

Hadoop implementation of
MapReduce computational model

Ján Vaňo

What is MapReduce?

• A computational model published in a paper
by Google in 2004

• Based on distributed computation

• Complements Google‘s distributed file system
(GFS)

• Works with key:value pairs

Why MapReduce?

• It is the ‚answer‘ for Big Data problem

• Runs on commodity hardware

• Very scalable solution

MapReduce model

MapReduce model

MapReduce model

MapReduce alternatives

• Hadoop – Top-level Apache project

• Spark – University of Berkeley project

• Disco – Open source Nokia project

• MapReduce-MPI – US Department of Energy project

• MARIANE – academic project of University of
Binghamton

• Phoenix – University of Stanford project

• BashReduce - MapReduce for std. Unix commands

MapReduce vs. RDBMS

Data Structure

• Structured Data – data organized into
entities that have a defined format.
– Realm of RDBMS

• Semi-Structured Data – there may be a
schema, but often ignored; schema is used
as a guide to the structure of the data.

• Unstructured Data – doesn’t have any
particular internal structure.

• MapReduce works well with semi-structured
and unstructured data.

What is Hadoop?

• Software platform that lets one easily write
and run applications that process vast
amounts of data

• Hadoop is most popular implementation of
MapReduce so far

Why Hadoop?

• It has been Apache top-level project for a long
time (6 years)

• Hadoop Ecosystem

• Hadoop exclusive technologies

Why Hadoop?

• Scalable: It can reliably store and process
petabytes

• Economical: It distributes the data and processing
across clusters of commonly available computers
(in thousands)

• Efficient: By distributing the data, it can process it
in parallel on the nodes where the data is located

• Reliable: It automatically maintains multiple
copies of data and automatically redeploys
computing tasks based on failures

Brief history

• 2002 - Project Nutch started (open source web search engine) – Doug
Cutting

• 2003 - GFS (Google File System) paper published
• 2004 - Implementation of GFS started
• 2004 - Google published MapReduce paper
• 2005 - Working implementations of MapReduce and GFS (NDFS)
• 2006 - System applicable beyond realm of search
• 2006 - Nutch moved to Hadoop project, Doug Cutting joins Yahoo!
• 2008 - Yahoo!s production index generated by 10,000 core Hadoop cluster
• 2008 - Hadoop moved under Apache Foundation
• April 2008 - Hadoop broke world record - fastest sorting of 1 TB of data

(209 seconds, previously 297)
• November 2008 - Google's implementation sorted 1 TB in 68 seconds
• May 2009 - Yahoo! team sort 1 TB in 62 seconds

1TB sort by Hadoop

Who uses Hadoop?

Assumptions

• Hardware will fail
• Processing will be run in batches. Thus there is an emphasis

on high throughput as opposed to low latency
• Applications that run on HDFS have large data sets. A

typical file in HDFS is gigabytes to terabytes in size
• It should provide high aggregate data bandwidth and scale

to hundreds of nodes in a single cluster. It should support
tens of millions of files in a single instance

• Applications need a write-once-read-many access model
• Moving Computation is Cheaper than Moving Data
• Portability is important

Hadoop modules

• Hadoop Common - contains libraries and utilities
needed by other Hadoop modules

• Hadoop Distributed File System (HDFS) - a distributed
file-system that stores data on the commodity
machines, providing very high aggregate bandwidth
across the cluster

• Hadoop MapReduce - a programming model for large
scale data processing

• Hadoop YARN - a resource-management platform
responsible for managing compute resources in
clusters and using them for scheduling of users'
applications
– Provides base for MapReduce v2

Hadoop architecture

HDFS architecture

HDFS architecture (reading)

HDFS architecture (writing)

Data replication in HDFS

How to use Hadoop MapReduce?

• Implement 2 basic functions:

– Map

– Reduce

• Implement Driver class

MapReduce structure

MapReduce structure

MapReduce structure

Job submission (MapReduce v1)

Job submission (MapReduce v1)

• Client applications submit jobs to the Job tracker

• The JobTracker talks to the NameNode to determine the location of
the data

• The JobTracker locates TaskTracker nodes with available slots at or
near the data

• The JobTracker submits the work to the chosen TaskTracker nodes

• The TaskTracker nodes are monitored. If they do not submit
heartbeat signals often enough, they are deemed to have failed and
the work is scheduled on a different TaskTracker

Job submission (MapReduce v1)

• A TaskTracker will notify the JobTracker when a task
fails. The JobTracker decides what to do then: it may
resubmit the job elsewhere, it may mark that specific
record as something to avoid, and it may may even
blacklist the TaskTracker as unreliable

• When the work is completed, the JobTracker updates
its status

• Client applications can poll the JobTracker for
information

Job flow (MapReduce v1)

Job flow (MapReduce v2)

Hadoop Ecosystem

• Apache Avro (serialization system for
persistent data)

• Apache Pig (high-level dataflow querying
language)

• Apache Hive (data warehouse infrastructure)

Hadoop Ecosystem

• Apache HBase (database for real-time access)

• Apache Sqoop (tool for moving data from SQL
to Hadoop or opposite)

• Apache ZooKeeper (distributed coordination
service providing high availability) – library for
building distributed systems

Hadoop exclusive technologies

• YARN – Yet Another Resource Negotiator

• HDFS federation – possibility of partitioning
namespace across several namenodes to
support high number of files

• HDFS high-availability – techniques for for
removing the namenode as the single point of
failure

Examples of production use

• Yahoo! : More than 100,000 CPUs in ~20,000
computers running Hadoop; biggest cluster: 2000
nodes (2*4cpu boxes with 4TB disk each); used to
support research for Ad Systems and Web Search

• Facebook: To store copies of internal log and
dimension data sources and use it as a source for
reporting/analytics and machine learning; 320
machine cluster with 2,560 cores and about 1.3
PB raw storage

Size of releases

Hadoop

+ Framework for applications on large clusters

+ Built for commodity hardware

+ Provides reliability and data motion

+ Implements a computational paradigm named
Map/Reduce

+ Very own distributed file system (HDFS) (very
high aggregate bandwidth across the cluster)

+ Failures handles automatically

Hadoop

- Time consuming development
- Documentation sufficient, but not the most

helpful
- HDFS is complicated and has plenty issues of its

own
- Debugging a failure is a "nightmare"
- Large clusters require a dedicated team to keep it

running properly
- Writing a Hadoop job becomes a software

engineering task rather than a data analysis task

