Graph Mining for Automatic
Classification of Logical Proofs

Karel Vaculik, Lubos Popelinsky
FI MU
PV056 13. 5. 2014

Data and data pre-processing

» 393 resolution proofs, correctness {~A,B,C} {(-B,C}
assigned by a teacher \ /
» 322 correct proofs {~A,C} {B,~C}
» 71 incorrect proofs \ /
» Common errors found by specialized AB B0
scripts: \ /
{=A,~C}

» Resolving on two literals (see Figure)
» Repetition of the same literal in a clause

» Resolving on same literals

Mining subgraphs - first try

» Used algorithm: Sleuth
» Mining frequent subtrees with min. support 1% (infrequency of errors)

» Problems:

800 -

» Inefficient on large datasets

and/or large graphs

600 —

» Different assignments of tasks

ney

400 -

(different propositional letters)

freque

200 -

| I I
0 100 200

clause index

Mining subgraphs - new method

1. Extract all 3-node subgraphs (parents with the resolvent)
2. Perform generalization on these subgraphs

3. (Remove infrequent patterns)

“CvB “Bv-C

N4

-C YvZ YvaZ

\
N/
~AVAD Av-D / -y

NS

D

Mining subgraphs - new method

» Ordering on list of literals based on humber of negative and positive literals:
NegLiteral x PosLiteral

-C,7B,A,C —» (0,1),=(1,0);=(1,1), —» A<B=<C

» Lexicographical ordering on the previous ordering - for node (clause)
comparison

-C,-B,A,C (0,1) < (1,0) < (1,1) -C,-B,A,C
] Vi — VI
B,A,-A,C (0,1) < (0,1) < (1,1) B,A,-A,C

Mining subgraphs - new method

Procedure:

1. Compare parent nodes, smaller node will be first. For example:

[-C,-B,AC] [B,A-AC] [B,A,-A,C] [-C,-B,A,C]

~_ . >~

[AC] [A,C]

Mining subgraphs - new method

Procedure:

1. Compare parent nodes, smaller node will be first

2. Merge literals from all nodes and create ordering among them (in case of a tie
check ordering on nodes). Then assing variables to literal letters according to
ordering. For example:

[B,A,~AC] [-C,~B,A,C] [Z.X,~X,Y] [~Y,~Z,X,Y]

~_ ~_

[A,C] [X,Y]

l I

[BJA)_IAJCJ_ICJ_IB!AJCJAJC] —_—

UJ->N

(1 ,1)S(1,

w
g
A

Mining subgraphs - new method

Procedure:

1. Compare parent nodes, smaller node will be first

2. Merge literals from all nodes and create ordering among them (in case of a tie
check ordering on nodes). Then assing variables to literal letters according to
ordering

3. Lexicographically reorder literals in each node. For example Z,~Y and -Y,Z
should be same.

Experiments - classification

» Classes: correct or incorrect proof

» Every tree (proof) is represented by a set of its frequent subtrees according
to a given minimum support value

—

true false false incorrect

false true true correct

Experiments - classification

» Evaluation method:
» 10-fold cross validation

» Classifiers: J48, SVM, ...

—

Data split

Frm.na_rl_ Frequent
paftem mining Subfres pattern mining
indexes
Trees, patems Tress,
i i
ARFF Pattern
preparation renaming
Training ==t Tress,
r L
Classifier ARFF
building preparation
Evaluation

R““’-‘

lmm

Experiments - classification

» Results:

Algorithm Min. support | Accuracy Precision Recall Precision Recall
(%) (%) (positive) (positive) (negative) (negative)

97.2 0.970 0.997 0.986 0.862
Naive Bayes 1 96.7 0.965 0.997 0.986 0.832
SMO 0 97.5 0.973 0.997 0.988 0.873

IBK 5 96.7 0.970 0.991 0.955 0.862

Conclusion

» Generalized subgraphs provide a useful representation of resolution proofs

» It is possible to classify resolution proofs on the basis of this representation
» This is appropriate if the classes are not assigned clearly

» For precise specification of classes it is better to use some exact algorithm

Current work

New data for analysis
Explanation of errors in proofs
Extension of generalization method

Exploitation of temporal information

vV v v v Vv

Outlier detection

Thank you.

