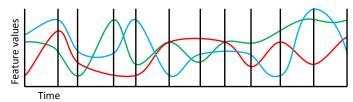
Human Motion: How to Evaluate Segmentation w.r.t. Retrieval


Michal Balážia

Laboratory of Data Intensive Systems and Applications
Faculty of Informatics
Masaryk University

May 5, 2014

The Goal

We have the following segmentation technique:

Our goal: Use this segmentation to improve retrieval How?

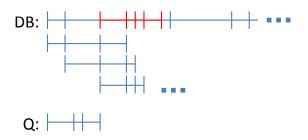
Create a motion index at the level of segments What can be the problems?

- representation of segments
- distance function
- clustering

Evaluation Methods

- 1) Segment-Shift Retrieval
- 2) Quality of Clustering
- 3) Segment Positions
- 4) Distance (Order) Preserving

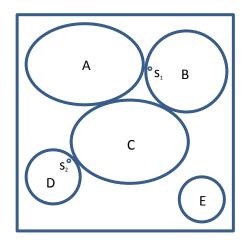
Segment-Level Motion Retrieval


Ground truth provided – by exhaustive pose-level search What can segments represent?

- search shift units (Segment-Shift Retrieval)
 - process all segments not very efficient
 - retrieve all occurences of Q in DB most effective
- words (Text-Based Retrieval)
 - process only some segments much more efficient
 - retrieve almost all occurences of Q in DB still enough effective

A typical text-based retrieval:

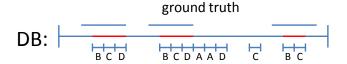
- 1) Partition input motion data into segments
- 2) Cluster those into groups to treat similar segments as equal
- 3) Mark the clusters with letters
- 4) Use a text-based searching technique to retrieve occurences of Q in DB


Evaluation Method 1: Segment-Shift Retrieval

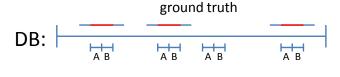
length variation $\left\langle \frac{n}{2},2n\right\rangle$

 d_{GT} ... distance to the k-th closest occurrence of Q in ground truth d_S ... distance to the k-th closest occurrence of Q with use of segmentation

Evaluation Method 2: Quality of Clustering



$$Q: \begin{array}{c|c} S_1 & S_2 \\ \hline B & D \end{array}$$

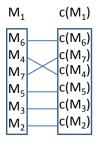

DB: AABEDAEC...

Q: DAE

Evaluation Method 3: Segment Positions

Q: A B C D

Evaluation Method 4: Distance (Order) Preserving


motion M compressed motion c(M) - only key poses (determined by segmentation)

Distance preserving:

$$d(M_1, M_2) = d(c(M_1), c(M_2))$$

Distance order preserving:

$$d(M_1, M_2) \le d(M_3, M_4) \Rightarrow d(c(M_1), c(M_2)) \le d(c(M_3), c(M_4))$$

8 / 8