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Data and data pre-processing

» 393 resolution proofs, correctness {~A,B,C} {(-B,C}
assigned by a teacher \ /
» 322 correct proofs {~A,C} {B,~C}
» 71 incorrect proofs \ /
» Common errors found by specialized AB B0
scripts: \ /
{=A,~C}

» Resolving on two literals (see Figure)
» Repetition of the same literal in a clause

» Resolving on same literals




Mining subgraphs - first try

» Used algorithm: Sleuth
» Mining frequent subtrees with min. support 1% (infrequency of errors)

» Problems:
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Mining subgraphs - new method

1. Extract all 3-node subgraphs (parents with the resolvent)
2. Perform generalization on these subgraphs

3. (Remove infrequent patterns)
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Mining subgraphs - new method

» Ordering on list of literals based on humber of negative and positive literals:
NegLiteral x PosLiteral

-C,7B,A,C —» (0,1),=(1,0);=(1,1), —» A<B=<C

» Lexicographical ordering on the previous ordering - for node (clause)
comparison

-C,-B,A,C (0,1) < (1,0) < (1,1) -C,-B,A,C
] Vi — VI
B,A,-A,C (0,1) < (0,1) < (1,1) B,A,-A,C




Mining subgraphs - new method

Procedure:

1. Compare parent nodes, smaller node will be first. For example:

[-C,-B,AC]  [B,A-AC] [B,A,-A,C] [-C,-B,A,C]
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Mining subgraphs - new method

Procedure:

1. Compare parent nodes, smaller node will be first

2. Merge literals from all nodes and create ordering among them (in case of a tie
check ordering on nodes). Then assing variables to literal letters according to
ordering. For example:

[B,A,~AC] [-C,~B,A,C] [Z.X,~X,Y] [~Y,~Z,X,Y]
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Mining subgraphs - new method

Procedure:

1. Compare parent nodes, smaller node will be first

2. Merge literals from all nodes and create ordering among them (in case of a tie
check ordering on nodes). Then assing variables to literal letters according to
ordering

3. Lexicographically reorder literals in each node. For example Z,~Y and -Y,Z
should be same.




Experiments - classification

» Classes: correct or incorrect proof

» Every tree (proof) is represented by a set of its frequent subtrees according
to a given minimum support value
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Experiments - classification

» Evaluation method:
» 10-fold cross validation

» Classifiers: J48, SVM, ...
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Experiments - classification

» Results:

Algorithm Min. support | Accuracy Precision Recall Precision Recall
(%) (%) (positive) (positive) (negative) (negative)

97.2 0.970 0.997 0.986 0.862
Naive Bayes 1 96.7 0.965 0.997 0.986 0.832
SMO 0 97.5 0.973 0.997 0.988 0.873

IBK 5 96.7 0.970 0.991 0.955 0.862




Conclusion

» Generalized subgraphs provide a useful representation of resolution proofs

» It is possible to classify resolution proofs on the basis of this representation
» This is appropriate if the classes are not assigned clearly

» For precise specification of classes it is better to use some exact algorithm




Current work

New data for analysis
Explanation of errors in proofs
Extension of generalization method

Exploitation of temporal information
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Outlier detection




Thank you.




