Blocks

Martin Banas

iOS Developer
martin.banas@inmite.eu

mailto:martin.banas@inmite.eu

return type name arguments

int myFunction (int a) {
// code goes here
return a;

return type name arguments arguments

int (*myFirstBlock) (int) = ~(int a) {
// code goes here
return a;

b

“language - level feature added to C, Objective-C
and C++, which allow you to create distinct
segments of code that can be passed around to

methods or functions as If they were value ”

block variable block literal

int (*myFirstBlock) (int) = ~(int a) {
// code goes here
return a;

b

~int a) {
// code goes here
return a;

&

(void)viewDidLoad {
[super viewDidLoad];

[self myFunctionWithBlock:~(int a) {
NSLog(@"%i",a);
r;

(void)myFunctionWithBlock: (void (~)(int a))block {
if (block) {
block(3);
I3

Why use blocks?

-+ Blocks make your code easier to read and reuse
- Blocks allow you to perform advanced tasks easier

- Things like concurrency and callbacks become much
easier

- ...because you have to

Where use blocks?

+ Callbacks of any kind are likely candidates for using
blocks

- Anywhere you have a delegate, blocks are a good
candidate for replacement

» Completion handlers or failure handlers

- Enumarations, NSOperations, etc..

Creating blocks

// As a local variable
int (~“blockName) (int) = ~int (int a) {..};

// As a property
@property (nonatomic, copy) void (~blockName) (int a);

// As a method to parameter
[self myFunctionWithBlock:~(int a) {..}1;

// As an argument to a method call
- (void)myFunctionWithBlock: (void (~)(int a))block {..}

// As a typedef
typedef void (”MyBlock) (int a);

Mutable variables

NSArray *array = @[];

__block BOOL anyResults = NO;
BOOL anyResultsFail = NO;

[array enumerateObjectsUsingBlock:”~(id obj, NSUInteger i, BOOL
xstop) A

if (obj == objectWeAreLookingFor) {
anyResults = YES;

anyResultsFail = YES;
*xstop = YES;

1

Memory management

+ With ARC it just works
»+ Use copy instead of retain (strong)

» Adding block pointers to a collection, you need to
copy them first

- Retain cycles are dangerous

Concurrent
programming

Martin Banas

eeeeeeeeeeee
martin.banas@inmite.eu

mailto:martin.banas@inmite.eu

Working with queues

task task task task

main queue / main thread

task task task task

custom queue

Options in 10S

» Classes with built-in concurrency
many classes have blocks

» Grand Central Dispatch (GCLC

simple, C function calls

v

» NSOperation & NSOperationQueue
built on top of GCD, better control

+ Manual multithreading (threads)

Threading

» Thread is used to refer to a separate path of
execution for code

+ Process is used to refer to a running executable,
which can encompass multiple threads

+ Task is used to refer to the abstract concept of work
that needs to be performed

Options in 10S

» Classes with built-in concurrency
many classes have blocks

» Grand Central Dispatch (GCLC

simple, C function calls

v

» NSOperation & NSOperationQueue
built on GCD, better control

+ Manual multithreading (threads)

Grand Central Dispatch
(GCD)

Benefits of GCD

- Straightforward and simple programming interface
- Automatic thread pool management

- More memory efficient

- Tasks cannot deadlock the queue

- More efficient alternative to locks and synchronization
primitives

Using GCD

1. Create a new queue
give it a name (reverse DNS)

Using GCD

1. Create a new queue
give it a name (reverse DNS)

2. Add tasks (blocks) to the queue

Using GCD

1. Create a new queue
give it a name (reverse DNS)

2. Add tasks (blocks) to the queue

dispatch_queue_create

dispatch_queue_t backgroundQueue = dispatch_queue_create("backgroundQ", NULL);

dispatch_queue_create

dispatch_queue_t backgroundQueue = dispatch_queue_create("backgroundQ", NULL);

dispatch_async

dispatch_async(backgroundQueue, ~{ // code goes here });

Queues

1. Main queue
main thread, FIFO order, don’t block Ul!

2. Serial queues

may switch to a different thread between tasks

always walit for a task to finish before going to the next
one - FIFO

3. Concurrent queues

submit tasks to any available thread or even make new
threads

FIFO order, but order of completion is not guaranteed.

Creating or getting queues

// Create a serial or concurrent queue
dispatch_queue_create

// Get the one and only main queue
dispatch_get _main_queue

// Get one of the global concurrent queues

dispatch_get _global queue

Adding tasks to the Queues

// Asynchronous

dispatch_async
dispatch_after
dispatch_apply

// Synchronous
dispatch_once
dispatch_sync

Operation queues
NSOperation & NSOperationQueue

NSOperation

-

- Built on top of GCL
* Much better control
» Object-oriented approach

Thread-safe, state, priority, dependencies,
cancellation

isReady === isExecuting =P isFinished

iIsReady returns YES to if the initialization steps are
finished

isExecuting returns YES if the operation is currently
working on its task

iIsFinished returns YES if the operation's task finished or if
the operation was cancelled

Priority

+ NSOperationQueuePriorityVeryHigh
- NSOperationQueuePriorityHigh

+ NSOperationQueuePriorityNormal
+ NSOperationQueuePriorityLow

+ NSOperationQueuePriorityVeryLow

GCD vs Operations

Core Data

Martin Banas

iOS Developer
martin.banas@inmite.eu

mailto:martin.banas@inmite.eu

“ ... Core Data is a schema-driven object graph

management and persistence framework. ”

iIs Core Data..

... a database? no, but..
... ORM? no, but..

... like [insert what you want | ? no, but..

undo / lazy

Save Validate search store

redo loading

plist, xml, flat file, SQLi

Your App Core Data

NSManagedObjectContext NSManagedObjectContext

NSManaged | NSManaged NSManaged | NSManaged

NSManaged | NSManaged NSManaged | NSManaged

~

NSPersistentStoreCoordinator

NSManagedObject
Model

— T

NSPersistentStore NSPersistentStore

NSPersistentStore

plist, xml, flat file, SQLite..

Modeling in Core Data

» Introduction
+ Creating entities
+ Creating and configuring attributes

- Modeling relationships

Saving in Core Data

»+ Creating managed objects
- Understanding the managed object context

+ Saving the managed object context

Fetching in Core Data

»+ Creating and using a fetch request
» Ordering with sort descriptors

+ Using predicates

Next steps

»+ 10S App Programming Guide

»+ 10S Human Interface Guidelines

» 10S Developer Library

» Development Videos (WWDC)

-+ Stanford's iTunes U App Development Course
» NSHipster.com

- Objc.io

