Semantic search-based image annotation

Petra Budíková, FI MU CEMI meeting, Plzeň, 16. 4. 2014

The annotation problem

- Formalization
 - The annotation problem is defined by a query image *I* and a vocabulary *V* of candidate concepts
 - The annotation function f_A assigns to each concept
 c ∈ V its probability of being relevant for I

V = {flower, animal, person, building}

- Basic possible approaches
 - Model-based annotation
 - Train classifiers
 - Suitable for tasks with smaller dictionaries and available training images (e.g. medical image classification)
 - Search-based annotation
 - Exploit results of similarity search in annotated images
 - Suitable for tasks with wide dictionaries (e.g. image annotation for web search)

Search-based annotation in a nutshell

Our vision

- Next generation of similarity-based annotation
 - Similarity searching
 - Text cleaning
 - Semantic information extraction
 - Classifiers
 - Relevance feedback

MUFIN Image Annotation

- Already done (paper IDEAS 2013):
 - Modular framework for annotation processing
 - Implementation of basic modules
 - Similarity search, text cleaning, basic WordNet-based semantic processing
 - Working system for keyword annotation with 50-60 % precision
 - Vocabulary V = all English words

View Image Copy Image Copy Image Location Save Image As Send Image Set As Desktop Background View Image Info Get image annotation	Keywords provided by the MUFIN Image Annotation castle, italy, cathedral, tower, temple, bridge, ruins, suspension, charente, hill, statue, place, east, sky, st, ancient, religion, near, site, palace
Inspect Element (Q)	close

- Problems
 - Not precise enough
 - Results too unstructured for practical use
 - Difficult to evaluate

Current focus

- Hierarchical approach
 - Vocabulary hierarchically organized
 - WordNet hypernymy/hyponymy tree, ontology
- Semantics-aware processing of similar images' descriptions
 - Study and exploit suitable resources of semantic information
 - Determine the relevance of candidate concepts with respect to semantic relationships
- ImageCLEF evaluation
 - ImageCLEF2014: scalability-oriented, no manually labelled training data
 - 100 test concepts, provided with links to WordNet synsets

ConceptRank

- Inspiration: PageRank
 - Importance of a page is derived from the importance of pages that link to it
 - Linear iterated process, modelled as a Markov system
 - Random restarts to avoid "rank sinks"

$$PR(V_i) = (1-d) + d * \sum_{V_j \in In(V_i)} \frac{PR(V_j)}{|Out(V_j)|}$$

- ConceptRank idea: Semantic ranking of WordNet synsets
 - A Markov system, nodes are formed by WordNet synsets
 - Links between nodes connected by some WordNet relationship
 - Weighted according to the type of the relationship
 - Random restarts are not weighted uniformly, but reflect the initial weights of synsets as determined by similarity searching

ConceptRank illustration

ConceptRank Resources

- Content-based image retrieval
 - powered by MUFIN
 - 20M Profiset collection, 250K ImageCLEF training data
- WordNet
 - Standard relationships (hypernymy, antonymy, part-whole, gloss overlap, ...)
 - Word similarity metrics defined on top of hyponymy/hypernymy tree
 - the "language" point of view
- Visual Concept Ontology (VCO)
 - Semantic hierarchy of most common visual concepts, linked to WordNet
 - VCO sub-trees are used to limit the search for WordNet relationships
- Co-occurrence lists for keywords from Profimedia dataset
 - Constructed from very large text corpus (linguists from MFF UK)
 - Corpus size approximately 1 billion words
 - "human/database" point of view

Cooperation with other CEMI teams

- UFAL
 - Information about keyword co-occurrence in text corpora
 - Already part of MUFIN Image Annotation processing
 - Other semantic resources: WikiNet
 - Being studied at UFAL
- ČVUT
 - High-precision classifier for 1000 ImageNet concepts
 - Todo: compare performance of this classifier and MUFIN search-based solution; if complementary, try to combine
 - Image similarity measure derived from the classifier
 - Todo: compare it to MPEG7 similarity utilized by MUFIN Image Annotation

Questions, comments?

