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Introduction

 Infinite impulse response (IIR) digital filters

 Are fundamentally different from FIR filters

 FIR filter output samples depend only on past input 

samples

 Each IIR filter output sample depends on previous input 

samples and previous filter output samples

 IIR filters have memory of past outputs (require feedback)

 As in all feedback systems, perturbations at IIR

filter input could cause filter output to become 

unstable and oscillate indefinitely

 Infinite impulse response

 IIR filters have more complicated structures (block 

diagrams), are harder to design and analyze, and 

do not have linear phase responses
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Introduction

 Why use an IIR filter?

 Because they are very efficient

 IIR filters require far fewer multiplications per filter 

output sample to achieve a given frequency magnitude 

response

 From a hardware standpoint, IIR filters can be very 

fast, allowing us to build real-time IIR filters that 

operate over much higher sample rates than FIR filters
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Introduction
where the 19-tap FIR filter requires 

19 multiplications per filter output 

sample, the 4th-order IIR filter 

requires only 9 multiplications for 

each filter output sample

reduced passband ripple 

and a sharper filter roll-

off, with less than half the 

multiplication workload
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Introduction

 IIR vs. FIR

 An FIR filter’s frequency response with very steep 

transition regions requires a very long impulse 

response

 The maximum number of FIR filter taps we can 

have (length of impulse response) depends on 

how fast our hardware can perform the required 

number of multiplications and additions to get a 

filter output before the next input sample arrives

 IIR filters can be designed to have impulse 

responses longer than their number of taps

 Thus, IIR filters can give much better filtering for a 

given number of multiplications per output sample
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An Introduction to IIR Filters

 If IIR filter’s input suddenly becomes all 

zeros, its output could remain nonzero 

forever

 This is because of feedback structure of their 

delay units, multipliers, and adders
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An Introduction to IIR Filters
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An Introduction to IIR Filters
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An Introduction to IIR Filters
 How determine a(k) and b(k) IIR filter coefficients

 Window method of lowpass FIR filter design

 Define frequency response of desired FIR filter  take 

inverse Fourier transform  shift that transform result 

 we get filter’s time-domain impulse response

 Due to the nature of transversal FIR filters, the desired 

h(k) filter coefficients turn out to be exactly equal to the 

impulse response sequence

 Following that same procedure with IIR filters

 Desired frequency response of IIR filter  inverse 

Fourier transform  time-domain impulse response

 But there’s no direct method for computing IIR filter’s 

a(k) and b(k) coefficients from impulse response

 FIR filter design techniques cannot be used here
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An Introduction to IIR Filters

 Standard IIR filter design techniques 

 Fall into three basic classes: impulse invariance, 

bilinear transform, and optimization methods

 These design methods use a discrete sequence, 

mathematical transformation process known as 

the z-transform whose origin is Laplace transform 

used in analyzing of continuous systems
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The Laplace Transform

 Laplace transform

 A mathematical method of solving linear 

differential equations

 Process of using Laplace transform

 A time-domain differential equation is written that 

describes input/output relationship of a physical 

system

 The differential equation is Laplace transformed, 

converting it to an algebraic equation

 Standard algebraic techniques are used to determine 

desired output function’s equation in Laplace domain

 The desired Laplace output equation is, then, inverse 

Laplace transformed to yield the desired time-domain 

output function’s equation
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The Laplace Transform

 Laplace transform of a continuous time-

domain function f(t)

 Variable s is the complex number s = σ + jω

 f(t) is defined only for positive time (t > 0)

 Systems where system conditions for negative time (t

< 0) are not needed (one-sided ) are referred to as 

causal systems

 Causal systems may have initial conditions at t = 0 

that must be taken into account, but we don’t need 

to know what the system was doing prior to t = 0
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The Laplace Transform

 s = σ + jω

 σ is a real number 

 ω is frequency in radians/second

 e−st is dimensionless  s has dimension of 

1/time, or frequency

 Laplace variable s is often called a complex frequency
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The Laplace Transform

 Laplace transform

 e−jωt is a unity-magnitude phasor rotating clockwise 

around origin of a complex plane at a frequency of ω 

radians/second

 eσt is a real number whose value is one at t = 0

 As t increases, eσt gets larger (when σ is positive), and 

complex e−st phasor’s magnitude gets smaller as phasor

rotates on complex plane

 The tip of that phasor traces out a curve spiraling in 

toward origin of complex plane
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The Laplace Transform

real part of F(s), for 

a particular value of 

s, is correlation of 

f(t) with a cosine 

wave of frequency 

ω and a damping 

factor of σ, and 

imaginary part of 

F(s) is correlation 

of f(t) with a 

sinewave of 

frequency ω and a 

damping factor of σ
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The Laplace Transform

 s-plane

 If we associate each of different values of 

complex s variable with a point on a complex 

plane, called s-plane, we could plot real part of 

F(s) correlation as a surface above (or below) 

that s-plane and generate a second plot of 

imaginary part of F(s) correlation as a surface 

above (or below) s-plane

 We can also graph magnitude |F(s)| as a function 

of s
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The Laplace Transform

)(
)(

)(
)()(

01012

2

2 txb
dt

tdx
btya

dt

tdy
a

dt

tyd
a 

We’ll use Laplace transform toward 

our goal of figuring out what the y(t) 

output will be for any given x(t) input



18

The Laplace Transform
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The Laplace Transform
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The Laplace Transform

 Laplace analysis technique is based on 

system’s x(t) input being some function of est, 

or x(est)

 All practical x(t) input functions can be 

represented with complex exponentials, e.g.,

 A constant, c = ce0t

 Sinusoids, sin(ωt) = (ejωt − e−jωt)/2j or cos(ωt) = (ejωt + 

e−jωt)/2

 A monotonic exponential, eat

 An exponentially varying sinusoid, e−at cos(ωt)
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The Laplace Transform

 System’s transfer function H(s)

 If we know H(s), we can take Laplace transform 

of any x(t) input to determine X(s), multiply that 

X(s) by H(s) to get Y(s), and then inverse Laplace 

transform Y(s) to yield time-domain expression 

for the output y(t)

 Not needed because it’s H(s) in which we’re interested 

 Being able to express H(s) mathematically or 

graph the surface |H(s)| as a function of s will tell 

us two important properties we need to know 

about system:

 Is system stable

 And if so, what is its frequency response
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The Laplace Transform

 Poles and zeros on s-plane and stability

 A system is stable if, given any bounded input, 

the output will always be bounded

 Instability would result in a filter output that’s not 

at all representative of filter input—a situation 

we’d like to avoid if we can

 Example

 If s = −a0/a1, denominator equals zero and H1(s) would 

have an infinite magnitude

 This s = −a0/a1 point on s-plane is called a pole
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The Laplace Transform

the pole is located 

exactly on negative 

portion of real σ axis
H1(s) is stable 

because its y(t) 

output approaches 

zero as time passes

distance of pole from 

σ = 0 axis, a0/a1 for 

our H1(s), gives the 

decay rate of y(t) 

impulse response

If the system described by H1 were at rest and we disturbed it with an 

impulse like x(t) input at time t = 0, its continuous time-domain y(t) 

output would be the damped exponential curve shown in (b)
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The Laplace Transform

Laplace transform is 

a more general case 

of Fourier transform 

because if σ = 0, 

then s = jω

intersection of 

vertical σ = 0 plane 

(jω axis plane) and 

|H1(s)| surface, 

gives us frequency 

magnitude response 

|H1(ω)| of system
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The Laplace Transform

 Example: 2nd-order transfer function H2(s)

 Order of transfer function is the largest exponential 

order of s in either numerator or denominator

 If s is equal to −p or −p*, one of polynomial roots in the 

denominator will equal zero, and H2(s) will have an 

infinite magnitude  two complex poles
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The Laplace Transform

the two complex 

poles are located off 

the negative portion 

of real σ axis

If H2 system were at rest and we disturbed it with an impulse-like x(t) 

input at t = 0, its continuous time-domain y(t) output would be the 

damped sinusoidal curve shown in (b)

H2(s) is stable 

because its oscillating 

y(t) output approaches 

zero as time increases

distance of poles from σ = 0 axis 

(−preal) gives decay rate of sinusoidal 

y(t) impulse response. Likewise, 

distance of poles from jω = 0 axis 

(±pimag) gives frequency of sinusoidal 

y(t) impulse response
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The Laplace Transform
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The Laplace Transform
stable systems: when 

disturbed from their 

at-rest condition, they 

respond and, at some 

later time, return to 

that initial condition

1/s transfer function
conditional stability: 

if an H(s) transfer 

function has 

conjugate poles 

located exactly on 

jω axis (σ = 0), the 

system will go into 

oscillation when 

disturbed from its 

initial condition

instability: the poles 

lie to the right of jω 

axis. When disturbed 

from their initial at-

rest condition by an 

impulse input, their 

outputs grow without 

bound
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The Laplace Transform
for a system to be 

stable, all of its 

transfer-function 

poles must lie on the 

left half of s-plane
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The z-Transform

 z-transform

 Discrete-time cousin of continuous Laplace 

transform

 While Laplace transform is used to simplify analysis of 

continuous differential equations, z-transform facilitates 

analysis of discrete difference equations

 z-transform is performed on a discrete h(n) 

sequence, converting that sequence into a 

continuous function H(z) of the continuous 

complex variable z








n

nznhzH )()(



31

The z-Transform

 z-transform

 This Equation can be interpreted as Fourier transform 

of product of original sequence h(n) and exponential 

sequence r−n

 When r = 1, it simplifies to Fourier transform

 Thus on z-plane, the contour of H(z) surface for those 

values where |z| = 1 is Fourier transform of h(n)

 If h(n) represents a filter impulse response sequence, 

evaluating H(z) transfer function for |z| = 1 yields 

frequency response of filter
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The z-Transform
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The z-Transform
jω frequency axis on continuous Laplace s-plane is linear and ranges from 

− ∞ to + ∞ radians/second. The ω frequency axis on complex z-plane, 

however, spans only the range from −π to +π radians  z-plane frequency 

axis is equivalent to coiling s-plane’s jω axis about the unit circle on z-plane
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The z-Transform

 Poles, zeros, and digital filter stability

 Region of filter stability is mapped to the inside of 

unit circle on z-plane

 Given H(z) transfer function of a digital filter, we 

can examine that function’s pole locations to 

determine filter stability

 If all poles are located inside unit circle, filter will 

be stable
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The z-Transform

 Example

 If a causal filter’s H(z) transfer function has a 

single pole at location p on z-plane, its transfer 

function can be represented by

 Filter’s time-domain impulse response sequence

 u(n) represents a unit step (all ones) sequence 

beginning at time n = 0

 When |p| < 1, h(n) impulse response sequence is 

unconditionally bounded in amplitude

 |p| < 1 means that pole must lie inside z-plane’s unit circle
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The z-Transform

point z = −1 

corresponds to π 

radians (or πfs
radians/second = 

fs/2 Hz)  ωo = π/4 

means that fo = fs/8 

and our y(n) will 

have eight samples 

per cycle of fo
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Using z-Transform to Analyze IIR Filters

 Representing delay operation

 Assume we have a sequence x(n) whose z-

transform is X(z) and a sequence y(n) = x(n−1) 

whose z-transform is Y(z)

 Thus, effect of a single unit of time delay is to multiply 

z-transform of undelayed sequence by z−1
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Using z-Transform to Analyze IIR Filters

X(z)z−k is z-transform of x(n) 

delayed by k samples. So a 

transfer function of z−k is 

equivalent to a delay of kts
seconds from the instant 

when t = 0, where ts = 1/fs

Because a delay of one 

sample is equivalent to 

factor z−1, the unit time 

delay symbol is usually 

indicated by z−1 operator
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Using z-Transform to Analyze IIR Filters



40

Using z-Transform to Analyze IIR Filters

 Fig. 6-17

 Is a general Mth-order IIR filter

 This IIR filter structure is called Direct Form I
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Using z-Transform to Analyze IIR Filters

 Two things to know about an IIR filter: its 

frequency response and stability

 We can evaluate denominator of H(z) to 

determine positions of filter’s poles on z-plane 

indicating filter’s stability

 From H(z) we develop an expression for IIR 

filter’s frequency response

 H(z) is a complex-valued surface above, or below, the 

z-plane

 Intersection of H(z) surface and perimeter of a cylinder 

representing z = ejω unit circle is the filter’s complex 

frequency response
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Using z-Transform to Analyze IIR Filters
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Using z-Transform to Analyze IIR Filters



44

Using z-Transform to Analyze IIR Filters

 Fig. 6-18

 (a) is a 2nd-order lowpass IIR filter whose 

positive cutoff frequency is ω = π/5 (fs/10 Hz)
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Using z-Transform to Analyze IIR Filters
although both filters 

require the same 

computational workload, 

five multiplications per 

filter output sample, 

lowpass IIR filter has 

the superior frequency 

magnitude response

phase nonlinearity is 

inherent in IIR filters

knowing that the 

filter’s phase 

response is nonlinear, 

we should expect the 

impulse response to 

be asymmetrical

infinite impulse response:

if we used infinite-

precision arithmetic in our 

filter implementation, h(k) 

impulse response would 

be infinite in duration
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Using z-Transform to Analyze IIR Filters

 To determine our IIR filter’s stability

 So when z = p0 = 0.597 − j0.282, or when z = p1

= 0.597 + j0.282, filter’s H(z) transfer function’s 

denominator is zero and |H(z)| is infinite

 Because those pole locations are inside the unit circle 

(their magnitudes are less than one), our example IIR 

filter is unconditionally stable

)282.0597.0)(282.0597.0(

)1)(1(

))((

))((
)(

436.0194.1

0605.0121.00605.0
)(

436.0194.11

0605.0121.00605.0

)(

)(
)(

10

10

2

2
by  multiply 

21

210

22

jzjz

zz

pzpz

zzzz
zH

zz

zz
zH

zz

zzz

zX

zY
zH

/zzH(z)














 












47

Using z-Transform to Analyze IIR Filters

if we were to unwrap the 

bold |H(ω)| curve and lay 

it on a flat surface, we 

would have the |H(ω)| 

curve in Fig. 6-19(a)
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Using Poles and Zeros to Analyze IIR Filters

 IIR filter transfer function algebra

 Several ways to write H(z) = Y(z)/X(z) z-domain 

transfer function
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useful because we can 

replace z with ejω to 

obtain an expression for 

frequency response of 

filter

necessary so we can factor (find 

roots of) polynomials to obtain 

values (locations) of numerator 

zeros and denominator poles
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Using Poles and Zeros to Analyze IIR Filters

 Using poles/zeros to obtain transfer functions

 We can analyze an IIR filter’s frequency-domain 

performance based solely on poles and zeros

 Given zk zeros and pk poles, we can write the 

factored form of filter’s transfer function as

 G = G1/G2 is an arbitrary gain constant

 Filter zeros are associated with decreased frequency 

magnitude response, and filter poles are associated with 

increased frequency magnitude response
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Using Poles and Zeros to Analyze IIR Filters

if a filter has no z-plane 

zeros, and one pole at p0

= 0.8, we can write its 

transfer function as 

H1(z)=G/(z-0.8)

|H1(ω)| is normalized. 

P0 is closest to ω = 0 

radians/sample (z = 1) 

on unit circle 

lowpass filter.

|p0| < 1  filter is 

unconditionally stable

if a filter has a zero at z0

= 1, and a pole at p0 = 

−0.8, we write its 

transfer function as
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pole is closest to ω = π 

radians/sample (z = −1) 

on unit circle 

highpass filter.

the zero located at z = 

1 causes filter to have 

infinite attenuation at ω 

= 0 radians/sample 

(zero Hz)
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Using Poles and Zeros to Analyze IIR Filters

 Fig. 6-21(c)

 Consider a filter having two complex conjugate 

zeros at −0.707 ± j0.707, as well as two complex 

conjugate poles at 0.283 ± j0.283

 The two poles on the right side of z-plane make this a 

lowpass filter having a wider passband than H1(z)

 Two zeros are on unit circle at angles of ω = ±3π/4 

radians, causing filter to have infinite attenuation at 

frequencies ω = ±3π/4 radians/sample (±3fs/8 Hz)
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Using Poles and Zeros to Analyze IIR Filters
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Using Poles and Zeros to Analyze IIR Filters

 Fig. 6-21(d)

 If we add a z-plane zero at z = 1 to H3(z)

 The zero at z = 1 yields infinite attenuation at ω = 

0 radians/sample (zero Hz), creating a bandpass 

filter

 Because p0 and p1 poles are oriented at angles of 

θ = ±π/4 radians, filter’s passbands are centered 

in the vicinity of frequencies ω = ±π/4 

radians/sample (±fs/8 Hz)
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Using Poles and Zeros to Analyze IIR Filters

 Fig. 6-21(e)

 If we increase magnitude of H4(z) filter’s poles, 

making them equal to 0.636 ± j0.636, we position 

the conjugate poles much closer to unit circle

 Poles near unit circle now have a much more 

profound effect on filter’s magnitude response

 The poles’ infinite gains cause H5(z) passbands to be 

very narrow (sharp)

 When a pole is close to unit circle, center 

frequency of its associated passband can be 

accurately estimated to be equal to pole’s angle
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Using Poles and Zeros to Analyze IIR Filters

 Fig. 6-21(f)

 Consider an FIR filter—a digital filter whose H(z) 

transfer function denominator is unity

 For an FIR filter to have linear phase, each z-plane 

zero located at z = z0 = Mejα, where M ≠ 1, must be 

accompanied by a zero having an angle of −α and a 

magnitude of 1/M

 z0 is accompanied by z3

 If FIR filter’s transfer function polynomial has real-

valued bk coefficients, then a z0 zero not on the z-

plane’s real axis will be accompanied by a complex 

conjugate zero at z = z2

 Likewise, for FIR filter to have linear phase, z2 zero 

must be accompanied by z1 zero

 z1 and z3 zeros are complex conjugates of each other
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Using Poles and Zeros to Analyze IIR Filters

 z-plane pole/zero properties

 Filter poles are associated with increased 

frequency magnitude response (gain)

 Filter zeros are associated with decreased 

frequency magnitude response (attenuation)

 To be unconditionally stable, all filter poles must 

reside inside the unit circle

 Filter zeros do not affect filter stability

 The closer a pole (zero) is to unit circle, the 

stronger will be its effect on filter’s gain 

(attenuation) at the frequency associated with the 

pole’s (zero’s) angle
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Using Poles and Zeros to Analyze IIR Filters

 z-plane pole/zero properties

 A pole (zero) located on unit circle produces 

infinite filter gain (attenuation)

 If a pole is at the same z-plane location as a zero, 

they cancel each other

 Poles or zeros located at origin of z-plane do not 

affect frequency response of filter

 Filters whose transfer function denominator 

(numerator) polynomial has real-valued 

coefficients have poles (zeros) located on real z-

plane axis, or pairs of poles (zeros) that are 

complex conjugates of each other
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Using Poles and Zeros to Analyze IIR Filters

 z-plane pole/zero properties

 For an FIR filter (transfer function denominator is 

unity) to have linear phase, any zero on z-plane 

located at z0 = Mejα, where z0 is not on unit circle 

and α is not zero, must be accompanied by a 

reciprocal zero whose location is 1/z0 = e−jα/M

 If an FIR filter has real-valued coefficients, is 

linear phase, and has a z-plane zero not located 

on real z-plane axis or on unit circle, that z-plane 

zero is a member of a “gang of four” zeros

 If we know z-plane location of one of those four zeros, 

then we know location of the other three zeros
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Alternate IIR Filter Structures

 Direct Form I, Direct Form II, and transposed 

structures

 Direct Form I structure of an IIR filter can be 

converted to several alternate forms
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Alternate IIR Filter Structures
thinking of 

feedforward and 

feedback portions as 

two separate filter 

stages, because both 

stages are linear and 

time invariant, we can 

swap them with no 

change in y(n) output

because sequence 

g(n) is shifted down 

along both delay lines 

in (b), we can 

eliminate one of delay 

paths and arrive at 

filter structure shown 

in (c), where only half 

the delay storage 

registers are required 

compared to Direct 

Form I structure
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Alternate IIR Filter Structures

 Transposition theorem

 There is a process in DSP that allows us to 

change structure of an LTI digital network without 

changing network’s transfer function (its 

frequency response)

 That network conversion process follows transposition 

theorem

 A transposed version of some digital network 

might be easier to implement, or may exhibit 

more accurate processing, than the original 

network
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Alternate IIR Filter Structures

 Steps to transpose a digital filter (starting with 

Direct Form II)

 1. reverse direction of all signal-flow arrows

 2. convert all adders to signal nodes

 3. convert all signal nodes to adders

 4. swap x(n) input and y(n) output labels
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Alternate IIR Filter Structures

By convention, we flip 

the network in (b) from 

left to right so that x(n) 

input is on the left as 

shown in (c)
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Alternate IIR Filter Structures

 Fig. 6-23

 Transposed filter contains the same number of 

delay elements, multipliers, and addition 

operations as the original filter, and both filters 

have the same transfer function given by

 When implemented using infinite-precision 

arithmetic, Direct Form II and transposed Direct 

Form II filters have identical frequency response 

properties

21

21

)2()1(1

)2()1()0(

)(

)(
)(










zaza

zbzbb

zX

zY
zH



65

Alternate IIR Filter Structures

 Fig. 6-23

 Transposed Direct Form II structure is less 

susceptible to errors that can occur when finite-

precision binary arithmetic is used to represent 

data values and filter coefficients within a filter 

implementation

 Direct Form II filters implement (possibly high-gain) 

feedback pole computations before feedforward zeros 

computations  large intermediate data values which 

must be truncated

 Transposed Direct Form II filters implement zeros 

computations first followed by pole computations

 Direct Form I filter has the most resistance to 

coefficient quantization and stability problems
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Impulse Invariance IIR Filter Design Method

 Impulse invariance method

 Is based upon the notion that we can design a 

discrete filter whose time-domain impulse 

response is a sampled version of impulse 

response of a continuous analog filter

 If that analog filter (called prototype filter) has 

some desired frequency response, then our IIR 

filter will yield a discrete approximation of that 

desired response
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Impulse Invariance IIR Filter Design Method
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Impulse Invariance IIR Filter Design Method

 Impulse invariance method

 Our goal is to design a digital filter whose impulse 

response is a sampled version of analog filter’s 

continuous impulse response

 We can map each pole on s-plane for analog 

filter’s Hc(s) transfer function to a pole on z-plane 

for discrete IIR filter’s H(z) transfer function

 Impulse invariance method yields useful IIR filters 

as long as sampling rate is high relative to 

bandwidth of signal to be filtered

 IIR filters designed using impulse invariance method 

are susceptible to aliasing problems because practical 

analog filters cannot be perfectly band-limited
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Impulse Invariance IIR Filter Design Method

we prefer to make fs as 

large as possible to 

minimize the overlap 

between primary 

frequency response 

curve and its replicated 

images spaced at 

multiples of ±fs Hz

Due to aliasing 

behavior of impulse 

invariance design 

method, this filter 

design process should 

never be used to 

design highpass digital 

filters
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Impulse Invariance IIR Filter Design Method

 Two methods for designing IIR filters using 

impulse invariance

 Method 1

 Requires that an inverse Laplace transform as well as 

a z-transform be performed

 Method 2

 Uses a direct substitution process to avoid inverse 

Laplace and z-transformations at the expense of 

needing partial fraction expansion algebra necessary 

to handle polynomials
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Impulse Invariance IIR Filter Design Method

 Method 1

 Step 1: Design a prototype analog filter with 

desired frequency response

 In a lowpass filter design, for example, filter type 

(Chebyshev, Butterworth, elliptic), filter order (number 

of poles), and cutoff frequency are parameters to be 

defined in this step

 Result of this step is a continuous Laplace transfer 

function Hc(s) expressed as ratio of two polynomials, 

such as

 N < M, and a(k) and b(k) are constants
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Impulse Invariance IIR Filter Design Method

 Method 1

 Step 2: Determine analog filter’s continuous time-

domain impulse response hc(t) from Hc(s) 

Laplace transfer function

 Can be done using Laplace tables as opposed to 

actually evaluating an inverse Laplace transform 

equation

 Step 3: Determine digital filter’s fs, and calculate 

ts = 1/fs
 fs is chosen based on absolute frequency, in Hz, of 

prototype analog filter

 Because of aliasing problems associated with this 

impulse invariance design method, fs should be made 

as large as is practical
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Impulse Invariance IIR Filter Design Method

 Method 1

 Step 4: Find z-transform of continuous hc(t) to 

obtain IIR filter’s z-domain transfer function H(z) 

in form of a ratio of polynomials in z

 Step 5: Substitute the value ts for the continuous 

variable t in H(z) transfer function obtained in 

Step 4

 In performing this step, we are ensuring that IIR filter’s 

discrete h(n) impulse response is a sampled version of 

continuous filter’s hc(t) impulse response so that h(n) = 

hc(nts), for 0 ≤ n ≤ ∞
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Impulse Invariance IIR Filter Design Method

 Method 1

 Step 6: H(z) from Step 5 will now be of the 

general form

 Because process of sampling continuous impulse 

response results in a digital filter frequency response 

that’s scaled by a factor of 1/ts, we include ts factor in this 

equation

 Incorporating ts makes IIR filter time-response scaling 

independent of sampling rate, and discrete filter will have 

the same gain as prototype analog filter
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Impulse Invariance IIR Filter Design Method

 Method 1

 Step 7: By inspection, we can express filter’s 

time-domain difference equation as
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these time-domain 

expressions apply only 

to the filter structure in 

Fig. 6-18. The a(k) and 

b(k), or ts · b(k), 

coefficients, however, 

can be applied to the 

improved IIR structure 

shown in Fig. 6-22 to 

complete our design
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Impulse Invariance IIR Filter Design Method



77

Impulse Invariance IIR Filter Design Method

 Method 2

 Step 1: Obtain Laplace transfer function Hc(s) for 

prototype analog filter 

 Same as Method 1, Step 1

 Step 2: Select an appropriate sampling frequency 

fs and calculate sample period as ts = 1/fs
 Same as Method 1, Step 3
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Impulse Invariance IIR Filter Design Method

 Method 2

 Step 3: Express analog filter’s Laplace transfer 

function Hc(s) as sum of single-pole filters

 This requires us to use partial fraction expansion 

methods

where M > N, individual Ak factors are constants, and 

the kth pole is located at −pk on s-plane

 Hk(s) = kth single-pole analog filter
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Impulse Invariance IIR Filter Design Method

 Method 2

 Step 4: Substitute 1−e−pktsz−1 for s+pk in Hc(s) 

equation in Step 3

 This mapping of each Hk(s) pole, located at s = −pk on 

s-plane, to z = e−pkts location on z-plane is how we 

approximate the impulse response of each single-pole 

analog filter by a single-pole digital filter 

 So, the kth analog single-pole filter Hk(s) is 

approximated by a single-pole digital filter whose z-

domain transfer function is
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Impulse Invariance IIR Filter Design Method

 Method 2

 Step 5: Calculate z-domain transfer function of 

the sum of M single-pole digital filters in the form 

of a ratio of two polynomials in z

 Because H(z) in Step 4 will be a series of fractions, 

we’ll have to combine those fractions over a common 

denominator to get a single ratio of polynomials in form 

of
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Impulse Invariance IIR Filter Design Method

 Method 2

 Step 6: As in Method 1, Step 6, by inspection, we 

express filter’s time-domain equation in general 

form of
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Finally, we implement 

the improved IIR 

structure shown in Fig. 

6-22 using a(k) and 

b(k) coefficients or a(k) 

and ts·b(k) coefficients 

from these time-domain 

expressions
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Impulse Invariance IIR Filter Design Method

 Impulse invariance design Method 1 example

 Design an IIR filter that approximates a 2nd-order 

Chebyshev prototype analog lowpass filter whose 

passband ripple is 1 dB

 fs = 100 Hz (ts = 0.01)

 Filter’s 1 dB cutoff frequency = 20 Hz
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Impulse Invariance IIR Filter Design Method

 Method 1 example

 Given above filter requirements, assume that 

analog prototype filter design effort results in

 It’s this transfer function that we intend to approximate 

with our discrete IIR filter
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in implementing the improved IIR 

structure shown in Fig. 6-22 to 

approximate the original 2nd-order 

Chebyshev analog lowpass filter
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 Impulse invariance design Method 2 example

 Given original prototype filter’s Hc(s) as

and ts = 0.01
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 IIR filter’s z-plane pole locations
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b(0) coefficient is zero here equivalent
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 In general, Method 2 is more popular for two 

reasons

 (1) inverse Laplace and z-transformations can be 

very difficult for higher-order filters

 (2) unlike Method 1, Method 2 can be coded in a 

software routine or a computer spreadsheet
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 Fig. 6-35(b)

 Roll-off is not particularly steep

 Attenuation slope is so gradual that it doesn’t appear to 

be of much use as a lowpass filter

 Any frequency representation (be it a digital filter 

magnitude response or a signal spectrum) that has 

nonzero values at +fs/2, most probably has aliasing 

problem

 We also see that passband ripple is greater than 

the desired value of 1 dB in Fig. 6-34

 It’s not the low order of filter that contributes to its 

poor performance, but the sampling rate used
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Increasing sampling 

rate to 400 Hz results in 

the much improved 

frequency response

Sampling rate changes do not affect filter 

order or implementation structure; it only 

changes ts in our design equations, resulting 

in a different set of filter coefficients

the smaller we make ts (larger fs), the 

better the resulting filter because the 

replicated spectral overlap indicated in 

Fig. 6-32(b) is reduced due to the larger fs

impulse invariance IIR filter 

design techniques are most 

appropriate for narrowband 

filters, that is, lowpass filters 

whose cutoff frequencies are 

much smaller than the 

sampling rate
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 Bilinear transform method 

 A popular analytical IIR filter design technique

 Like impulse invariance method, this design 

technique approximates a prototype analog filter 

defined by continuous Laplace transfer function 

Hc(s) with a discrete filter whose transfer function 

is H(z)
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 Bilinear transform method has great utility

 It allows to substitute a function of z for s in Hc(s) 

to get H(z), eliminating the need for Laplace and 

z-transformations as well as any necessity for 

partial fraction expansion algebra

 It maps the entire s-plane to z-plane, enabling us 

to completely avoid frequency-domain aliasing 

problems we had with impulse invariance design 

method

 It induces a nonlinear distortion of H(z)’s 

frequency axis, relative to the original prototype 

analog filter’s frequency axis, that sharpens the 

final roll-off of digital lowpass filters
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 Bilinear transform method 

 If transfer function of a prototype analog filter is 

Hc(s), we obtain discrete IIR filter z-domain 

transfer function H(z) by substituting the following 

for s in Hc(s)

where ts is discrete filter’s sampling period (1/fs)
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 Bilinear transform’s s- to z-plane mapping

 Any pole on the left side of s-plane will map to the 

inside of unit circle in z-plane

 If σ < 0, |z| will be less than 1

 If σ > 0, |z| will be greater than 1

 This confirms that when using bilinear transform, any 

pole located on the left side of s-plane (σ < 0) will map to 

a z-plane location inside unit circle
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 Bilinear transform’s s- to z-plane mapping

 jωa axis of s-plane maps to perimeter of unit 

circle in z-plane
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 Bilinear transform’s s- to z-plane mapping

 Frequency mapping from jωa axis of s-plane to 

perimeter of unit circle in z-plane is not linear
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 Bilinear transform’s s- to z-plane mapping

 Range of ωd is ±π, and dimensions of digital 

frequency ωd are radians/sample

 Range of ωa is ±∞, and dimensions of analog 

frequency ωa are radians/second
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frequency warping due 

to bilinear transform

no matter how large s-plane’s analog ωa

becomes, z-plane’s ωd will never be 

greater than π radians/sample (fs/2 Hz)
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bilinear transform maps s-plane’s 

entire jωa axis onto the unit circle 

in z-plane
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 Frequency warping

 ωd = π radians/sample corresponds to fd = fs/2 Hz 

 ωd = 2π(fd / fs)
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fd frequency warping 

(compression) 

becomes more severe 

as fd approaches fs/2

if a bilinear-transform-

designed digital 

bandpass filter is desired 

to have an upper cutoff 

frequency of fd1 Hz, then 

the original prototype 

analog bandpass filter 

must be designed 

(prewarped) to have an 

upper cutoff frequency of 

fa1 Hz using:
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 Steps to perform an IIR filter design using 

bilinear transform method

 Step 1: Obtain Laplace transfer function Hc(s) for 

the prototype analog filter

 Step 2: Determine digital filter’s equivalent fs and 

establish ts = 1/fs

 Step 3: In Laplace Hc(s) transfer function, 

substitute the expression

for the variable s to get IIR filter’s H(z) transfer 

function
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 Step 4: Multiply numerator and denominator of 

H(z) by appropriate power of (1 + z−1) and collect 

terms of like powers of z in the form

 Step 5: By inspection, express IIR filter’s time-

domain equation in the general form of

 Although this expression only applies to filter structure 

in Fig. 6-18, we can apply a(k) and b(k) coefficients to 

improved IIR structure shown in Fig. 6-22
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 Bilinear transform design example

 Design an IIR filter that approximates 2nd-order 

Chebyshev prototype analog lowpass filter whose 

passband ripple is 1 dB

 fs = 100 Hz (ts = 0.01)

 Filter’s 1 dB cutoff frequency = 20 Hz

 Original prototype filter’s Laplace transfer function is 

given as

145.1741094536.137

145.17410
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bilinear-transform-

designed filter’s 

magnitude response 

approaches zero at 

folding frequency of 

fs/2 = 50 Hz
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bilinear transform design method gives a much sharper roll-off for our lowpass filter 

for two reasons: 1) frequency warping of bilinear transform method compresses 

(sharpens) roll-off portion of a lowpass filter; 2) the price we pay in terms of 

additional complexity of implementation of our IIR filter: our new filter requires five 

multiplications per filter output sample where impulse invariance design filter in Fig. 

6-36(a) required only three multiplications
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 Prewarping

 If cutoff frequency is a large percentage of fs, 

resultant |Hd(fd)| cutoff frequency will be below 

the desired value

 To avoid this, we prewarp prototype analog filter’s 

cutoff frequency requirement before the analog Hc(s) 

transfer function is derived in Step 1

 In that way, they compensate for the bilinear transform’s 

frequency warping before it happens

 To determine prewarped analog filter lowpass cutoff 

frequency that we want mapped to the desired IIR 

lowpass cutoff frequency, use


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we plug desired IIR cutoff frequency 

ωd in here to calculate ωa cutoff 

frequency used to derive prototype 

analog filter’s Hc(s) transfer function
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 Optimization methods

 Developed for situation when the desired IIR filter 

frequency response is not of standard lowpass, 

bandpass, or highpass form

 Closed-form expressions for filter’s z-transform do not 

exist  no explicit equations to work with

 Designer should describe, in some way, the desired 

IIR filter frequency response

 The algorithm, then, assumes a filter transfer function 

H(z) as a ratio of polynomials in z and starts to 

calculate filter’s frequency response

 Based on some error criteria, the algorithm iteratively 

adjusts filter’s coefficients to minimize the error 

between desired and actual filter frequency response
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 Optimized IIR filter design routines

 Are used to design the simpler lowpass, 

bandpass, or highpass forms even though 

analytical techniques exist

 They only require the designer to specify a few 

key amplitude and frequency values, and the 

desired order of IIR filter (the number of feedback 

taps), and the software computes the final 

feedforward and feedback coefficients
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In specifying a lowpass IIR 

filter, a software design routine 

might require us to specify the 

values for δp, δs, f1, and f2
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Comparison of IIR and FIR Filters
Characteristic IIR FIR (nonrecursive)

Number of necessary multiplications Least Most

Sensitivity to filter coefficient quantization Can be high Very low

Probability of overflow errors Can be high Very low

Stability Must be designed in Guaranteed

Linear phase No Guaranteed

Can simulate prototype analog filters Yes No

Required coefficient memory Least Most

Hardware filter control complexity Moderate Simple

Availability of design software Good Very good

Ease of design, or complexity of design 

software
Moderately complicated Simple

Difficulty of quantization noise analysis Most complicated Least complicated

Supports adaptive filtering With difficulty Yes

So long as FIR 

coefficients are 

symmetrical (or 

antisymmetrical)


