
Blocks

Martin Banas!
iOS Developer!
martin.banas@inmite.eu

mailto:martin.banas@inmite.eu


int myFunction (int a) { 
    // code goes here 
    return a; 
}

return type ! name ! arguments



int (^myFirstBlock) (int) = ^(int a) { 
    // code goes here 
    return a; 
};

return type ! name ! arguments ! arguments



“ language - level feature added to C, Objective-C 

and C++, which allow you to create distinct 

segments of code that can be passed around to 

methods or functions as if they were value ” 



int (^myFirstBlock) (int) = ^(int a) { 
    // code goes here 
    return a; 
};

block variable!  ! ! ! block literal



^(int a) { 
    // code goes here 
    return a; 
};



- (void)viewDidLoad { 
    [super viewDidLoad]; 
     
    [self myFunctionWithBlock:^(int a) { 
        NSLog(@"%i",a); 
    }]; 
     
} 
!
- (void)myFunctionWithBlock:(void (^)(int a))block { 
    if (block) { 
        block(3); 
    } 
}



Why use blocks?

• Blocks make your code easier to read and reuse 

• Blocks allow you to perform advanced tasks easier 

• Things like concurrency and callbacks become much 
easier 

• …because you have to



Where use blocks?

• Callbacks of any kind are likely candidates for using 
blocks 

• Anywhere you have a delegate, blocks are a good 
candidate for replacement 

• Completion handlers or failure handlers 

• Enumarations, NSOperations, etc..



Creating blocks
// As a local variable 
int (^blockName)(int) = ^int (int a) {…}; 
!
// As a property 
@property (nonatomic, copy) void (^blockName)(int a); 
!
// As a method to parameter 
[self myFunctionWithBlock:^(int a) {…}]; 
!
// As an argument to a method call 
- (void)myFunctionWithBlock:(void (^)(int a))block {…} 
!
// As a typedef 
typedef void (^MyBlock)(int a);



Mutable variables
NSArray *array = @[]; 
!
__block BOOL anyResults = NO; 
BOOL anyResultsFail = NO; 
     
[array enumerateObjectsUsingBlock:^(id obj, NSUInteger i, BOOL 
*stop) { 
!
 if (obj == objectWeAreLookingFor) {  
   anyResults = YES;  
   anyResultsFail = YES;  
   *stop = YES;  
  }  
!
}];



Memory management

• With ARC it just works 

• Use copy instead of retain (strong) 

• Adding block pointers to a collection, you need to 
copy them first 

• Retain cycles are dangerous



Concurrent 
programming

Martin Banas!
iOS Developer!
martin.banas@inmite.eu

mailto:martin.banas@inmite.eu


Working with queues

main queue / main thread

custom queue

task task tasktask task tasktask task task

task task tasktask task tasktask task task



Options in iOS

• Classes with built-in concurrency 
many classes have blocks 

• Grand Central Dispatch (GCD) 
simple, C function calls 

• NSOperation & NSOperationQueue 
built on top of GCD, better control 

• Manual multithreading (threads)



Threading

• Thread is used to refer to a separate path of 
execution for code 

• Process is used to refer to a running executable, 
which can encompass multiple threads 

• Task is used to refer to the abstract concept of work 
that needs to be performed



Options in iOS

• Classes with built-in concurrency 
many classes have blocks 

• Grand Central Dispatch (GCD) 
simple, C function calls 

• NSOperation & NSOperationQueue 
built on GCD, better control 

• Manual multithreading (threads)



Grand Central Dispatch
(GCD) 



Benefits of GCD
• Straightforward and simple programming interface 

• Automatic thread pool management 

• More memory efficient 

• Tasks cannot deadlock the queue 

• More efficient alternative to locks and synchronization 
primitives



Using GCD

1. Create a new queue 
give it a name (reverse DNS)



Using GCD

1. Create a new queue 
give it a name (reverse DNS) 

2. Add tasks (blocks) to the queue



Using GCD

1. Create a new queue 
give it a name (reverse DNS) 

2. Add tasks (blocks) to the queue 

3. There is no step 3



dispatch_queue_create 
!
dispatch_queue_t backgroundQueue = dispatch_queue_create("backgroundQ", NULL);



dispatch_queue_create 
!
dispatch_queue_t backgroundQueue = dispatch_queue_create("backgroundQ", NULL);

dispatch_async 
!
dispatch_async(backgroundQueue, ^{ // code goes here });



Queues

1. Main queue 
main thread, FIFO order, don’t block UI! 

2. Serial queues 
may switch to a different thread between tasks 
always wait for a task to finish before going to the next 
one - FIFO 

3. Concurrent queues 
submit tasks to any available thread or even make new 
threads 
FIFO order, but order of completion is not guaranteed.



Creating or getting queues
// Create a serial or concurrent queue 
dispatch_queue_create 
!
// Get the one and only main queue 
dispatch_get_main_queue 
!
// Get one of the global concurrent queues 
dispatch_get_global_queue



Adding tasks to the Queues
// Asynchronous 
dispatch_async 
dispatch_after 
dispatch_apply 
!
// Synchronous 
dispatch_once 
dispatch_sync



Operation queues
NSOperation & NSOperationQueue 



NSOperation

• Built on top of GCD 

• Much better control 

• Object-oriented approach 

•  Thread-safe, state, priority, dependencies, 
cancellation



State

• isReady returns YES to if the initialization steps are 
finished 

• isExecuting returns YES if the operation is currently 
working on its task 

• isFinished returns YES if the operation's task finished or if 
the operation was cancelled

isReady isExecuting  isFinished 



Priority

• NSOperationQueuePriorityVeryHigh 

• NSOperationQueuePriorityHigh 

• NSOperationQueuePriorityNormal 

• NSOperationQueuePriorityLow 

• NSOperationQueuePriorityVeryLow



GCD vs Operations



Core Data

Martin Banas!
iOS Developer!
martin.banas@inmite.eu

mailto:martin.banas@inmite.eu


“ … Core Data is a schema-driven object graph 

management and persistence framework. ” 



is Core Data..

… a database?       no, but.. 

… ORM?        no, but.. 

… like [ insert what you want ] ?   no, but..



App storeSave Validate undo / 
redo

lazy 
loading search

plist, xml, flat file, SQLite..

A B

Core DataYour App



NSPersistentStoreCoordinator

NSManagedObjectContext

plist, xml, flat file, SQLite..

NSManaged

NSPersistentStore NSPersistentStore NSPersistentStore

NSManagedObject
Model

NSManaged

NSManaged

NSManaged

NSManagedObjectContext

NSManaged

NSManaged

NSManaged

NSManaged



Modeling in Core Data

• Introduction 

• Creating entities 

• Creating and configuring attributes 

• Modeling relationships



Saving in Core Data

• Creating managed objects 

• Understanding the managed object context 

• Saving the managed object context



Fetching in Core Data

• Creating and using a fetch request 

• Ordering with sort descriptors 

• Using predicates



Next steps

• iOS App Programming Guide 

• iOS Human Interface Guidelines 

• iOS Developer Library 

• Development Videos (WWDC) 

• Stanford's iTunes U App Development Course 

• NSHipster.com 

• Objc.io


