s+ ——
2a 4a° 2a 43>

Order of transfer function is the largest exponential
order of s in either numerator or denominator

If s is equal to —p or —p”, one of polynomial roots in the
denominator will equal zero, and H,(s) will have an
Infinite magnitude - two complex poles 25

H,(s) =




The Laplace Transform

If H, system were at rest and we disturbed it with an impulse-like x(t)
input at t = 0, its continuous time-domain y(t) output would be the
damped sinusoidal curve shown in (b)

distance of poles from o = 0 axis
H,(s) is stable (—Prear) 9ives decay rate of sinusoidal

because its oscillating y(t) impulse response. Likewise,
y(t) output approaches distance of poles from jw = 0 axis

zero as time increases | | (¥Pimag) 9ives frequency of sinusoidal
\ y(t) impulse response

the two complex
poles are located off
the negative portion
of real o axis

, Iy AY® 5 4
$="Preal +jpimag Jo y(t) = 2|A|e reg COS(pimag t+ 0)

\x \/ 0 = tan ' (Aimag /Areal)
/\ imag //Treal

o I ~— -
| / X "zero"ats=0

S= _preal _jpimag

(@) (b)

Figure 6-9 Descriptions of H,(s): (a) poles located at s = p, + jpimog on the
splane; (b) time-domain y (1) impulse response of the system.

26



The Laplace Transform

Jo

ay

(@) | 1
T

(c)
o
0 jo

Figure 6-10 Further depictions of Hy(s): (a) poles and zero locatfions on the
s-plane; (b) |H,(s)| surface; (¢) |H,(w)| frequency magnitude re-
sponse curve.
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The Laplace Transform

stable systems: when
disturbed from their
at-rest condition, they
respond and, at some
later time, return to
that initial condition

1/s transfer function

instability: the poles
lie to the right of jw
axis. When disturbed
from their initial at-
rest condition by an
impulse input, their
outputs grow without
bound

Figure 6-11

Ao R4

(t)
‘j(n Ay
x
d VR f

‘ j(x) ‘l ,V(t)

|

I

A jo At

Jf ]

aV

ay
- |

hjo
o
hjo
: C
G t
X
Various H(s) pole locations and their fime-domain impulse responses:
() single pole at 6 < 0; (b) conjugate poles at ¢ < O; (c) single pole

located at ¢ = 0; (d) conjugate poles located at ¢ = O; (e) single
pole at ¢ > 0; (f) conjugate poles at ¢ > 0.

conditional stability:
if an H(s) transfer
function has
conjugate poles
located exactly on
jw axis (o = 0), the
system will go into
oscillation when
disturbed from its
initial condition

28




The Laplace Transform

for a system to be

stable, all of its
transfer-function

poles must lie on the
left half of s-plane

Stable Unstable
region region

‘;
p— Conditionally stable

Figure 6-12 The Laplace s-plane showing the regions of stability and instability

for pole locations for linear continuous systems.
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The z-Transform

Z-transform

Discrete-time cousin of continuous Laplace
transform

While Laplace transform is used to simplify analysis of
continuous differential equations, z-transform facilitates
analysis of discrete difference equations
z-transform is performed on a discrete h(n)
seguence, converting that sequence into a
continuous function H(z) of the continuous
complex variable z

H(z) = ih(n)z‘”

N=—o0

30



The z-Transform

Z-transform
H(z) = Zh(n)z‘”

=1’ H(z) = H(rel®) = Zh(n)(re“" Zh(n)r (e 1)

N=—o0 N=—o0

This Equation can be interpreted as Fourier transform
of product of original sequence h(n) and exponential
seguence r™"

When r = 1, it simplifies to Fourier transform

Thus on z-plane, the contour of H(z) surface for those
values where |z| = 1 is Fourier transform of h(n)

If h(n) represents a filter impulse response seguence,
evaluating H(z) transfer function for |z| = 1 yields
frequency response of filter 31




The z-Transform

ane At this point
Z-p / 7= ejco
n=0
¥ -
/ Zeal
At this point,
W=T=—T R
Unit circle

(where |Z| = 1)

Figure 6-13 Unit circle on the complex z-plane.
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The z-Transform

jw frequency axis on continuous Laplace s-plane is linear and ranges from
— « {0 + « radians/second. The w frequency axis on complex z-plane,
however, spans only the range from —11 to +11 radians = z-plane frequency
axis is equivalent to coiling s-plane’s jw axis about the unit circle on z-plane

A Jo A Zimag

z-plane

s-plane

Unstable
region

O = Wg/2 = Tl

Stable Unstable
region region

W =—-Wg/2 = —Tfy

Figure 6-14 Mapping of the Laplace s-plane to the z-plane. All frequency val-
ues are in radians/second.
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The z-Transform

Poles, zeros, and digital filter stability

Region of filter stability is mapped to the inside of
unit circle on z-plane

Given H(z) transfer function of a digital filter, we
can examine that function’s pole locations to
determine filter stability

If all poles are located inside unit circle, filter will
be stable

34



The z-Transform

Example

If a causal filter's H(z) transfer function has a
single pole at location p on z-plane, its transfer
function can be represented by

1
1-pz

H(z) =

Filter's time-domain impulse response sequence

h(n)=p" -u(n)
u(n) represents a unit step (all ones) sequence
beginning attime n =0
When |p| < 1, h(n) impulse response sequence is
unconditionally bounded in amplitude
|p| < 1 means that pole must lie inside z-plane’s unit circle 35



The z-Transform

point z = —1
corresponds to 1T
radians (or Tf,
radians/second =
fJ/2 Hz) 2> w, = 11/4
means that f, = f./8
and our y(n) will
have eight samples
per cycle of f,

Azimag

(a)

= 21n/wo
(b) " " " .'...--.-'.."rr-—>n
‘.h(n)
(c) [ n n L] L] L] [ .
n
\z Ano
imag "
() -
n
A h(n) "
(e) ...l.l_...-...- ™ . [ -
LI n

Figure 6-15 \Various H(2) pole locations and their discrete time-domain impulse
responses: (a) single pole inside the unit circle; (b) conjugate poles
located inside the unit circle; (¢) conjugate poles located on the
unit circle; (d) single pole outside the unit circle; (e) conjugate poles
located outside the unit circle.
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Using z-Transform to Analyze IIR Filters

Representing delay operation

Assume we have a sequence x(n) whose z-
transform is X(z) and a sequence y(n) = x(n-1)
whose z-transform is Y(z)

Y (z) = i y(n)z™" = ix(n—l)z‘”

N=—00 N=—00

if weletk=n-1 >Y(Z) _ iX(k)z_(k—i_l) _ iX(k)Z_kZ_l

K=—o0 K=—0o0

=771 ix(k)z(‘k) = 77X (2)]
k=—c0

Thus, effect of a single unit of time delay is to multiply

z-transform of undelayed sequence by z™* -



Using z-Transform to Analyze IIR Filters

Because a delay of one
sample is equivalent to
factor z71, the unit time
delay symbol is usually
indicated by z~' operator

(@)

Time domain

x(n)

—{ Delay

(b)

zdomain

X(2)
—p

z—‘l

x(n) o Delay y(n) = x(n-1 )>
X(2) Y(2)
x(n-1) x(n-2) x(n-3)
—»| Delay —{ Delay
X(2)z! X(2)z? X(2)z3
LA N Z—'I > z—1

X(z)z ™k is z-transform of x(n)
delayed by k samples. So a
transfer function of z % is
equivalent to a delay of kt,
seconds from the instant
when t = 0, where t, = 1/f,

.. ¥ Delay|—»

. Y —

Figure 6-16 Time- and zdomain delay element relationships: (a) single delay;
(b) multiple delays.
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Using z-Transform to Analyze IIR Filters

2—1
x(n=N) ‘? ? Y
b(N)

Figure 6-17 General (Direct Form [) structure of an Mth-order IIR filter, having
N feedforward stages and M feedback stages, with the z-! operator
indicating a unit fime delay.
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Using z-Transform to Analyze IIR Filters

Fig. 6-17
Is a general Mth-order IIR filter

This IIR filter structure iIs called Direct Form |

y(n) =b(0)x(n) +b@x(n—=1) +b(2)x(n—2) +...+b(N)x(n—N)
+a@y(n-1)+a2)y(n-2)+...+4a(M)y(n—M)

Y(z2) =b(0)X (2) +b@) X (2)zt +b(2)X (2)27° +...+ b(N)X (2)z7™
+a)Y(2)z +a@)Y (2)z ? +..4a(M)Y (z)z ™

N M order of H(z) and order of filter =
Y(z)=X (Z)Z b(k) 27K 4+Y (Z)Z a(k) z ¥ the largest exponential order of z in
k=0 =

either numerator or denominator

b(k)z ™

[ v } «_ funatien Y(2) kZ? "
Y(@)|1-) a(k)z X(z)Zb(k)z H@O = ="
k=1




Using z-Transform to Analyze IIR Filters

Two things to know about an IIR filter: its
frequency response and stabillity

We can evaluate denominator of H(z) to
determine positions of filter's poles on z-plane
indicating filter’'s stability

From H(z) we develop an expression for IIR
filter's frequency response

H(z) is a complex-valued surface above, or below, the
z-plane

Intersection of H(z) surface and perimeter of a cylinder

representing z = e unit circle is the filter's complex
frequency response

41



Using z-Transform to Analyze IIR Filters

N N
Zb(k)z‘k Zb(k)e‘jk“’
H(z)zj((z): = > H@)=H@) _ j, = =
@) 1- > a(k)z™ - 1- ) a(k)e ™
k=1 k=1

N
Zb(k)cos(ka))— i) b(k)sin(k)
k=0

e 1 =cos(w)—jsin(w) H () = k=0
¢ N M M

1-) a(k) cos(kw) + jZa(k)sin(ka))
k=1 k=1
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Using z-Transform to Analyze IIR Filters

y(n)
s l e
Z—1
y(n-1)
1.194
Z—1
% N-2)
0.0605 ~0.436
Y(2)
= l >
Z—1
Y(2z™'
(b)
1.194
Z—1
X222 ><§) ?4 Y222
0.0605 ~0.436

Figure 6-18 Second-order lowpass IIR filter example.



Using z-Transform to Analyze IIR Filters

Fig. 6-18
(a) I1s a 2nd-order lowpass IIR filter whose
positive cutoff frequency is w = /5 (fi/10 Hz)
y(n) =0.0605- x(n)+0.121- x(n—1) + 0.0605- x(n —2)
+1.194-y(n-1)-0.436- y(n—2)
Y (z) = 0.0605- X (z) +0.121- X (z)z * + 0.0605- X (z)z *
+1.194-Y (2)z 7 -0.436-Y(2)z°
Y(z) 0.0605-z°+0.121-z27*+0.0605-z*
T X(2) 1-1.194.2714+0.436-27°
0.0605-e71%? +0.121-e 7 4+ 0.0605-¢ /¢
1-1.194.-e 1 4+ 0.436-¢712¢
0.0605+0.121- cos(1lw) +0.0605- cos(2w) — j[0.121-sin(lw) + 0.0605 - sin(2w)]
1-1.194-cos(1w) + 0.436 - cos(2w) + j[1.194 -sin(lw) — 0.436-sin(2w)]

H(2)

H(w) =

H(w) =

44



Using z-Transform to Analyze IIR Filters

although both filters
require the same
computational workload,
five multiplications per
filter output sample,
lowpass IIR filter has
the superior frequency
magnitude response

phase nonlinearity is
inherent in IR filters

knowing that the
filter’'s phase
response is nonlinear,
we should expect the
impulse response to
be asymmetrical

A H(w)| for the IR filter
_‘/I ()|

|Heg(o)] for a
5-tap FIR filter

(a)
. e, o
L ) T o= £
- -n/2 0 /4 /2 ®
(-1/2) (= 1/4) Freq  (f/8) (f/4) (t/2)
@(o) for the IIR filter Degfees B () for a
' 180 5-tap FIR filter

infinite impulse response:
if we used infinite-
precision arithmetic in our
/ filter implementation, h(k)

impulse response would
be infinite in duration

10 , 15 20

zplane f:nag
~~~~~~ ~.:/;71:o,597+/0.282
@ & 0—1—}>
23

x J real
/
kS \
AN e

" p,=0.597 — j0.282

circle
i

Two zeros at %,
z=-1+/0

Figure 6-19 Performances of the example IR filter (solid curves) in Figure 6-18
and a 5-tap FIR filter (dashed curves): (a) magnitude responses;
(b) phase responses; (¢) IR filter impulse response; (d) IIR filter poles
and zeros.
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Using z-Transform to Analyze IIR Filters
To determine our IIR filter’s stability

H() = YD) _00605:2°+0.121.27 +0.0605-7
X(2) 1-1.194-771+0.436- 272
multiplyH@) by z°/2° H(z) = 0.0605-2% +0.121- 7 + 0.0605

2 -1.194-7+0.436
H(z) = (2-20)(z-71) _ (z+1)(z+1)
(z—po)z—p;) (z2—0.597+ j0.282)(z—-0.597— j0.282)

So when z = p, = 0.597 - ]0.282, or when z = p,
= 0.597 +)0.282, filter's H(z) transfer function’s
denominator is zero and |H(z)| is infinite

Because those pole locations are inside the unit circle
(their magnitudes are less than one), our example IIR

filter is unconditionally stable
46



Using z-Transform to Analyze IIR Filters

if we were to unwrap the
bold |[H(w)| curve and lay
it on a flat surface, we
would have the |H(w)|
curve in Fig. 6-19(a)

Figure 6-20 IR filter's | H(2)| surface: (a) pole locations; (b) frequency magnitude 47
response.



Using Poles and Zeros to Analyze lIR Filters

lIR filter transfer function algebra
Several ways to write H(z) = Y(z)/X(z) z-domain
transfer function

useful because we can
replace z with el* to
obtain an expression for

-1 -2 -3 —4
frequency response of \H (Z) — b(O) T b(l) L+ b(Z) L + b(3) L+ b(4) Z
flter l+aWzt+a@)z?+a@)z 3 +a(d)z™

opomarm) 1y oy D(O)2* +b(02° +b(2)2° +b(3z +b(4)
2 +a()z’ +a(2)z? +a(3)z+a(4)

factored form s H (Z) _ (Z - ZO)(Z _ 21)(2 o 22)(2 o 23)
(2= Po)(Z— P )(Z— P2 )(Z—- P3)

necessary so we can factor (find
roots of) polynomials to obtain
values (locations) of numerator
zeros and denominator poles 48




Using Poles and Zeros to Analyze lIR Filters

Using poles/zeros to obtain transfer functions

We can analyze an IIR filter’'s frequency-domain
performance based solely on poles and zeros

Given z, zeros and p, poles, we can write the
factored form of filter's transfer function as

H(z) = G (Z-72p)(2 -2 (2 -2, (Z - 25)(Z - 24). ..
Gy (2= Po)(Z = P1)(Z— P2)(Z = P3)(Z— Pa)--
_G(z-72p)(2 -z )(2 =25 )(2-23)(2 - 24)...
(z— Po)(2— PL)(Z— P2)(Z— P3)(Z— Py)---
G = G,/G, is an arbitrary gain constant

Filter zeros are associated with decreased frequency

magnitude response, and filter poles are associated with
Increased frequency magnitude response 49




Using Poles and Zeros to Analyze lIR Filters

if a filter has no z-plane
zeros, and one pole at p,
= 0.8, we can write its
transfer function as
H,(z)=G/(z-0.8)

if a filter has a zero at z,

=1, and a pole at p, =

—-0.8, we write its

transfer function as

H, (2) = G(z-1) _ Gz-G
z—(-0.8) z+0.8

(@)

()

Figure 6-21

IIR filter poles/zeros and normalized frequency magnitude responses.
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|H,(w)| is normalized.
P, is closestto w =0
radians/sample (z = 1)
on unit circle -
lowpass filter.

Ipol < 1 -> filter is
unconditionally stable

pole is closestto w =TT
radians/sample (z = -1)
on unit circle 2
highpass filter.

the zero located at z =
1 causes filter to have
infinite attenuation at w
= 0 radians/sample
(zero Hz)
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Using Poles and Zeros to Analyze lIR Filters

Fig. 6-21(c)

Consider a filter having two complex conjugate
zeros at —0.707 £ )0.707, as well as two complex
conjugate poles at 0.283 +0.283

Ho(2) = G[z - (-0.707 + j0.707)]-[z — (-0.707 — j0.707)]
[z—(0.283+ j0.283)] [z — (0.283— j0.283)]
~ G(z+0.707 - j0.707) - (z +0.707 + j0.707)
~ (z-0.283- j0.283)-(z—0.283+ j0.283)

The two poles on the right side of z-plane make this a
lowpass filter having a wider passband than H,(z)

Two zeros are on unit circle at angles of w = £31m/4
radians, causing filter to have infinite attenuation at
frequencies w = +311/4 radians/sample (+3f./8 Hz) 51




Using Poles and Zeros to Analyze IIR Filters

1 P e
5| O
g |/
i 7o
(d).gg)i o O
£ |\ x
= ‘“‘O 0=mn4
_1 ‘*.._ _____ e E
- ) 1 ° | | e
Real part w (rad./sample) i 3n/4
(f/8) (3f/8)
1
=
©
o
> |/
© !
(e) £0
T |4
£ |\
-
e O
®© Y
Q ‘I
2 |/ 1
s | ':
) 50 ;
© 4 /
E
- i -’ \\o
=1}, s sl |
-1 0 1 2

Figure 6-21 (continued)

Real part

IIR filter poles/zeros and normalized frequency magni-
tude responses.
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Using Poles and Zeros to Analyze lIR Filters

Fig. 6-21(d)
If we add a z-plane zero at z = 1 to H;(2)

H.(2) = G(z-1)-(z+0.707 - j0.707)-(z +0.707 + j0.707)
) (z—-0.283— j0.283)- (z—0.283+ j0.283)

The zero at z = 1 yields infinite attenuation at w =

O radians/sample (zero Hz), creating a bandpass
filter

Because p, and p, poles are oriented at angles of
0 = £11/4 radians, filter's passbands are centered
in the vicinity of frequencies w = x£11/4
radians/sample (+f./8 Hz)
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Using Poles and Zeros to Analyze lIR Filters

Fig. 6-21(e)
If we Increase magnitude of H,(z) filter’s poles,

making them equal to 0.636 % j0.636, we position
the conjugate poles much closer to unit circle

o (2) = 8(2=D):(2+0707 j0.707)- (2.+0.707 + j0.707)
> (z—0.636— j0.636)-(z —0.636 + j0.636)

Poles near unit circle now have a much more
profound effect on filter's magnitude response
The poles’ infinite gains cause H(z) passbands to be
very narrow (sharp)
When a pole Is close to unit circle, center
frequency of its associated passband can be
accurately estimated to be equal to pole’s angle 54




Using Poles and Zeros to Analyze lIR Filters
Fig. 6-21(f)

Consider an FIR filter—a digital filter whose H(z)
transfer function denominator is unity

For an FIR filter to have linear phase, each z-plane
zero located at z = z, = Mel4, where M # 1, must be
accompanied by a zero having an angle of —a and a
magnitude of 1/M

Z, IS accompanied by z,
If FIR filter’s transfer function polynomial has real-
valued b, coefficients, then a z, zero not on the z-
plane’s real axis will be accompanied by a complex
conjugate zero at z = z,

Likewise, for FIR filter to have linear phase, z, zero
must be accompanied by z, zero
z, and z, zeros are complex conjugates of each other




Using Poles and Zeros to Analyze lIR Filters

z-plane pole/zero properties

Filter poles are associated with increased
frequency magnitude response (gain)

Filter zeros are associated with decreased
frequency magnitude response (attenuation)

To be unconditionally stable, all filter poles must
reside inside the unit circle

Filter zeros do not affect filter stability

The closer a pole (zero) is to unit circle, the
stronger will be its effect on filter's gain
(attenuation) at the frequency associated with the
pole’s (zero’s) angle
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Using Poles and Zeros to Analyze lIR Filters

z-plane pole/zero properties

A pole (zero) located on unit circle produces
Infinite filter gain (attenuation)

If a pole Is at the same z-plane location as a zero,
they cancel each other

Poles or zeros located at origin of z-plane do not
affect frequency response of filter

Filters whose transfer function denominator
(numerator) polynomial has real-valued
coefficients have poles (zeros) located on real z-
plane axis, or pairs of poles (zeros) that are

complex conjugates of each other
o7



Using Poles and Zeros to Analyze lIR Filters

z-plane pole/zero properties

For an FIR filter (transfer function denominator is
unity) to have linear phase, any zero on z-plane
located at z, = Mel®, where z, is not on unit circle
and a is not zero, must be accompanied by a
reciprocal zero whose location is 1/z, = e719/M

If an FIR filter has real-valued coefficients, is
linear phase, and has a z-plane zero not located
on real z-plane axis or on unit circle, that z-plane
zero is a member of a “gang of four” zeros

If we know z-plane location of one of those four zeros,
then we know location of the other three zeros
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Alternate IIR Filter Structures

Direct Form |, Direct Form |l, and transposed
structures

Direct Form | structure of an IIR filter can be
converted to several alternate forms

59



Alternate IIR Filter Structures

thinking of
feedforward and
feedback portions as
two separate filter
stages, because both
stages are linear and
time invariant, we can
swap them with no
change in y(n) output

x(n Modified Direct Form | ¥(n)
+ ° P
l g(n) l
z 1 o0)
< < \
a(1) ;1 ; b(1)
a(2) b(2)
(b)
x(n) Direct Form |l ¥(n) x(n) Transposed Eirect Form Il y(n)»
71 | b0) b(0) |
a()[— 7 (1) 1) Z:1 at)
a(2) b(2) b(2 a2
(©) (2) (d) (2)

because sequence
g(n) is shifted down
along both delay lines
in (b), we can
eliminate one of delay
paths and arrive at
filter structure shown
in (c), where only half
the delay storage
registers are required
compared to Direct
Form | structure

Figure 6-22 Rearranged 2nd-order IR filter structures: (a) Direct Form [; (b) modi-
fied Direct Form [; (¢) Direct Form II; (d) fransposed Direct Form |l.
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Alternate IIR Filter Structures

Transposition theorem

There iIs a process in DSP that allows us to
change structure of an LTI digital network without
changing network’s transfer function (its
frequency response)

That network conversion process follows transposition
theorem
A transposed version of some digital network
might be easier to implement, or may exhibit
more accurate processing, than the original
network
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Alternate IIR Filter Structures

Steps to transpose a digital filter (starting with
Direct Form II)
1. reverse direction of all signal-flow arrows

2. convert all adders to signal nodes
3. convert all signal nodes to adders
4. swap x(n) input and y(n) output labels

62



Alternate IIR Filter Structures

x(n) - Direct Eorm Il y(n) 4!'(”) ,ﬂ
~1] b0 z'| b(0)
a(l) v1 b(1) a(1) | 1| b(1)
a(2) b(2) a(2) b(2)

Transposed Direct
Form Il ¥(n)

x(n)
By convention, we flip ? ?Jr g
the network in (b) from / bo) [

left to right so that x(n)
input is on the left as '»‘?—'GI')‘—?«

shown in (c) 1) [57] a)
b(2) ” a(2)

Figure 6-23 Converting a Direct Form |l filter to its tfransposed form. 63



Alternate IIR Filter Structures
Fig. 6-23

Transposed filter contains the same number of
delay elements, multipliers, and addition
operations as the original filter, and both filters
have the same transfer function given by

Y(z) b(0)+bD)zt+b(2)z7*
H(z)= =
X(z) 1-a@z*t-a(2)z?
When implemented using infinite-precision

arithmetic, Direct Form Il and transposed Direct

Form Il filters have identical frequency response
properties

64



Alternate IIR Filter Structures

Fig. 6-23
Transposed Direct Form Il structure is less
susceptible to errors that can occur when finite-
precision binary arithmetic is used to represent

data values and filter coefficients within a filter
Implementation

Direct Form Il filters implement (possibly high-gain)
feedback pole computations before feedforward zeros
computations - large intermediate data values which
must be truncated

Transposed Direct Form Il filters implement zeros
computations first followed by pole computations

Direct Form | filter has the most resistance to
coefficient quantization and stability problems 65




Impulse Invariance IIR Filter Design Method

Impulse invariance method

Is based upon the notion that we can design a
discrete filter whose time-domain impulse
response is a sampled version of impulse
response of a continuous analog filter

If that analog filter (called prototype filter) has

some o
filter wi

esired frequency response, then our IIR
| yield a discrete approximation of that

desired

response
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Impulse Invariance IIR Filter Design Method

. N .

Analog \/ Continuous
(@) Filter fime

Impulse response
output = h (1)

n O
IR Digital | — = mLm T Decrete
(b) Filter time
—
H(2) Impulse response

output = h(n) = h,(nt;)

Figure 6-31 Impulse invariance design equivalence of (a) analog filter confinu-
ous impulse response; (b) digital filter discrete impulse response.
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Impulse Invariance IIR Filter Design Method

Impulse invariance method

Our goal is to design a digital filter whose impulse
response is a sampled version of analog filter’s
continuous impulse response

We can map each pole on s-plane for analog
filter's H.(s) transfer function to a pole on z-plane
for discrete |IR filter's H(z) transfer function

Impulse invariance method yields useful IR filters
as long as sampling rate is high relative to
bandwidth of signal to be filtered

lIR filters designed using impulse invariance method
are susceptible to aliasing problems because practical

analog filters cannot be perfectly band-limited -



Impulse Invariance IIR Filter Design Method

(a)

|H ()]

we prefer to make f, as
large as possible to
> minimize the overlap
between primary
/ frequency response
curve and its replicated
images spaced at
multiples of +f, Hz

Final |H”R(w)|

Due to aliasing
behavior of impulse
invariance design
method, this filter

() +— | design process should
= , , > never be used to
~4p -2p 0 2p 4p © design highpass digital
(=2f) (-£) (f) (2f) filters
Figure 6-32 Aliasing in the impulse invariance design method: (a) prototype

analog filter magnitude response; (b) replicated magnitude re-
sponses where H(w) is the discrete Fourier transform of
h(n) = h.(nt,). (c) potential resultant IIR filtfer magnitude response
with aliasing effects.
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Impulse Invariance IIR Filter Design Method

Two methods for designing IIR filters using
Impulse invariance

Method 1

Requires that an inverse Laplace transform as well as
a z-transform be performed

Method 2

Uses a direct substitution process to avoid inverse
Laplace and z-transformations at the expense of
needing partial fraction expansion algebra necessary
to handle polynomials

70



Impulse Invariance IIR Filter Design Method

Method 1

Step 1: Design a prototype analog filter with
desired frequency response

In a lowpass filter design, for example, filter type
(Chebyshev, Butterworth, elliptic), filter order (number
of poles), and cutoff frequency are parameters to be

defined in this step

Result of this step is a continuous Laplace transfer
function H_(s) expressed as ratio of two polynomials,

such as N |
b(k
b(N)s™ +b(N -1)s™™ +..+b(1)s+b(0) _ kzz(; (s

a(M)sM +a(M -1)sM™ + .. +a(1)s+a(0) ia(k)sk

HC(S) —

k=0
N <M, and a(k) and b(k) are constants
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Impulse Invariance IIR Filter Design Method

Method 1

Step 2: Determine analog filter’'s continuous time-

domain impulse response h (t) from H_(s)
Laplace transfer function

Can be done using Laplace tables as opposed to

actually evaluating an inverse Laplace transform
equation

Step 3: Determine digital filter’s f,, and calculate
t, = 1/f,
f, Is chosen based on absolute frequency, in Hz, of
prototype analog filter

Because of aliasing problems associated with this

iImpulse invariance design method, f, should be made
as large as is practical 72



Impulse Invariance IIR Filter Design Method

Method 1

Step 4: Find z-transform of continuous h_(t) to
obtain IlIR filter's z-domain transfer function H(z)
In form of a ratio of polynomials in z

Step 5: Substitute the value t_ for the continuous
variable t in H(z) transfer function obtained In
Step 4
In performing this step, we are ensuring that IIR filter’s
discrete h(n) impulse response is a sampled version of

continuous filter's h (t) impulse response so that h(n) =
hC(nts)a for O < NS
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Impulse Invariance IIR Filter Design Method

Method 1

Step 6: H(z) from Step 5 will now be of the
N

general form $ oz

b(N)z™N +b(N -1)z7ND 1 +b@)z7 +b(0) =

aM)z ™M +aM =)z MD 4 +a@)zt+a(0) 1—ia(k)z—k

H(z) =

k=1
Because process of sampling continuous impulse
response results in a digital filter frequency response
that’s scaled by a factor of 1/t we include t, factor in this

equation t Zb(k)z—k

Y(2) _
1- Za(k)z

H(z)= X (2) N
Incorporating t, makes IIR fllter time-response scaling
Independent of sampling rate, and discrete filter will have
the same gain as prototype analog filter 74




Impulse Invariance IIR Filter Design Method

Method 1

Step 7: By inspection, we can express filter’s
time-domain difference equation as

ZN:b(k)zk

these time-domain H(z) = k=(|3/| N
expressions apply only K
to the filter structure in 1- kZ: a(k)z
Fig. 6-18. The a(k) and =1
b(k), or tg - b(k), y(n) =b(0)x(n)+b@M)x(n-1) +b(2)x(n—2)+...+b(N)x(n—N)
coeff|C|ents,_ however, +a@)y(n-1)+a@)y(n—2)+..4+a(M)y(n-M)
can be applied to the \
improved IIR structure _k
shown in Fig. 6-22 to tSZb(k)z
complete our design H(z) = kKAO N

1- Z a(k)z ™

k=1

Y(n) =t - [DO)x(n) + b@)X(N—1) +b(2)X(N = 2) +...+ b(N)x(n = N)]

+a(y(n-D+a(2y(n-2)+...+a(M)y(n—M) 75



Impulse Invariance IIR Filter Design Method

M-pole analog prototype filter
N M
x(t y(t)
L Zb(k)s“/ Za(k)sk |2
0 0
m

Partial fraction expand

v M single-pole discrete filters
K1

A1 = Pyt~
— s+p Perform 1-e™"z
L substitution
xt) + (1) x(n) 2 y(n)
—_——r = (4 — $ —.—»1_ P N
2 e Z
L | Ak | - K -
S+ pk 1 o e_pktSZ_1

M single-pole analog filters
Algebraically combine

x(n) i"“‘) / ia(k)z_k y(n)
0 0

M-pole discrete IIR filter

Figure 6-33 Mathematical flow of the impulse invariance design Method 2.
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Impulse Invariance IIR Filter Design Method

Method 2

Step 1: Obtain Laplace transfer function H_(s) for
prototype analog filter
Same as Method 1, Step 1

N
D b(k)s*
b(N)sN +b(N =1)sN? +...+b()s +b(0) _ k0

H(s) = a(M)s™ +a(M -D)s™ +..+a(l)s +a(0) ia(k)s"

k=0
Step 2: Select an appropriate sampling frequency
f, and calculate sample period as t, = 1/f,

Same as Method 1, Step 3
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Impu

se Invariance |IR Filter Design Method

Met

nod 2

Step 3: Express analog filter's Laplace transfer
function H.(s) as sum of single-pole filters

This requires us to use partial fraction expansion
methods

b(N)s™ +b(N =1)sN ™ +...+b@)s +b(0)
a(M)sM +a(M ~)sMt 4+ +a@)s+a(0)

—z A _ P "
1 S+ Pk S+p1 S+ P S+ Pwm

HC(S) —

where M > N, individual A, factors are constants, and
the kth pole is located at —p, on s-plane

H,(s) = kth single-pole analog filter

H, (s)= A
S+ Py 78




Impulse Invariance IIR Filter Design Method

Method 2

Step 4: Substitute 1-e &z~ for s+p, in H.(S)
equation in Step 3
This mapping of each H,(s) pole, located at s = —p, on
s-plane, to z = e™& |ocation on z-plane is how we

approximate the impulse response of each single-pole
analog filter by a single-pole digital filter

So, the kth analog single-pole filter H,(s) is
approximated by a single-pole digital filter whose z-
domain transfer function is

Hy(2) =

A

1-e Pz

final combinedH(z) s H (Z) _ i H c (Z) — Z

k=1 11-e

M
—Pits -1
k=

79



Impulse Invariance IIR Filter Design Method

Method 2
Step 5: Calculate z-domain transfer function of
the sum of M single-pole digital filters in the form
of a ratio of two polynomials in z

Because H(z) in Step 4 will be a series of fractions,
we’ll have to combine those fractions over a common
denominator to get a single ratio of polynomials in form

of N
b(k)z ™
Y(z) _ kzc;

- M
X(2) 1-» a(k)z ™
k=1

H(z) =
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Impulse Invariance IIR Filter Design Method

Method 2

Step 6: As in Method 1, Step 6, by inspection, we
express filter's time-domain equation in general

form of A
Zb(k)z"‘
H(z) = = -
1-> a(k)z™
Finally, we implement k=1
the improved IIR y(n) =b(0)x(n) +bM)x(n-1) +b(2)x(n—2) +...+b(N)x(n—N)
structure shown in Fig.
529 Ui Al Eine + a(l)Ny(n -D+a(2y(n-2)+...+a(M)y(n—M)
b(k) coefficients or a(k) ~
and t.-b(k) coefficients tst(k)z ‘
from these time-domain H(z) = k=0 N
expressions . i 0z
— » a(k)z
k=1

y(n) =t -[b(0)x(n) +b@)x(n-1) +b(2)x(n—-2) +...+ b(N)x(n—N)]
+al@y(n-)+a)y(n-2)+...+a(M)y(n—M) 81



Impulse Invariance IIR Filter Design Method

Impulse invariance design Method 1 example

Design an IR filter that approximates a 2nd-order
Chebyshev prototype analog lowpass filter whose
passband ripple is 1 dB

f, =100 Hz (t, = 0.01)
Filter's 1 dB cutoff frequency = 20 Hz

A |Hyg(F)
0dB =+
/\
| | -
0 20 Hz 50 Hz Freq

(fs/2)

Figure 6-34 Frequency magnitude response of the example prototype analog g7
filter.



Impulse Invariance IIR Filter Design Method

Method 1 example
Given above filter requirements, assume that
analog prototype filter design effort results in
17410.145
% +137.945365+17410.145

It's this transfer function that we intend to approximate
with our discrete IIR filter

HC(S) —

X (s), Laplace transform of x(t): X(t) :
ro o Ae sin(wt)
(s+a) +w
Aw Aw

(s+a)’ +w° s°+2as+a’+w’
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Impulse Invariance IIR Filter Design Method

17410.145 Aw
H.(s) = 2 - 2 2
§°4+137.94536s+17410.145 s +2aS+a“+w
o = 137.94536 =68.972680

a? + % =17410.145 — @ = \J17410.145 — > =112.485173

A= 17410.145 =154.77724
@
154.77724)(112.485173
(g - X )

(s +68.972680)° + (112.485173)°

time-domain
impulseresponse

of prototypeanalogfilter > (t) = Ap ¢t -sin(wt)

—154.77724e7°8972080 5in(112.485173t)
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Impulse Invariance IIR Filter Design Method

X(t) : X (2), z-transform of x(t):
Ce ' .sin(wt)z ™
1-2[e " - cos(wt)]z ™ +e 72472

he (t) =154.77724e 9897268 qin(112.485173t) —
154.77724¢0897208% .qin112 485173t)z7*

Ce“.sin(wt) <«

H(2) =
1 z[e—68.972680t -cos(112.485173t)]z_1 + p2x68.972680t 2
substitute
t;=0.01for
vanablet | (2) - 154.77724¢%%97208%001 .5in(112.485173x 0.01)z

1_ 2[e—68.972680><0.01 ) COS(112485173X 001)]2—1 + e—2><68.972680><0.012 -2

- 154.77724e 7208972580 5in(1 12485173) 271
1— 2[6—0.68972680. COS(1.12485173)]Z_1 n e—2><0.6897268(%—2

Y 70.059517z "
X(z) 1-0.43278805z ! +0.25171605z 2
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Impulse Invariance IIR Filter Design Method

Y(2) 70.059517z
X(z) 1-0.43278805z 71 +0.25171605z2 2

Y(z)-(1-0.43278805z * +0.25171605z %) = X (z)-(70.059517z %)
Y (z) = 70.059517- X (z)z * +0.43278805-Y (z)z * —0.25171605-Y (z)z *

Get time-domainexpressionfor IIR filter. Multiplyx(n-1) coefficient byt,=0.01forscaling

7

H(z)

y(n) =0.01-70.059517 - x(n—-1)+ 0.43278805- y(n—1) —0.25171605- y(n—2)
y(n) =0.70059517 - x(n—1) + 0.43278805- y(n—1) — 0.25171605- y(n — 2)

'\I/’

these coefficients are what we use
in implementing the improved IIR
structure shown in Fig. 6-22 to
approximate the original 2nd-order
Chebyshev analog lowpass filter
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Impulse Invariance IIR Filter Design Method

Impulse invariance design Method 2 example

Given original prototype filter's H.(s) as
17410.145
5% +137.94536s +17410.145

HC(S) —

and t, = 0.01

b =13794536

c=1741Q45 C
>H. (s)=

s’ +bs+c

C

If we substitute the values for b H C (S) —

and c, the quantity under radical . b b2 —4¢ b b2 _4c
sign is negative - factors in S+ E + A .| S+ E — A

denominator are complex

C

j=v—1and R=y/|(b%—4c)/4
e RO = R b R o7




Impulse Invariance IIR Filter Design Method

C K, K,
H.(s) = _ — = — + _
(s+b/2+ JR)(s+b/2—JR) (s+b/2+JR) (s+b/2-|R)
K, = _© —_x(s+b/2+ jR)
(s+b/2+ jR)(s+b/2- jR) S——b/2— R

C ¢ e
-b/2-JR+b/2-JR -2JR 2R

K. — C
> | (s+b/2+ jR)(s+b/2— jR)

x(s+b/2—jR)}

s=—h/2+jR
B C .t —jc
 —b/2+ jR+b/2+jR 2jR 2R
jc/2R — Jc/ 2R

Hc(S): — T )
(s+b/2+JR) (s+b/2-]R)
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Impulse Invariance IIR Filter Design Method

H. (s) = jc/ 2R N —Jc/2R
’ (s+b/2+jR) (s+b/2-jR)

map poles p;=—b/2-jRand p,=—b/2+jRfrom s-planeto z-plane
substitutel—e Pk sz for s+ p, terms

A 4

_ jcl2R — jc/2R
H(z) = 1— o~ (B/2+jR)t; -1 + 1_e (B/2-IR)t -1

(je/2R)1—e /& IRL 771y _ (jc/ 2R)(1—e P2 IR 771y
(1_ e_(b/2+jR)ts Z—l)(l_ e—(b/2—jR)tS Z—l)

H(z) =

ic/2R)(1—e (P27 IRt ;-1 _q 4 o= (B/2+IR)L ;-1
H(z) = U _(b)/(z— iR)t, -1 —(b/2+]jR)t, - 2 )
1—e IR 774 e s 7

LyePhz-

(jc/2R)(e ®/2+ IR _g=(0/2-R)t y ;-1
1— (e—(b/2—jR)ts + a0/ 2+ JR)L, )z‘l ot 2

H(z) =

(JC/ 2R)e—th/2 (e—ths _ethS )Z—l
1— e—btslz (e JRt i e—ths )Z—l 4 e—bts 2—2 39

H(z) =



Impulse Invariance IIR Filter Design Method

(jC/ZR)e—th/Z(e—ths _eths )Z—l
1_e—bts/2(eths +e_th5)Z_1 +e—btsz—2

Euler:sin(g)=(e'? —e"1?)/2 jand cos(¢)=(e!? +e19)/2 _

7

H(z) =

(jc/2R)es"?[-2jsin(Rt,)]z
1-e*?[2cos(Rt, )]zt +e 5272
(c/R)e ™ "?[sin(Rt, )]z

1-e/?[2cos(Rt )]zt +e b 272
c=17410145b=13794536R=11248517andt.=0.01 .

7

H(z) =

(154.77724)(0.50171312)(0.902203655)z *
1—(0.50171312)(0.86262058)z * +0.25171605z *

- 70.059517z "
1-0.43278805z * +0.251716052 2

H(z) =
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Impulse Invariance IIR Filter Design Method

Y(z) 70.059517z 1
X(z) 1-0.43278805z 7 +0.25171605z 2

Y (z)-(1-0.43278805z ' + 0.25171605z °) = X (z)-(70.059517z %)
Y (z) = 70.059517- X (z)z* +0.43278805-Y (z)z * —0.25171605-Y (z)z *
y(n) = 70.059517 - x(n —1) + 0.43278805- y(n—1) — 0.25171605- y(n — 2)

multiply hex(n-1) coefficientbyt,

7

y(n) =0.01-70.059517 - x(n—1) + 0.43278805- y(n—1) —0.25171605- y(n — 2)
y(n) =0.70059517 - x(n—1) +0.43278805- y(n—1) —0.25171605- y(n —2)

H(z) =
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Impulse Invariance IIR Filter Design Method

. ) s-plane z-plane
H.(s)= jc/ 2R N —jc/2R
7 (s+b/2+jR) (s+b/2—jR)  Almag(s) \ Imag(2)
Unstabl
Sré%li)é% rggsign © Unstable
Stable bl
R T +R region /(
= Yo 1,
@) -bl2 ReaT(s) xf Real(2)
X ceeeeeeee —+ —jR
A |H(f] indB
[ ST
i
(b) Be!
—~B
-8 } =
0 20 Hz 50Hz Freq

Figure 6-35 |Impulse invariance design example filfer characteristics: (a) slane pole
locations of prototype analog filter and zplane pole locatfions of dis-
crete lIR filter; (b) frequency magnitude response of the discrete IR filter.
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Impulse Invariance IIR Filter Design Method

lIR filter's z-plane pole locations

~ je/2R ~jc/2R
H (Z) - 1_e—(b/2+jR)tS Z—l + 1_e_(b/2_jR)ts Z_l
2(jc/2R)  2(-jc/2R)

H(z)- < =
R LA I N I TR AP

(jc/ 2R)z (—jc/2R)z
o O R, | o (BIZ R,

bt /24-JRty _ o-bt/2 Rt radians

Z
I -pl I - '
owerz-planepole . _ 4 (b/2+R)ts _ e

0.5017/-64.45
upperz-planepole . _ conjugate pole :0.5017/ + 64.45°

> —
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Impulse Invariance IIR Filter Design Method

b(1) = 0.70059517
a(1) = 0.43278805
a(1) ae) a(2) =-0.25171605
(a)

—_— 2_1 2—1 _l

y(n)
b(1) >

b(0) coefficient is zero here

g g
VI W
a(|1) b(1

/
N

!

z—1

I
b(1)

Figure 6-36 Implementations of the impulse invariance design example filter. 94



Impulse Invariance IIR Filter Design Method

In general, Method 2 is more popular for two
reasons

(1) inverse Laplace and z-transformations can be
very difficult for higher-order filters

(2) unlike Method 1, Method 2 can be coded in a
software routine or a computer spreadsheet
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Impulse Invariance IIR Filter Design Method

Fig. 6-35(b)
Roll-off is not particularly steep

Attenuation slope is so gradual that it doesn’t appear to
be of much use as a lowpass filter

Any frequency representation (be it a digital filter
magnitude response or a signal spectrum) that has
nonzero values at +f,/2, most probably has aliasing
problem

We also see that passband ripple is greater than

the desired value of 1 dB In Fig. 6-34

It's not the low order of filter that contributes to its
poor performance, but the sampling rate used
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Impulse Invariance IIR Filter Design Method

Increasing sampling
rate to 400 Hz results in
the much improved
frequency response

Sampling rate changes do not affect filter
order or implementation structure; it only
changes t, in our design equations, resulting
in a different set of filter coefficients

-
-
—
——

the smaller we make t (larger f,), the
better the resulting filter because the
replicated spectral overlap indicated in
Fig. 6-32(b) is reduced due to the larger f,

impulse invariance IIR filter
design techniques are most
appropriate for narrowband
filters, that is, lowpass filters
whose cutoff frequencies are
much smaller than the
sampling rate

T ————

1 1
0 20 Hzwhen 20 Hz when
fo= 400 Hz fo= 100 Hz

Figure 6-37 IR filter frequency magnitude response, on a linear scale, at three
separate sampling rates. Notice how the filter’s absolute cutoff fre-
quency of 20 Hz shifts relative to the different f. sampling rates. 97



Bilinear Transform IIR Filter Design Method

Bilinear transform method

A popular analytical lIR filter design technique

Like impulse invariance method, this design
technique approximates a prototype analog filter
defined by continuous Laplace transfer function
H.(s) with a discrete filter whose transfer function
IS H(z)
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Bilinear Transform IIR Filter Design Method

Bilinear transform method has great utility

It allows to substitute a function of z for s in H,(S)
to get H(z), eliminating the need for Laplace and
z-transformations as well as any necessity for
partial fraction expansion algebra

It maps the entire s-plane to z-plane, enabling us
to completely avoid frequency-domain aliasing
problems we had with impulse invariance design
method

It induces a nonlinear distortion of H(z)'s
frequency axis, relative to the original prototype
analog filter’s frequency axis, that sharpens the
final roll-off of digital lowpass filters



Bilinear Transform IIR Filter Design Method

Bilinear transform method

If transfer function of a prototype analog filter is
H.(s), we obtain discrete IIR filter z-domain
transfer function H(z) by substituting the following

for s in H.(s)
2 [1—zlj
S = =
t.(1+2

where t is discrete filter's sampling period (1/f,)
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Bilinear Transform IIR Filter Design Method

Bilinear transform’s s- to z-plane mapping

Any pole on the left side of s-plane will map to the
Inside of unit circle in z-plane

-1
2(1—2 j_)z_1+(t5/2)s

S=— - =
ts\1+2z” 1-(ts/2)s
s=0+jon o _ 1+t /2+ Jo,t /2 _ l+ot, /2)+ jo,t /2
— l-ot /12— jo,t, 12 (Q-ot /2)— jo,t /2
analog
Mag numerator — \/(1+Gts /2)2 +(a)ats /2)2
Mag genominae | A= oty /2)* + (@,t, 1 2)?
If 0 <0, |z| will be less than 1
If o > 0, |z| will be greater than 1

This confirms that when using bilinear transform, any
pole located on the left side of s-plane (o < 0) will map to
a z-plane location inside unit circle 101

2=



Bilinear Transform IIR Filter Design Method

Bilinear transform’s s- to z-plane mapping

jw, axis of s-plane maps to perimeter of unit
circle in z-plane

Z:(1+at5/2)+jooat3/2 o=0 \Z:1+ja)ats/2
(1_O-ts /2)_ ja)ats /2 1- j(()ats /2

Ma’g numerator — (1)2 + (a)ats /2)2 :1
(L)* + (@ats 12)°

7 =
| |0:0 Mag denominata
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Bilinear Transform IIR Filter Design Method

Bilinear transform’s s- to z-plane mapping

Frequency mapping from jw, axis of s-plane to
perimeter of unit circle in z-plane is not linear

S=2 1_2_1 z onunitcircle =1e}“ \S:Z 1_e_ja)d
P e

S=0+ Jw, = . . .

Euler:sin(g)=(e? —e 1%)/2j Ciw .
and cos(g)=(e!? +e719)/2 2 € . OI/Z[ZJSIH(C‘)d /2)]
ts e 1%/'?[2cos(wy 12)]
2 2e71%/% jsin(wy 12)  j2

t, 2e71’%2 cos(wy/2) @t

>S=0+ Jo, =

S=0+ o, = tan(awy / 2)
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Bilinear Transform IIR Filter Design Method

Bilinear transform’s s- to z-plane mapping
( o=0

ot i = 2
S—G-l-]a)a—ftan(a)dlz)_)<a)a:tgtan(a)d/Z) —0 < W, <©
\ S

Range of wy Is £11, and dimensions of digital
frequency w, are radians/sample

Range of w, Is £, and dimensions of analog
frequency w, are radians/second
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Bilinear Transform IIR Filter Design Method

frequency warping due

<
2 u
\ to bilinear transform
A(0d /

Figure 6-38 Nonlinear relationship between the z-domain frequency m, and the
s-domain frequency o,

no matter how large s-plane’s analog w,
becomes, z-plane’s wy will never be
greater than 1 radians/sample (f,/2 Hz)
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Bilinear Transform IIR Filter Design Method

bilinear transform maps s-plane’s
entire jw, axis onto the unit circle
in z-plane

AJMM

A Zimag

s-plane z-plane
Qg e Unstable
region
Wg=T
Unstable corresponds to
region region Wa=+ Stable oy
u d
|
c //’ Zreal
Wy=-—T
corresponds to
Mg = v
Wg="°°

Figure 6-39 Bilinear fransform mapping of the s-plane fo the z-plane.
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Bilinear Transform IIR Filter Design Method

Frequency warping
wy = T radians/sample corresponds to f; = f./2 Hz
2> Wy = 2m(fy/ 1)

t. ) @ozarllalts) f tanY(x f./ f
a)d :2tanl(a);sj w, =27 f, >fd __'s (72- a s) Hz

T

2 @y =5mllalts) f.tan(z f, / f
a)a:—tan(a)zdj ©a=27 Iy >f, == (7 T /1) Hz
7T

tS
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Bilinear Transform IIR Filter Design Method

fy frequency warping
(compression)
becomes more severe
as f, approaches f./2

no IR filter response
aliasing can occur with
bilinear transform
design method

 fotan TNz f,/ f) Hy

T

f

if a bilinear-transform-
designed digital
bandpass filter is desired
to have an upper cutoff
frequency of fy; Hz, then
the original prototype
analog bandpass filter
must be designed
(prewarped) to have an
upper cutoff frequency of
f,1 HZ using:

- f tan(z 4/ 1) Ly

T

Figure 6-40 Nonlinear relatfionship between the f; and f, frequencies: (a) fre-
quency warping curve; (b) ssdomain frequency response transfor-

mation to a zdomain frequency response; (c) example |H(f) |

and fransformed | H(f) | .
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Bilinear Transform IIR Filter Design Method

Steps to perform an IR filter design using
bilinear transform method

Step 1: Obtain Laplace transfer function H_(s) for
the prototype analog filter

Step 2: Determine digital filter's equivalent f, and
establish t, = 1/f,

Step 3: In Laplace H_(s) transfer function,
substitute the expression

2(1-z771

t, £1+ zl)
for the variable s to get |IR filter's H(z) transfer
function
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Bilinear Transform IIR Filter Design Method

Step 4: Multiply numerator and denominator of
H(z) by appropriate power of (1 + z") and collect
terms of like powers of z in the form

k=1

Step 5: By inspection, e>_<press lIR filter’s time-
domain equation in the general form of

y(n) =b(0)x(n)+b@Mx(n—-1) +b(2)x(n—2) +...+b(N)x(n—N)
+a@y(n-D+a)y(n-2)+...+a(M)y(n—M)

Although this expression only applies to filter structure
In Fig. 6-18, we can apply a(k) and b(k) coefficients to
Improved IIR structure shown in Fig. 6-22 110



Bilinear Transform IIR Filter Design Method

Bilinear transform design example

Design an IR filter that approximates 2nd-order
Chebyshev prototype analog lowpass filter whose
passband ripple is 1 dB

f. =100 Hz (t, = 0.01)
Filter's 1 dB cutoff frequency = 20 Hz

Original prototype filter's Laplace transfer function is
given as

HC(S) —

17410.145
s? +137.945365+17410.145
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Bilinear Transform IIR Filter Design Method

b =13794536

HC(S) - — 17410.145 c=17410145 N HC(S) - — C
s®+137.94536s5+17410.145 S“+bs+c
SED
-1
ts 1+z N H (Z) _ - C
2 1-z71 2(1-z71
: b - |+C
t. 1+z t.\1+2
to simplify: c
a:2/ts N H (Z) _ >
(1-z71 1-z71
- | +ab - |*¢C
1+2 1+2
multiplynumeratorand _
denominata by (1+z71)* H(z) = c(l+z 1)2

a‘(l-z Y +ab@+zHA-z ) +cl+z7)?

-1 -2
collectinglikepowersofz (z) = cl+2z7+27°)

2

(a°+ab+c)+(2c—2a%)zt +(a* tc-ab)z ™’



Bilinear Transform IIR Filter Design Method

C 1 -2
to geta constant erm of onein denominata, 2 (1+ 27 " +12 )
dividenumeratorand denominata by (a2 +ab-+c) B (a“ +ab+c)
>H (z) = > > "
2C—2a 41 (@“+c—ab) __
1 @e=28%) (@ rc-ab)

(a“+ab+c) (a“+ab+c)
a=2/t, = 200
b =13794536 _ _
c=17410145 H (Z) B 0.20482712(1+ 21 ! +Z 2)

1-0.53153089z +0.350839382 2
0.20482712 + 0.409654247 1 + 0.204827122 2
1-0.53153089z * + 0.350839387 *

H(z) =

time-do_main
expression

forlIRfiter 5 y(n) = 0.20482712- X(n) + 0.40965424 - x(n —1) + 0.20482712 - x(n — 2)
+0.53153089 - y(n —1) —0.35083938 - y(n — 2)
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Bilinear Transform IIR Filter Design Method

A [H, ()l

1

bilinear-transform-
Impulse invariance deSigned filter’s
/ design magnitude response
approaches zero at
folding frequency of
fJ/2 =50 Hz

/

Bilinear transform

design
(a) : T : 1 -l
50 Hz 20 Hz 0 20 Hz 50Hz  Freq
(fs/2) (£,/2)
A Degrees
1180
4140
i 1100
Phase of bilinear 60
transform design i
120
(b) } t _-—
—50 Hz —20 1 50Hz  Freq
(-15/2) —60 (fs/2)
—100 -
~140 -
~180 -

Figure 6-41 Comparison of the bilinear transform and impulse invariance design

IR filters: (a) frequency magnitude responses; (b) phase of the bilin-
ear transform IR filter. 114



Bilinear Transform IIR Filter Design Method

bilinear transform design method gives a much sharper roll-off for our lowpass filter
for two reasons: 1) frequency warping of bilinear transform method compresses
(sharpens) roll-off portion of a lowpass filter; 2) the price we pay in terms of
additional complexity of implementation of our IIR filter: our new filter requires five
multiplications per filter output sample where impulse invariance design filter in Fig.
6-36(a) required only three multiplications

x(n)l »(% ’@1\ = ly(n) o

S b(0) = b(0) = 0.20482712
b(1) = 0.40965424
)
)

b(2) = 0.20482712

Y p(1) a(1) a(1) = 0.53153089
z1 z1
[ ,(? (? ‘ | a(2) = —0.35083938
b(2) a(2)

Figure 6-42 |Implementation of the bilinear transform design example filter.
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Bilinear Transform IIR Filter Design Method

Prewarping

If cutoff frequency Is a large percentage of f,
resultant |Hy(f,)| cutoff frequency will be below
the desired value

To avoid this, we prewarp prototype analog filter's

cutoff frequency requirement before the analog H(s)
transfer function is derived in Step 1

In that way, they compensate for the bilinear transform’s
frequency warping before it happens

To determine prewarped analog filter lowpass cutoff
frequency that we want mapped to the desired IIR

|0Wp355 CUtOff frequenCy, use we plug desired IIR cutoff frequency
2 wy In here to calculate w, cutoff
. t a)d frequency used to derive prototype
a)a — t_ an 2 analog filter’s H,(s) transfer function
S
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Optimized [IR Filter Design Method

Optimization methods

Developed for situation when the desired IIR filter
frequency response is not of standard lowpass,
bandpass, or highpass form

Closed-form expressions for filter's z-transform do not
exist = no explicit equations to work with

Designer should describe, in some way, the desired
lIR filter frequency response

The algorithm, then, assumes a filter transfer function
H(z) as a ratio of polynomials in z and starts to
calculate filter's frequency response

Based on some error criteria, the algorithm iteratively
adjusts filter’s coefficients to minimize the error
between desired and actual filter frequency response ,,-,




Optimized [IR Filter Design Method

Optimized IR filter design routines

Are used to design the simpler lowpass,
bandpass, or highpass forms even though
analytical technigues exist

They only require the designer to specify a few
key amplitude and frequency values, and the
desired order of IIR filter (the number of feedback
taps), and the software computes the final
feedforward and feedback coefficients
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Optimized [IR Filter Design Method

In specifying a lowpass IIR

filter, a software design routine

AlHd(f)l might require us to specify the
values for o, &, f;, and f,

N
I N,
—0p
0s
G ¥
0 f, o /2 Freq

Figure 6-43 Example lowpass IIR filter design parameters required for the opti-
mized IR filter design method.
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Comparison of IIR and FIR Filters

Characteristic IR FIR (nonrecursive)

Number of necessary multiplications Least Most

Sensitivity to filter coefficient quantization Can be high Very low

Probability of overflow errors Can be high Very low

Stability Must be designed in Guaranteed

Linear phase No Guaranteked

Can simulate prototype analog filters Yes No \ ol e e
symmetrical (or

Required coefficient memory Least Most antisymmetrical)

Hardware filter control complexity Moderate Simple

Availability of design software Good Very good

Ease of design, or complexity of design Moderately complicated | Simple

software

Difficulty of quantization noise analysis

Most complicated

Least complicated

Supports adaptive filtering

With difficulty

Yes 120




